
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3852

Abstract—A given polynomial, possibly with multiple roots, is

factored into several lower-degree distinct-root polynomials with

natural-order-integer powers. All the roots, including multiplicities,

of the original polynomial may be obtained by solving these lower-

degree distinct-root polynomials, instead of the original high-degree

multiple-root polynomial directly.

The approach requires polynomial Greatest Common Divisor

(GCD) computation. The very simple and effective process, “Monic

polynomial subtractions” converted trickily from “Longhand

polynomial divisions” of Euclidean algorithm is employed. It

requires only simple elementary arithmetic operations without any

advanced mathematics.

Amazingly, the derived routine gives the expected results for the

test polynomials of very high degree, such as 1000() (1)p x x .

Keywords—Polynomial roots, greatest common divisor,

Longhand polynomial division, Euclidean GCD Algorithm.

I. INTRODUCTION

given polynomial, possibly with several multiple roots,

is factored into several lower-degree distinct-root

polynomials with power set of natural-order integers. All

of the roots with corresponding multiplicities are then found

by individually solving these lower-degree distinct-root

polynomials, instead of directly solving the original high-

degree multiple-root polynomial. It shows that the more root

multiplicities the polynomial has, the more efficient this

algorithm becomes. This is contrary to the usual issue that the

most difficult part of solving a polynomial is calculating the

roots with high multiplicities [1].

The approach requires the greatest common divisor (GCD)

computation. The simple and efficient process developed by

Chang [2] is applied for polynomial GCD. It requires only

simple elementary arithmetic operations such as subtractions

and divisions. A MATLAB code is provided, along with a

typical numerical example. Amazingly, this routine gives the

expected results for test polynomials of very high degree.

II. FORMULATION

A given polynomial p(x) of degree N with N + 1

coefficients , 0,1, ,ib i N , expressed in a polynomial

coefficient form,

Manuscript created August 28, 2007; revised October 31, 2008.

Feng Cheng Chang is with Allwave Corporation, 3860 Del Amo Blvd,

Suite 404, Torrance, CA 90503 USA. (e-mail: fcchang007@yahoo.com).

0

0

() , 1
N

N i

i

i

p x b x b

can always be expressed in a factored form having K distinct

roots zk with corresponding multiplicities mk , 1,2, ,k K ,

1 1

() () , deg(())k

K K
m

k k

k k

p x x z N p x m

Generally the evaluation of the polynomial coefficients

from the roots and the multiplicities is very easy and

straightforward. On the contrary, the calculation of the roots

and multiplicities from a given polynomial coefficients is very

much involved and cumbersome, especially for high degree

polynomials with large root multiplicities.

 When roots with identical multiplicities are collected

together, the polynomial p(x) can be factored as

1 1

() () , deg(())
M M

m

m m

m m

p x w x N m w x

where factors wm(x) are polynomials having all distinct roots.

Therefore the greatest common divisor g(x) of the given

polynomial p(x) and its derivative p (x) is found to be

1 1

1 2

() gcd ((), ()) ()k

K M
m m

k m

k m

g x p x p x x z w x

And then

1 1

1

() () () () (),

 deg(()) deg(())

K M

k m

k m

M

m

m

u x p x g x x z w x

K u x w x

The process to find all the desired M factoring polynomials

wm(x) can therefore be summarized into the following

recurrent relation. First perform consecutively the GCD

computations:

(1)

1 1() gcd ((), ()) ()

 2, 3,

M
j m

m m m j

j m

g x g x g x w x

m

by setting
1() ()g x p x at the start, and reaching

1 2() () 1M Mg x g x at the end. Then execute

successively the two steps of simple polynomial divisions:

Feng Cheng Chang, Life Member IEEE

Factoring a Polynomial with Multiple-Roots

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3853

1() () () (), 1, 2, , 1
M

m m m j

j m

u x g x g x w x m M

and

1

2

2 1

() () ()

 () () () , 1, 2, ,

m m m

m m m

w x u x u x

g x g x g x m M

All the desired factors ()mw x can therefore be determined

directly from ()mg x .

The individual distinct-root polynomial wm(x) can be more

easily solved than the original multiple-root polynomial ()p x

and the distinct-root polynomial u(x). Since the polynomials

wm(x) are defined to have distinct roots, it is not necessary to

determine the multiplicities of roots.

III. THE GREATEST COMMON DIVISOR

The crucial concern in carrying out the process for

factorization of a given polynomial is the GCD computation.

Several numerical methods have been proposed for the

derivation of GCD [1,3-7]. Some are based on the classical

Euclidean algorithm, while the others are based on the

procedures involving Sylvester resultant matrix. Most

methods require use of advanced mathematics, such as the

singular value decomposition and the least square iteration

process.

The simple and efficient recurrent process derived by

Chang will be applied here. From the Euclidean GCD

algorithm, the longhand polynomial division is expressed as,

2 1() () () ()k k k kp x p x p x q x

where quotient qk(x) and remainder pk(x) are obtained from

dividing dividend pk-2(x) by divisor pk-1(x). If the quotient

qk(x) in every recurrent process can be converted into a

numerical constant or even equal to 1, qk(x) = 1, by making

both pk-2(x) and pk-1(x) equal degree and monic, then the

longhand polynomial division becomes simply a pair of

“monic polynomials subtraction” ,

2 1() () ()k k kp x p x p x

The recurrent process of this approach may therefore be

summarized as follows:

Given a pair of polynomials b(x) and a(x) of degrees n and

m ,

0 0

() () , () ()z z

n m
n mn j m j

j c j c

j j

b x b x b x x a x a x a x x

where b(x) and a(x) have nz and mz zero trailing coefficients,

respectively. And bc(x) and ac(x) represent the polynomials

without zero trailing coefficients, assuming nc mc , where

nc = deg(bc(x)) and mc = deg(ac(x)).

Before finding our desired () gcd((), ())g x b x a x , we

consider () gcd((), ())c c cg x b x a x first by setting

0 0 1 0() () / , () () /c cn m

c cp x b x b p x a x x a

Both polynomials
0 1() and ()p x p x are now in the same

degree and monic. Apply the monic polynomial subtraction

consecutively starting from k = 2 until k = K+1, such that

1() 0Kp x ,

 Then

0 1() gcd((), ()) gcd((), ())

 gcd((), ())

c cn m

K c c

c c

p x p x p x b x a x x

b x a x

and finally our expected result is obtained,

min (,)
() gcd((), ()) () z zn m

Kg x b x a x p x x

It is noted that the complete set of (), 0, ,kp x k K ,

referred as “polynomial remainder sequence” (PRS), are also

obtained during the recurrent process. The computation of

PRS by the presented “Monic polynomial subtraction” is very

simple, efficient, and accurate, comparing to the approaches

by some other authors [3,6,7]. If the coefficients are all real

and rational, we may even get the results by hand calculation.

All computations involve only elementary arithmetic

operations without any advanced mathematics. Total numbers

of operations are fewer than 2nc
2 for computing GCD of

polynomials b(x) and a (x).

IV. COMPUTER ROUTINE IN MATLAB

A MATLAB realization of the algorithm is presented. The

input is a coefficient vector for a given p(x), and the outputs

are lists of coefficient vectors of computed

(), (), and ().m m mw x g x u x The complete PRS may easily be

printed . The input coefficients can be either real or complex

numbers.

function [W,G,U] = fctpoly(p)
%
% Factorization of multiple-root polynomial
% G(k) = gcd(g(k-1),der(g(k-1))), k=1:K+2
% U(k) = G(k)/G(k+1), k=1:K+1
% W(k) = U(k)/U(k+1), k=1:K
% by F C Chang 10/01/08
%
 g2 = p/p(1);
 for k = 1:length(p);
 g1 = g2;
 g2 = prsgcd(g1,polyder(g1));
 g3 = prsgcd(g2,polyder(g2));
 u1 = deconv(g1,g2);
 u2 = deconv(g2,g3);
 w1 = deconv(u1,u2);
 G{k} = g1; U{k} = u1; W{k} = w1;
 if length(u2) == 1;
 G{k+1} = g2; G{k+2} = 1; U{k+1} = u2;
 break; end;
 end;

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3854

 % celldisp(G); celldisp(U); celldisp(W);

function [g,P] = prsgcd(p,q)
% ** GCD of a pair of polynomials **
% From "Polynomial remainder sequence"
% with "Monic polynomial subtraction"
% P(k) = P(k-2)-P(k-1), k=1:K
% by F C Chang 10/01/08
%
 if length(p) < 2, g = 1; P{1} = 1; return,
 end;
 n = length(p)-1;
 m = length(q)-1;
 nc = max(find(abs(p)>1.e-6))-1;
 mc = max(find(abs(q)>1.e-6))-1;
 p2 = p(1:nc+1);
 p3 = q(1:mc+1);
 for k = 1:nc+nc+2;
 p1 = p2/p2(1);
 nz = length(p2)-length(p3);
 p2 = [p3/p3(1),zeros(1,nz)];
 p3 = p1–p2;
 p3 = p3(min(find(abs(p3)>1.e-6)):end);
 P{k} = p1(1:max(find(abs(p1)>1.e-6)));
 if norm(p3,inf)/norm(p1,inf) < 1.e-6;
 P{k+1} = P{k}; break; end;
 end;
 gc = P{k};
 g = [gc,zeros(1,min(n-nc,m-mc))];
 celldisp(P), g,

V. TYPICAL EXAMPLE

 For a test polynomial

32 31 30 29 28 27 26

25 24 23 22 21

20 19 18 17 16

15 14 13 12

() 5 2 6 76 140 802

 954 4251 13663 18740 28472

 53504 45776 5212 77580 185243

 220631 104794 52458 193356

p x x x x x x x x

x x x x x

x x x x x

x x x x

11 10 9 8 7

6 5 4 3 2

 248612 146266 9202 65791 87555

 55800 13500 0 0 0 0 0

x x x x x

x x x x x x

we shall get

1 2 2

5 4 3 2 3 4 5 6 7

() (3) (5 6)

 (3 8 8 7 5) (1) (0) (1) (1)

p x x x x

x x x x x x x

All roots with multiplicities of the given polynomial can

thus be easily determined.

>> p = poly([1 1 1 1 1 1 1 -1 -1 -1 -1+2i -1+2i
 -1+2i -1-2i -1-2i -1-2i 2 2 3 3 +i +i +i
 -i -i -i -3 0 0 0 0 0])

 p = 1 -5 2 -6 76 140
 -802 954 -4251 13663 -18740 28472
 -53504 45776 5212 -77580 185243 –220631
 104794 52458 -193356 248612 -146266 9202
 65791 -87555 55800 -13500 0 0
 0 0 0

>> [W,G,U] = fctpoly(p);
>> celldisp(G); celldisp(U); celldisp(W);

 G{1} = 1 -5 2 -6 76 140

 -802 954 -4251 13663 -18740 28472
 -53504 45776 5212 -77580 185243 –220631
 104794 52458 -193356 248612 -146266 9202
 65791 -87555 55800 -13500 0 0
 0 0 0
 G{2} = 1 -5 10 -36 116 -188
 308 -620 694 -214 -496 1348
 -1740 1012 28 -692 929 -605
 150 0 0 0 0
 G{3} = 1 -2 3 -12 22 -16
 2 12 -23 18 -5 0
 0 0
 G{4} = 1 -4 6 -4 1 0
 0
 G{5} = 1 -3 3 -1 0
 G{6} = 1 -2 1
 G{7} = 1 -1
 G{8} = 1
 G{9} = 1

 U{1} = 1 -0 -8 -10 -10 90
 8 10 9 -90 0
 U{2} = 1 -3 1 -13 29 3
 -1 13 -30 0
 U{3} = 1 2 5 0 -1 -2
 -5 0
 U{4} = 1 -1 0
 U{5} = 1 -1 0
 U{6} = 1 -1
 U{7} = 1 -1
 U{8} = 1

 W{1} = 1 3
 W{2} = 1 -5 6
 W{3} = 1 3 8 8 7 5
 W{4} = 1
 W{5} = 1 0
 W{6} = 1
 W{7} = 1 -1

VI. CONCLUSION

A very simple, effective algorithm is derived for

factorization of a polynomial with multiple roots. The more

multiplicities the polynomial roots have, the more efficient

this algorithm will be. This is contrary to the statement that the

most difficult part of solving a polynomial is computing its

roots with high multiplicities.

The Chang’s algorithm [2] for computing polynomial GCD

is applied here. It requires only simple and efficient recurrent

“monic polynomial subtraction” process. This algorithm may

also be used for computing the GCD of multivariate

polynomials.

The main objective of this algorithm is the factorization of a

given polynomial, and is not for root finding. If a polynomial

does not possess any multiple roots, then this algorithm will at

least reveal that all roots are distinct, and may be solved by

any available zero-finding routines.

 For general root-finding routines, the MATLAB software

package of MULTROOT introduced by Zeng [1] is highly

recommended. Its routine however requires algorithm of

some advanced mathematics.

 For comparison by the test polynomials, both the presented

W = fctpoly(p) and the Zeng’s Z = multroot(p)
give amazingly the expected results for very high degree

polynomials, such as, 500() (1)p x x , 60() (1234 56789)p x x ,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3855

30() (123456789)p x x . And the presented routine achieves

even further up to 1000() (1)p x x !

REFERENCES

[1] Z. Zeng, “Computing multiple roots of inexact polynomials,” Math.

Comput, 74 (2005), pp. 869-903.

[2] F.C. Chang, “GCD of two univaiate polynomials by monic polynomial

subtractions,” submitted to Appl. Math. Comput.

[3] W.S. Brown and J.F. Traub, “On Euclid’s algorithm and the theory of

subresultants,” J. ACM 14 (1) (1967), pp. 128-142.

[4] I.S. Pace and S. Barnett, “Comparison of algorithm for calculation of

GCD of polynomials,” Int. J. System Scien, 4 (1973), pp. 211-226.

[5] M. Mitrouli and N. Karcanias, “Comutation of the GCD of polynomials

using Gaussian transformation and shifting,” Int. J. Control, 58 (1993),

pp. 211-228.

[6] A. Terui, “Recursive polynomial remainder sequence and its

subresultants,” J. Algebra, (2008).

[7] C.D. Yan and W.H.Chieng, “Method for finding multiple roots of

polynomials,” Int. J. Computers & Mathematics with Applications, 51

(2006), pp. 605-620.

