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Abstract—A given polynomial, possibly with multiple roots, is 

factored into several lower-degree distinct-root polynomials with 

natural-order-integer powers. All the roots, including multiplicities, 

of the original polynomial may be obtained by solving these lower-

degree distinct-root polynomials, instead of the original high-degree 

multiple-root polynomial directly. 

The approach requires polynomial Greatest Common Divisor 

(GCD) computation. The very simple and effective process, “Monic 

polynomial subtractions” converted trickily from “Longhand 

polynomial divisions” of Euclidean algorithm is employed.  It 

requires only simple elementary arithmetic operations without any 

advanced mathematics. 

Amazingly, the derived routine gives the expected results for the 

test polynomials of very high degree, such as 1000( ) ( 1)p x x .

Keywords—Polynomial roots, greatest common divisor, 

Longhand polynomial division, Euclidean GCD Algorithm. 

I. INTRODUCTION

given polynomial, possibly with several multiple roots,       

is factored into several lower-degree distinct-root 

polynomials with power set of natural-order integers. All 

of the roots with corresponding multiplicities are then found 

by individually solving these lower-degree distinct-root 

polynomials, instead of directly solving the original high-

degree multiple-root polynomial.  It shows that the more root 

multiplicities the polynomial has, the more efficient this 

algorithm becomes.  This is contrary to the usual issue that the 

most difficult part of solving a polynomial is calculating the 

roots with high multiplicities [1]. 

The approach requires the greatest common divisor (GCD) 

computation. The simple and efficient process developed by 

Chang [2] is applied for polynomial GCD. It requires only 

simple elementary arithmetic operations such as subtractions 

and divisions. A MATLAB code is provided, along with a 

typical numerical example.  Amazingly, this routine gives the 

expected results for test polynomials of very high degree. 

II. FORMULATION  

A given polynomial p(x) of degree N with N + 1 

coefficients , 0,1, ,ib i N , expressed in a polynomial 

coefficient form, 
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can always be expressed in a factored form having K distinct 

roots  zk with corresponding multiplicities  mk , 1,2, ,k K ,
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Generally the evaluation of the polynomial coefficients 

from the roots and the multiplicities is very easy and 

straightforward.  On the contrary, the calculation of the roots 

and multiplicities from a given polynomial coefficients is very 

much involved and cumbersome, especially for high degree 

polynomials with large root multiplicities. 

 When roots with identical multiplicities are collected 

together, the polynomial p(x) can be factored as 
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where  factors wm(x) are polynomials having all distinct roots. 

Therefore the greatest common divisor g(x) of the given 

polynomial p(x)  and its derivative p (x) is found to be 
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And then 
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The process to find all the desired M factoring polynomials 

wm(x) can therefore be summarized into the following 

recurrent relation.  First perform consecutively the GCD 

computations: 

( 1)

1 1( ) gcd ( ( ), ( )) ( )

                                                                  2, 3,

M
j m

m m m j

j m

g x g x g x w x

m

by setting 
1( ) ( )g x p x  at the start, and reaching  

1 2( ) ( ) 1M Mg x g x   at the end.  Then execute 

successively the two steps of simple polynomial divisions: 
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All the desired factors ( )mw x  can therefore be determined 

directly from ( )mg x .

The individual distinct-root polynomial wm(x) can be more 

easily solved than the original multiple-root polynomial ( )p x

and the distinct-root polynomial u(x).   Since the polynomials 

wm(x) are defined to have distinct roots, it is not necessary to 

determine the multiplicities of roots.  

III. THE GREATEST COMMON DIVISOR

The crucial concern in carrying out the process for 

factorization of a given polynomial is the GCD computation.   

Several numerical methods have been proposed for the 

derivation of GCD [1,3-7]. Some are based on the classical 

Euclidean algorithm, while the others are based on the 

procedures involving Sylvester resultant matrix.  Most 

methods require use of advanced mathematics, such as the 

singular value decomposition and the least square iteration 

process.

The simple and efficient recurrent process derived by 

Chang will be applied here.  From the Euclidean GCD 

algorithm, the longhand polynomial division is expressed as, 

         
2 1( ) ( ) ( ) ( )k k k kp x p x p x q x

where quotient qk(x) and remainder  pk(x) are obtained from 

dividing dividend pk-2(x) by divisor pk-1(x).  If the quotient 

qk(x) in every recurrent process can be converted into a 

numerical constant or even equal to 1, qk(x) = 1, by making 

both pk-2(x) and pk-1(x) equal degree and monic, then the 

longhand polynomial division becomes simply a pair of 

“monic polynomials subtraction” ,  

             
2 1( ) ( ) ( )k k kp x p x p x

The recurrent process of this approach may therefore be 

summarized as follows: 

Given a pair of polynomials b(x) and a(x) of degrees n and 

m ,
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where b(x) and a(x) have nz and mz zero trailing coefficients, 

respectively. And bc(x) and ac(x) represent the polynomials 

without zero trailing coefficients, assuming   nc mc ,  where 

nc = deg(bc(x)) and mc = deg(ac(x)).

Before finding our desired ( ) gcd( ( ), ( ))g x b x a x , we 

consider ( ) gcd( ( ), ( ))c c cg x b x a x  first by setting 

0 0 1 0( ) ( ) / ,            ( ) ( ) /c cn m

c cp x b x b p x a x x a

Both polynomials 
0 1( ) and ( )p x p x  are now in the same 

degree and monic.  Apply the monic polynomial subtraction 

consecutively starting from k = 2 until k = K+1, such that 

1( ) 0Kp x ,

 Then 

0 1( ) gcd( ( ), ( )) gcd( ( ), ( ) )

          gcd( ( ), ( ))
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and finally our expected result is obtained, 

min ( , )
( ) gcd( ( ), ( )) ( ) z zn m

Kg x b x a x p x x

It is noted that the complete set of ( ), 0, ,kp x k K ,

referred as “polynomial remainder sequence” (PRS), are also 

obtained during the recurrent process.  The computation of 

PRS by the presented “Monic polynomial subtraction” is very 

simple, efficient, and accurate, comparing to the approaches 

by some other authors [3,6,7].  If the coefficients are all real 

and rational, we may even get the results by hand calculation.  

All computations involve only elementary arithmetic 

operations without any advanced mathematics. Total numbers 

of operations are fewer than 2nc
2 for computing GCD of 

polynomials b(x) and a (x).

IV. COMPUTER ROUTINE IN MATLAB

A MATLAB realization of the algorithm is presented. The 

input is a coefficient vector for a given p(x), and the outputs 

are lists of coefficient vectors of computed 

( ), ( ), and ( ).m m mw x g x u x  The complete PRS may easily be 

printed . The input coefficients can be either real or complex 

numbers.  

function [W,G,U] = fctpoly(p) 
%
%  Factorization of multiple-root polynomial 
%   G(k) = gcd(g(k-1),der(g(k-1))), k=1:K+2 
%   U(k) = G(k)/G(k+1),             k=1:K+1 
%   W(k) = U(k)/U(k+1),             k=1:K 
%  by F C Chang    10/01/08 
%
      g2 = p/p(1); 
  for k = 1:length(p); 
      g1 = g2; 
      g2 = prsgcd(g1,polyder(g1)); 
      g3 = prsgcd(g2,polyder(g2)); 
      u1 = deconv(g1,g2); 
      u2 = deconv(g2,g3); 
      w1 = deconv(u1,u2); 
      G{k} = g1;    U{k} = u1;     W{k} = w1; 
    if length(u2) == 1; 
      G{k+1} = g2;  G{k+2} = 1;  U{k+1} = u2; 
    break;   end; 
  end; 
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   %  celldisp(G);  celldisp(U);  celldisp(W); 

function [g,P] = prsgcd(p,q) 
%  ** GCD of a pair of polynomials ** 
%     From "Polynomial remainder sequence" 
%     with "Monic polynomial subtraction" 
%      P(k) = P(k-2)-P(k-1),       k=1:K 
%     by F C Chang    10/01/08 
%
  if length(p) < 2,  g = 1; P{1} = 1;  return, 
  end; 
       n = length(p)-1; 
       m = length(q)-1; 
       nc = max(find(abs(p)>1.e-6))-1; 
       mc = max(find(abs(q)>1.e-6))-1; 
      p2 = p(1:nc+1); 
      p3 = q(1:mc+1); 
  for k = 1:nc+nc+2; 
      p1 = p2/p2(1); 
       nz = length(p2)-length(p3); 
      p2 = [p3/p3(1),zeros(1,nz)]; 
      p3 = p1–p2; 
      p3 = p3(min(find(abs(p3)>1.e-6)):end); 
      P{k} = p1(1:max(find(abs(p1)>1.e-6))); 
   if norm(p3,inf)/norm(p1,inf) < 1.e-6;
      P{k+1} = P{k};   break;  end; 
  end; 
      gc = P{k}; 
      g = [gc,zeros(1,min(n-nc,m-mc))]; 
      celldisp(P), g, 

V. TYPICAL EXAMPLE

 For a test polynomial 
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( ) 5 2 6 76 140 802
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we shall get 
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All roots with multiplicities of the given polynomial can 

thus be easily determined. 

>> p = poly([ 1 1 1 1 1 1 1 -1 -1 -1 -1+2i -1+2i
        -1+2i -1-2i -1-2i -1-2i 2 2 3 3 +i +i +i 
        -i -i -i -3 0 0 0 0 0 ]) 

 p =      1      -5       2     -6      76     140 
       -802     954   -4251  13663  -18740   28472 
     -53504   45776    5212 -77580  185243 –220631 
     104794   52458 -193356 248612 -146266    9202 
      65791  -87555   55800 -13500       0       0 
          0       0       0 

>> [W,G,U] = fctpoly(p);
>> celldisp(G); celldisp(U); celldisp(W); 

 G{1} =   1      -5       2     -6      76     140 

       -802     954   -4251  13663  -18740   28472 
     -53504   45776    5212 -77580  185243 –220631 
     104794   52458 -193356 248612 -146266    9202 
      65791  -87555   55800 -13500       0       0 
          0       0       0 
 G{2} =   1      -5      10    -36     116    -188 
        308    -620     694   -214    -496    1348 
      -1740    1012      28   -692     929    -605 
        150       0       0      0       0 
 G{3} =   1      -2       3    -12      22     -16 
          2      12     -23     18      -5       0 
          0       0 
 G{4} =   1      -4       6     -4       1       0 
          0 
 G{5} =   1      -3       3     -1       0 
 G{6} =   1      -2       1 
 G{7} =   1      -1 
 G{8} =   1 
 G{9} =   1 

 U{1} =   1      -0      -8    -10     -10      90 
          8      10       9    -90       0 
 U{2} =   1      -3       1    -13      29       3 
         -1      13     -30      0 
 U{3} =   1       2       5      0      -1      -2 
         -5       0 
 U{4} =   1      -1       0 
 U{5} =   1      -1       0 
 U{6} =   1      -1
 U{7} =   1      -1
 U{8} =   1 

 W{1} =    1      3 
 W{2} =    1     -5       6 
 W{3} =    1      3       8       8      7      5 
 W{4} =    1 
 W{5} =    1      0 
 W{6} =    1 
 W{7} =    1     -1 

VI. CONCLUSION

A very simple, effective algorithm is derived for 

factorization of a polynomial with multiple roots.  The more 

multiplicities the polynomial roots have, the more efficient 

this algorithm will be. This is contrary to the statement that the 

most difficult part of solving a polynomial is computing its 

roots with high multiplicities. 

The Chang’s algorithm [2] for computing polynomial GCD 

is applied here. It requires only simple and efficient recurrent 

“monic polynomial subtraction” process.  This algorithm may 

also be used for computing the GCD of multivariate 

polynomials. 

The main objective of this algorithm is the factorization of a 

given polynomial, and is not for root finding. If a polynomial 

does not possess any multiple roots, then this algorithm will at 

least reveal that all roots are distinct, and may be solved by 

any available zero-finding routines. 

 For general root-finding routines, the MATLAB software 

package of MULTROOT introduced by Zeng [1] is highly 

recommended.   Its routine however requires algorithm of 

some advanced mathematics. 

 For comparison by the test polynomials, both the presented 

W = fctpoly(p) and  the Zeng’s Z = multroot(p)
give amazingly the expected results for very high degree 

polynomials, such as, 500( ) ( 1)p x x , 60( ) (1234 56789)p x x ,
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30( ) ( 123456789)p x x . And the presented routine achieves 

even further up to 1000( ) ( 1)p x x !
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