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Abstract—Investigation of fracture of wood components can 

prevent from catastrophic failures. Created fracture process zone 
(FPZ) in crack tip vicinity has important effect on failure of cracked 
composite materials. In this paper, a failure criterion for fracture 
investigation of cracked wood specimens under mixed mode I/II 
loading is presented. This criterion is based on maximum strain 
energy release rate and material nonlinearity in the vicinity of crack 
tip due to presence of microcracks. Verification of results with 
available experimental data proves the coincidence of the proposed 
criterion with the nature of fracture of wood. To simplify the 
estimation of nonlinear properties of FPZ, a damage factor is also 
introduced for engineering and application purposes. 
 

Keywords—Fracture criterion, mixed mode loading, damage 
zone, microcracks.  

I. INTRODUCTION 

OOD is a natural, heterogeneous, anisotropic, 
hygroscopic composite material with cellular structure. 

This natural structure dictates strongly directional dependent 
properties. Wood is extremely mechanically efficient 
compared to most other materials, due to the high strength and 
stiffness relating to its weight [1]. Nowadays, large dimension 
wood structures are developed in different modern civil 
structures [2]. Also, wood can be produced from natural 
renewable sources without any complicated manufacturing 
process. 

Cracks in wood structures are usually available due to 
inherent defects or production process [1]. These cracked 
structures often are subjected to various loading conditions. 
Most probable load situation which may lead to fracture of 
wood structures is mixed mode I/II loading.    

Fracture phenomenon of wood is associated with a 
significant process zone [3]. The created damage zone is often 
in the form of bridging or microcracks and can prevent from 
catastrophic fracture of wooden structures due to consumption 
of energy.  

Although the presence of microcracks in the vicinity of 
crack tip will improve fracture properties of wood, it also 
causes to some difficulties and complicacies in the analysis 
and investigation of fracture phenomenon. To estimate a good 
approximation and applicable model for wood fracture 
process, a calculation of the microcrack distribution and a 
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change in the compliance of material in FPZ are necessary. 
Since the mechanisms responsible for wood fracture are 
numerous and complex, formulating of a strict and practical 
model appears to be very difficult and has not been published 
yet. Because of these difficulties, curve fitting approach has 
been employed by some researches, which needs significant 
number of experimental data. A mixed mode fracture criterion 
is proposed by Mall and Murphy [4]. Significant researches 
have been done by Wu on Balsa wood center notch specimens 
[5]. Wu has an interactive experimental mixed mode criterion 
which is widely used for composite structures. This empirical 
criterion contains two experimental coefficients, which makes 
it difficult to use. 

Another approach for the presentation of mixed mode I/II 
fracture criterion is the extension of well-known available 
fracture criteria in to composite materials. Jernkvist was the 
first researcher who has extended Maximum Strain Energy 
Release Rate (MSER) [6] and Minimum Strain Energy 
Density (MSED) criteria [7], in to wooden structures [8]. He 
used these common isotropic fracture criteria and this 
experimental observation where cracks in wood components 
are propagated along the fibers, for any crack-fiber 
inclinations. He suggested two criteria for orthotropic 
materials based on MSER and MSED criteria with assumption 
of self-similar crack propagation. His results are too 
conservative and are not verified with experimental data [9]. 
Neglecting the effect of wasted energy in FPZ may be the 
main reason for this deficiency. Maximum Principal Stress 
(MPS) criterion is also extended for cracked composite 
materials which contained better results [9]. 

Nature of FPZ and nonlinear behaviour of this region are 
also studied by some researchers separately without paying 
attention to the presentation of a fracture criterion. Vasic and 
Smith [3] found the significance of FPZ effects on fracture 
behavior of wood specimens. They proposed bridging crack 
[10] and lattice fracture approach [10] based on Hillerborg’s 
model [11].  

In this paper, we will first show that the stress based criteria 
which are material independent (always Poisson’s ratio) are 
not able to predict the material nonlinearity effects in FPZ. 
Therefore, one of the main objectives of this article is to 
modify the energy based mixed mode criteria, which are 
material dependent, in order to consider the effects of energy 
wasted by micro crack formation in FPZ surrounded around 
the crack tip. By extraction of mechanical properties of 
damage zone, modified maximum strain energy release rate 
criterion is introduced with real elastic properties of FPZ. 
Scots pine and Norway spruce mixed mode experimental 
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fracture data, previously polished in [12] and [9] respectively, 
will be used for the results verification of the suggested 
criterion. To use this criterion in applied and practical 
engineering goals, a damage factor is introduced to simplify 
the estimation of damage zone mechanical properties. It is 
found that this damage factor does not depend on wood 
species, but is strongly dependent on wood crack propagation 
plane system. Therefore, the modified energy criterion can be 
easily used for fracture behavior prediction of wood 
specimens.  

II. MODEL DESCRIPTION AND MATERIAL PROPERTIES  

Wood is a cylindrically orthotropic material which has 
unique mechanical properties in the directions of three 
mutually perpendicular axes: 
 Longitudinal (L) which is parallel to the fibers, 
 Radial (R), which is normal to the growth rings and 
 Tangential (T), which is is perpendicular to the grain. 

These axes are shown in Fig. 1 [13]. A crack may lie in one 
of these three planes. This gives six crack-propagation 
systems, RL, TL, LR, TR, LT, and RT, as shown in Fig. 2. Of 
these crack propagation systems, RL, TL, TR, and RT are 
most probable for crack extension.  

 

 

Fig. 1 Principal axes of orthotropy (R, T, L) in a tree trunk 
  
Cracks in RL and TL orientations are the most probable 

defects due to low strength and stiffness of wood 
perpendicular to the grain. 

 

 

Fig. 2 Possible crack propagation systems for wood [1] 
 
In this article, mixed mode fracture is studied in the RL 

plane strain system. The configuration of analyzed specimen 
and crack tip coordinate system are shown in Fig. 3, where x-
axis corresponds to the wood longitudinal (L) direction and 

“y” is R direction. 
 

 

Fig. 3 Possible crack propagation systems for wood [1] 
 
Scots pine, Norway spruce, Red spruce, and Hemlock 

western are four well known wood species that are used in this 
study. The elastic properties of these materials are summarized 
in Table I. 

 
TABLE I 

ELASTIC PROPERTIES OF SCOTS PINE, NORWAY SPRUCE, RED SPRUCE AND 

HEMLOCK WESTERN WOOD APPLIED IN THE ANALYSIS 

Parameter 
Norway 
spruce  

Scots 
pine  

Douglas 
fir 

Hemloak 
Western  

  RE GPa  0.81 1.10 0.92 0.31 

  TE GPa  0.64 0.57 0.68 0.58 

  LE GPa  11.84 16.3 13.6 10.1 

  RLG GPa  0.63 1.74 0.87 0.32 

LR  0.38 0.47 0.29 0.42 

LT  0.56 0.45 0.45 0.48 

TR  0.34 0.31 0.37 0.38 

 0.5.RL
ICK MPa m  0.58 0.49 0.36 0.37 

 0.5.RL
IICK MPa m  1.52 1.32 2.23 2.24 

III. CALCULATION OF FPZ PROPERTIES 

In this section, wasted energy by microcracks which is 
proposed in [14] is considered for the calculation of 
mechanical properties of FPZ. Therefore, the fracture of wood 
specimens will be modeled accurately, by employing these 
damage properties in maximum strain energy release rate 
criterion. 

An uncracked isotropic solid under uniform hydrostatic 
stress p is shown in Fig. 4. The absorbed potential energy by 
the aforementioned body could be written as:  

 

( ) ( )
2 2xx xx yy yy zz zz xx yy zz

V VP         
                 (1) 

 
in which V is the total volume, and K is the bulk modulus of 
the material shown in Fig. 4, which is given by: 
 

xx yy zz

Volumetric Stress P
K

Volumetric Strain   
 

 
                    (2) 
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Fig. 4 Isotropic body under hydrostatic pressure 
 
Potential energy of un-cracked body could be rewritten as 

follows utilizing (2) based on the definition of bulk modulus 
as: 

2

2

P V

K
                                          (3) 

 
Considering a set of cracks in the mentioned solid will 

change the energy balance as [14]: 
 

2 2

2 2

P V P V

K K
                                 (4) 

 

In which,  is the change in potential energy. K is the bulk 

modulus of the cracked material.  
By dimensional analysis, the wasted energy due to one 

microcrack must have the following form [14]: 
 

2 3

( )
P a

G f
E

                                 (5) 

 

where a  is the crack dimension; E  is the modulus of 

elasticity of the cracked body;   is its effective Poisson’s 
ratio; and f is a non-dimensional shape factor. Therefore, the 
energy change due to N microcracks is given by [14]: 
 

2
3 ( )

P
a f

E
                                  (6) 

 
Substituting into (5) and considering the following standard 

relation:  

3(1 2 )
E

K
                                   (7) 

 
We will have [14]: 

32 ( )
1

3(1 2 )

N a fK

K




 


                         (8) 

 
where angle brackets show the average values. If crack size 
and shape are considered to be uncorrelated, (8) can be 
replaced by: 
 

32 ( )
1

3(1 2 )

N a fK

K




 


                         (9) 

 
In the case of uniaxial tension s (Fig. 5) which is applied to 

a cracked body, the energy balance could be as: 
 

2 2

2 2

s V s V

E E
                                    (10) 

 

 

Fig. 5 Plane crack and resolved stresses [14] 
 
Considering   and   as normal and tangential stresses in 

the plane of the crack respectively, we have [14]: 
 

 
3

2 2( ) ( , )
a

G f g
E

                              (11) 

 
Here, ( , )g   is another non-dimensional shape factor.   and 
 can be written versus s (see Fig. 5) as: 
 

2cos

sin cos

s

s

 
  



                                    (12) 

 
Summing (11) over all cracks to get  , and substituting 

into (10) gives: 
 

3 4 2 21 2 ( ( )cos ( , )sin cos )
E

N a f g
E

                   (13) 

 
In [14], crack sizes, shapes, and orientations are assumed to 

be uncorrelated. Utilizing the following relations and 
uncorrelated assumption: 

 

4

2 2

1
cos

5
2

sin cos
15



 




                            (14) 

 
Equation (13) could be rewritten as: 
 

32
1 3 ( ) 2 ( , )

15

N aE
f g

E
                   (15) 

 
Equations (9) and (15), together with (8), provide 

simultaneous equations for the determination of K , E , and 
 and also any other related elastic constants (such as the 

shear modulus G ). 
Crack energy and ( )f   and ( , )g   functions are calculated 

in [14] for several crack shapes in detail. For example, for a 
solid with elliptic cracks as shown in Fig. 6, we have: 

 

 

2 24 1
( )

3

b
f

a E k

 
             

                          (16) 
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and  
2

2 2 24
( , ) (1 )[ ( , )cos ( , )sin ]

3

b
g R k Q k

a

          
 

      (17) 

 
in which 
 

2 2 2 1
1

2 2 2 2 1
1 1

( , ) [( ) ( ) ( )]

( , ) [( ) ( ) ( )]

R k k k E k k k

Q k k k k E k k k

  

  





  

  

K

K
              (18) 

 
( )E k  is the complete elliptic integral of the second kind, 

and ( )kK  is the complete elliptic integral of the first kind. 
 

 

Fig. 6 Elliptic crack and resolved stresses [14] 
 
Under the simplifying assumption that all the cracks are 

elliptic and have the same aspect ratio b a , (16) is changed to: 
 

2 24 1
( )

3 ( )

b
f

a E k

 
     

   
                         (19) 

 
Substituting in (13): 
 

2 28 (1 )
1

9(1 2 ) ( )

N abK

K E k

 



 


                     (20) 

 

Assuming crack area, A ab , and 4 ( )P aE k  as crack 

surrounding space, crack-density parameter   is defined by: 
 

22N A

P



                                (21) 

 
So that (20) can be rewritten in its final form 
 

216 1
1

9 1 2

K

K

 


 
    

                         (22) 

 

For fixed b a  ratio and considering 2 2cos sin 1 / 2   , 

from (17) for ( , )g   we have: 
 

2
22

( , ) (1 )[ ( , ) ( , )]
3

b
g R k Q k

a

        
 

          (23) 

 

Substituting ( )f   and ( , )g    in (15)  
 

216(1 )
1 3 ( , )

45

E b
T

E a

        
                      (24) 

 
where [14]:  
 

 

 

2

2 2 1 2 2 2 1
1 1 1

( , ) ( ) ( , ) ( , ) ( )

[( ) ( ) ( )] [( ) ( ) ( )]

b
T E k R k Q k k E k

a

k E k k k k k E k k k

  

    

  

     K K
   (25) 

 

The standard relation (8) among K , E  and , and the 
similar one for K, E, and , can be combined to [14]: 

 

2( ) (1 2 )(1 ) (1 2 )(1 )
K E

K E
                        (26) 

 
Substituting (22) and (24) in (36) 
 

2

45

8 (1 )[2(1 3 ) (1 2 ) ]T

 
  




   
                 (27) 

 
To round out the results for K K  and E E , an analogous 

expression for G G  is easily found from standard elastic 

relations. Since 1 3 1 3 0G E K   , and similarly for the 

barred quantities, it follows that 
 

2(1 )(1 ) 3(1 ) (1 2 )(1 ) 0
G E K

G E K
                      (28) 

 
where 

32 3
1 (1 ) 1 ( , )

45 4

G b
T

G a
        

                (29) 

 
An independent calculation of G G by a direct procedure to 

that used for finding E E gives the same answer. 

It can be easily shown that for circular cracks ( 1)b a  , 

4 (2 )T    and 
3N a  , and (24) and (29) are reduced to 

[14]: 
 

216 (1 ) (10 3 )
1

45 (2 )

E

E

  


 
 


                    (30) 

 
32 (1 )(5 )

1
45 (2 )

G

G

  


 
 


                      (31) 

 
Also for the limiting case of long narrow elliptic cracks 

( 0)b a  , with (2 ) (1 )T      and 2( / 2)N ab  , the 

results reduced to: 
 

16
1 (1 )(5 4 )

45

E

E
                             (32) 
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8
1 (10 7 )

45

G

G
                               (33) 

IV. MODIFICATION OF ENERGY BASED CRITERION 

Based on the above analysis, variations of mechanical 
properties for investigated wood species in FPZ are shown in 
Fig. 7 versus crack density parameter. 

 

 

Fig. 7 Effective mechanical properties in damage zone in the vicinity of crack tip 
 

As we can see, , ,E G , and K are decreasing functions of 
  and they also tend to zero at critical crack density 

parameter 0.56   for all kinds of investigated wood. This 
vanishing of the moduli can be interpreted as a loss of 
coherence of the material that is produced by an intersecting 
crack network at the critical value 9/16 of the crack density 
parameter. It can be shown that the unstable crack growth 
starts at 0.4  , and at 0.56  , the FPZ will be portion of 
the main crack; in the other words, the specimen in fracture 
process will completely tear apart and the load capacity in this 
region is vanished. 

Now, we can use maximum strain energy release rate 
criterion with effective material properties in FPZ. As 
explained earlier in detail, this procedure will help us to 
simulate the crack propagation process in wood damaged 
matrix actually. Therefore, the required energy for formation 
and growth of microcracks is considered in our calculations. 
So, the maximum strain energy release rate criterion is 
modified as follows: 

 
2 2 0I c II I cK K K                           (34) 

 

The authors introduce c  as a “compliance damage factor”.  

 1 2

1 1 2 2c d am ag ed
C C                     (35) 

 

Fracture limit curves using compliance softening factor c  

is plotted in Figs. 8 and 9 for Scots pine and Norway spruce 
wood, respectively. This factor increases the compliance of 
representative volume element damage zone and therefore the 

area under fracture limit curve in I IIK K  coordinate.  

It can be found from Figs. 8 and 9 that considering the 
portion of energy that causing microcrack formation and 
growth in FPZ justifies the difference between the linear 
fracture approximation and experimental data. The 
discrepancy between modified criterion and experimental data 
for Scots pine wood is too small and for Norway spruce is less 
than 10%, which is very good agreement.  

V. A SIMPLE METHOD FOR CALCULATION OF DAMAGE FACTOR 

(TOUGHNESS APPROACH) 

In this section, a simple method will be presented to avoid 
complicated calculation of material properties in FPZ. This 
simple method is based on definition of a damage factor in 
order to release (3) from damage parameters. In the other 
words, dissipative mechanisms and wasted energy by 
microcracks are modeled in maximum strain energy release 
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rate criterion by a suitable damage factor. The released energy 
due to microcrack formation and growth is in fact the marked 
area, between two fracture curves, that is shown in Figs. 10 
and 11. 

 

 

Fig. 8 Fracture limit curves for strain energy release rate (SER) 
criterion considering linear and nonlinear behavior of material in 

FPZ, in comparison with experimental data for Scots pine wood [12] 
 

 

Fig. 9 Fracture limit curves for modified strain energy release rate 
criterion considering linear and nonlinear behavior of material in 

FPZ, in comparison with experimental data for Norway spruce [9] 
 

 

Fig. 10 Difference between fracture curves in linear and non-linear 
approach for Scots pine wood 

 

 

Fig. 11 Difference between fracture curves in linear and non-linear 
approach for Norway spruce wood 

 
With more detailed investigation of maximum strain energy 

release rate criterion, it can be found that the 3  factor, 

defined in this criterion, is dependent on elastic compliance 
matrix of material, and this dependency is the main reason for 
dissatisfaction of pure mode II boundary condition. It can be 
easily shown that, for satisfaction of pure mode II condition in 
maximum strain energy release rate criterion, the following 
mode II damage, D factor must be used in (3): 

 

1 3( )IIC

IC

K

K
D                                  (36) 

 
Therefore, the second form of modified maximum strain 

energy release rate criterion is given by: 
 

2 2 21
2
1

0I II ICK K K
 

   
 D

                            (37) 

 
and the damage factor in (37) is defined as: 
 

 
1

1
2

1
D D


 

  
 

                                    (38) 

 

The authors introduce 1D  as a “toughness damage factor”. 

Substituting the toughness damage factor from (36) into (37) 
and doing necessary simplifications:  

 
2 2

1I II

IC IIC

K K

K K

   
    

   
                           (39) 

 
Equation (39) is independent of elastic coefficients and 

material compliance matrix; therefore, it is not necessary to 
analyze the softening behavior of material in FPZ. In fact, by 
this approach, the damage compliance properties of material 
are replaced by material fracture properties, i.e. mode I and II 
fracture toughness, and as a consequence, we do not need to 
perform material nonlinear analysis.  

VI. CONCLUSION 

Crack propagation in wood specimens includes creation of a 
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FPZ in the crack tip vicinity. The behavior of mechanical 
properties in this region is complicated and nonlinear due to 
microcrack formation and growth. In nearly all energy based 
proposed criteria for investigation of crack growth in wooden 
structures under mixed mode I/II, the nonlinear behavior of 
material and wasted energy due to microcrack growth is 
neglected by simplifying assumptions. Therefore, these 
criteria are too conservative in comparison with experimental 
data. In this article, wasted energy by microcracks in FPZ is 
considered by two different approaches: 
1. Compliance Damage approach: Mechanical properties of 

damaged zone were calculated and maximum strain 
energy release rate criterion was modified by real FPZ 
properties. Therefore, the resultant fracture limit curves 
include the effects of microcrack wasted energy. 

2. Toughness Damage approach: To avoiding complicated 
calculations, by definition of a suitable toughness damage 
factor, satisfying pure mode II condition, a simple method 
for estimation of compliance in FPZ was proposed. This 
factor makes the proposed criterion independent from 
material elastic and damage properties.  

Verification was done using fracture experimental data for 
two kinds of softwood in RL direction, i.e. Scots pine [12] and 
Norway spruce [9]. Excellent compatibility with experimental 
data proved the accuracy of proposed methods. 
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