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Abstract—Prospective readers can quickly determine whether a 

document is relevant to their information need if the significant 
phrases (or keyphrases) in this document are provided. Although 
keyphrases are useful, not many documents have keyphrases 
assigned to them, and manually assigning keyphrases to existing 
documents is costly. Therefore, there is a need for automatic 
keyphrase extraction. This paper introduces a new domain 
independent keyphrase extraction algorithm. The algorithm 
approaches the problem of keyphrase extraction as a classification 
task, and uses a combination of statistical and computational 
linguistics techniques, a new set of attributes, and a new machine 
learning method to distinguish keyphrases from non-keyphrases. The 
experiments indicate that this algorithm performs better than other 
keyphrase extraction tools and that it significantly outperforms 
Microsoft Word 2000’s AutoSummarize feature. The domain 
independence of this algorithm has also been confirmed in our 
experiments.

Keywords—classification, keyphrase extraction, machine 
learning, summarization 

I. INTRODUCTION

ITH the proliferation of the Internet and the huge 
numbers of documents it contains, the provision of 

summaries of these documents has become more and more 
important (‘document’ is regarded as being synonymous with 
‘text’ in this paper). Prospective readers can quickly 
determine whether a document is relevant to their information 
need if the significant phrases (or keyphrases) in this 
document are provided. Keyphrases give a short summary of 
the document and provide supplementary information for the 
readers, in addition to titles and abstracts. Even though 
keyphrases are useful, only a small minority of documents 
have keyphrases assigned to them, and manually assigning 
keyphrases to existing documents is very costly. Therefore, 
there is a need for automatic keyphrase extraction [4]-[6], 
[15]-[17].  

Automatic keyphrase extraction is the identification of the 
most important phrases within the body of a document by 
computers rather than human beings. It normally involves the 
use of statistical information. There is no controlled 
vocabulary list, so, in theory, any phrase within the body of 
the document can be identified as a keyphrase. When authors 
assign keyphrases without a controlled vocabulary list, 
typically 70-90% of their keyphrases appear somewhere in 
their documents [17]. Keyphrases are similar to keywords, 
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except that the document is summarized by a set of phrases 
rather than words.  

Keyphrase extraction is a classification task: a document 
can be seen as a set of phrases, and a keyphrase extraction 
algorithm should correctly classify a phrase as a keyphrase or 
a non-keyphrase. Machine learning techniques can automate 
this task if they are provided with a set of training data 
composed of both keyphrase examples and non-keyphrase 
examples. The data are used to train the algorithm to 
distinguish keyphrases from non-keyphrases. The resulting 
algorithm can then be applied to new documents for 
keyphrase extraction. Previous work shows that the training 
data and the new documents need not be from the same 
domain, though the performance of the algorithm can be 
boosted significantly if they are [4].  

This paper introduces a new domain independent keyphrase 
extraction algorithm called KE. KE is not tied to a specific 
domain; it is designed to summarize a given document, which 
can be on any topic (excluding poetry and other similar works 
of literature), in a few keyphrases automatically extracted 
from the body of that document. Unlike other keyphrase 
extraction algorithms, KE uses a combination of statistical and 
computational linguistics techniques, a different set of 
attributes, and a different machine learning method to extract 
keyphrases from documents. The experiments indicate that 
KE performs better than other keyphrase extraction tools and 
that it significantly outperforms Microsoft Word 2000’s 
AutoSummarize feature. The domain independence of this 
algorithm has also been confirmed in our experiments.  

Section II summarizes related work by other researchers. 
Section III introduces the KE algorithm and compares it with 
other keyphrase extraction algorithms. The experimental 
results are presented in Section IV. Section V discusses the 
results. Section VI concludes this paper and discusses future 
work.

II. RELATED WORK 

This section discusses two important term weights (i.e. term 
frequency and inverse document frequency), two important 
keyphrase extraction algorithms (i.e. GenEx and Kea) and 
some recent ones. Though GenEx and Kea were introduced in 
the late 1990s, they remain rather important and are reviewed 
in most of the papers on keyphrase extraction.  

A. TF×IDF  
The vector space model [11] suggests that a document (or 

query) can be represented by a vector of terms. Terms in this 
model are not equally weighted: each term is associated with a 
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specific weight which reflects the importance of that term. 
Term frequency (TF) and inverse document frequency (IDF) 
are the two most important term weights in this model [11].  

TF is the frequency of a term in the document. The more 
often a term occurs in the document, the more likely it is to be 
important for that document. The standard TF of a term T in a 
document D is calculated by:  

DT inofsoccurrenceofno.TFStandard =  (1) 
IDF is the rarity of a term across the collection. A term that 

occurs in only a few documents is often more valuable than a 
term that occurs in many documents. The standard IDF of a 
term T is given by:  

inoccursdocumentsofno.
collectionindocumentsofno.logIDFStandard

T
=  (2) 

TF×IDF is a common way of combining TF and IDF. 
Despite the popularity of these weights, they do not have a 
universal definition.  

Salton and Buckley [10] review the use of statistical 
information for weighting document terms and query terms, 
and discuss various ways of defining and combining TF and 
IDF. A total of 1,800 different term weighting combinations 
were used in their experiments, and 287 were found to be 
distinct. They make recommendations on the best combination 
in different situations. For technical documents (like the ones 
used in our experiments), they recommend using the 
normalized TF and the standard IDF. The normalized TF is 
calculated by normalizing the standard TF factor by the 
maximum TF in the vector (with the result in the range of 0.5 
to 1.0):  

TFmax
TF5.05.0TFNormalized +=  (3) 

B. GenEx 
Turney [16] proposes a keyphrase extraction algorithm 

called GenEx which consists of a set of parameterized 
heuristic rules that are fine-tuned by a genetic algorithm. 
During training, the genetic algorithm adjusts the rules’ 
parameters to maximize the match between the output 
keyphrases and the target keyphrases. Table I shows the 
parameters used in GenEx.  

GenEx has been trained on a set of journal articles and 
tested on a different set of journal articles, web pages and 
email messages. The experiments show that machine learning 
techniques can be used for keyphrase extraction and that 
GenEx generalizes well across collections. While GenEx is 
trained on a collection of journal articles, it successfully
extracts keyphrases from web pages on different topics (by 
‘successfully’, we mean the algorithm is capable of extracting 
at least one correct keyphrase from the document).  

C. Kea  
Frank et al. [4] discuss another keyphrase extraction 

algorithm called Kea which is based on a naïve Bayes learning 
technique. The basic model of Kea involves two attributes: 
TF×IDF and distance.

The standard TF is used, but the IDF is defined differently. 

They calculate the IDF of a term T in a document D by (the 
counters start with one to avoid taking the logarithm of zero):  

)excluding,contain
 that collectionindocumentsofno.log(IDFsKea'

DT
−=

 (4) 

The distance attribute is the position where a term first 
appears in the document. A term that occurs at the beginning 
of the document is often more valuable than a term that occurs 
at the end of that document. The distance of a term T in a 
document D is given by: 

D
T

in wordsofno.
ofappearancefirstbefore wordsofno.Distance =   (5) 

Kea uses the same set of training and testing documents as 
GenEx so that its performance can be directly compared with 
GenEx. The experiments indicate that GenEx and Kea 
perform at roughly the same level, measured by the average 
number of matches between author-assigned keyphrases and 
machine-extracted keyphrases [17].  

D. LAKE  
D’Avanzo et al. [1], [2] propose a keyphrase extraction 

algorithm called LAKE. The algorithm uses two attributes, 
TF×IDF and first occurrence (same as distance), and some 
computational linguistics techniques to select candidate 
phrases.

LAKE selects candidate phrases in several steps: 1) Tag the 
input document. 2) Group sequences of words which are 
considered a single lexical unit together, e.g. ‘Christmas’ and 
‘tree’ are combined into ‘Christmas tree’. 3) Identify all the 
named entities in the document, e.g. ‘London’, ‘IBM’. 4) 
Select candidate phrases from the document if they match one 
of the many manually predefined linguistics-based patterns, 
e.g. noun + verb + adjective + noun (‘+’ denotes ‘followed 
by’). 

The experiments suggest that this algorithm works. 
Nevertheless, since LAKE uses a different set of training and 
testing documents, it is not certain if it is better than GenEx 
and Kea as it is not possible to directly compare their results. 
It is also because of this reason, LAKE has not been used as a 
standard of comparison for evaluating the performance of KE. 
All the keyphrase extraction tools in our experiments have 
been trained and tested on the same corpus so that direct 
comparison is possible.  

E. KPSpotter  
Song et al. [12] discuss a keyphrase extraction system 

called KPSpotter. The system can process various formats of 
input data such as XML, HTML, and unstructured text data, 
and generate an XML file as output. It involves two attributes: 
TF×IDF and Distance from First Occurrence (same as 
distance). These numeric attributes are discretized into ranges 
and the resulting nominal attributes are used to calculate the 
information gain of each candidate phrase. The candidate 
phrases are then ranked in order of information gain.  

KPSpotter has been trained and tested on a set of abstracts 
(rather than full documents) of technical reports. The same 
data have been used to train and test Kea so that the 
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performance of KPSpotter can be directly compared with Kea. 
The experiments show that KPSpotter and Kea give similar 
results. Nevertheless, since KPSpotter uses a different set of 
training and testing data (i.e. a collection of abstracts rather 
than documents), it is not possible to directly compare its 
results with ours. Therefore, KPSpotter has not been used as a 
standard of comparison in our experiments. 

TABLE I
PARAMETERS USED IN GENEX

Parameter  Description 
NUM_PHRASES  Length of the output list, 

i.e. the number of 
keyphrases to be output  

NUM_WORKING  Length of the working list, 
i.e. only words ranked 
higher than this are 
considered as candidate 
phrases

FACTOR_TWO_ONE  Reward for two-word 
phrases

FACTOR_THREE_ONE Reward for three-word 
phrases

MIN_LENGTH_LOW_RANK  Low rank words must be 
longer than this; if not, they 
might be removed from the 
output list  

MIN_RANK_LOW_LENGTH  Short words must be ranked 
higher than this; if not, they 
might be removed from the 
output list  

FIRST_LOW_THRESH  Definition of early 
occurrence; words which 
first occur before this 
position are rewarded by 
FIRST_LOW_FACTOR  

FIRST_HIGH_THRESH  Definition of late 
occurrence; words which 
first occur after this 
position are penalized by 
FIRST_HIGH_FACTOR

FIRST_LOW_FACTOR  Reward for early 
occurrence

FIRST_HIGH_FACTOR  Penalty for late occurrence  
STEM_LENGTH  Maximum characters for 

fixed length stemming  
SUPPRESS_PROPER  Flag for suppressing proper 

nouns

F. Kea++  
Medelyan and Witten [8] propose a new method of 

improving the quality of the output keyphrases called Kea++.
Kea++ is based on Kea, but differs from it in two ways: 
Kea++ uses a domain dependent thesaurus and a different set 
of attributes. Non-descriptors in the document are first 
replaced by their equivalent descriptors using semantic 
information about terms and phrases in the thesaurus. 
Descriptors and non-descriptors are synonyms. Descriptors 

refer to the ‘preferred’ terms, and non-descriptors refer to the 
‘less preferred’ terms, e.g. ‘love’ is a descriptor and 
‘affection’ is a non-descriptor. Candidate phrases are then 
measured by four attributes: TF×IDF, distance, node degree,
and the length of a candidate phrase in words. The first two 
attributes are used in Kea. The node degree attribute is the 
number of thesaurus links that connect a candidate phrase to 
other candidate phrases.  

Kea++ has been test on a set of documents on food and 
agriculture. The experiments indicate that Kea++ significantly 
outperforms Kea. Nevertheless, Kea++ has not been used as a 
standard of comparison in our experiments. Kea++ uses a 
controlled vocabulary list and is tied to a specific domain, 
whereas KE is a domain independent algorithm. In addition, 
Kea++ uses a different set of training and testing documents, 
so it is not possible to directly compare its results with ours.  

G. W3SS  
Zhang et al. [19] introduce a new approach to automatic 

summarization of web sites called W3SS. The output summary 
is based on keywords and keyphrases extracted from the web 
site and is generated in several steps: 1) Get a set of web 
pages from a given site. 2) Remove all the tags and scripts in 
those pages and get a set of plain text. 3) Use the number of 
words in a paragraph and the part-of-speech of the words in a 
paragraph to extract narrative paragraphs from the plain text. 
4) Use the part-of-speech of a word and the number of 
occurrences of a word in the narrative text, anchor text (e.g. 
hyperlinks) and special text (e.g. italic text) to extract 
keywords. 5) Use the keywords, the part-of-speech of a phrase 
and the number of occurrences of a phrase in the narrative 
text, anchor text and special text to extract keyphrases. 6) Use 
the extracted keywords and keyphrases to extract key 
sentences. 7) Provide the extracted keywords, keyphrases and 
key sentences as a summary of that site.  

W3SS has been tested on a set of web sites. Human 
assessors are divided into a few groups and asked to answer 
questions about those sites (e.g. the purpose of a site). The 
experiments show that the group that read the manual 
summaries give the best results, followed by the group that 
read the generated summaries. Despite being interesting, 
W3SS has not been used as a standard of comparison in our 
experiments. All the documents used in our experiments are 
plain text, i.e. there is no anchor text and special text. The aim 
of W3SS is also different from ours: W3SS aims at 
summarizing a collection of web documents (i.e. web site), 
whereas KE aims at summarizing a single document.  

III. KEYPHRASE EXTRACTION 

This section introduces the attributes used in the KE 
algorithm, gives an overview of KE, and compares KE with 
GenEx and Kea.

A. Attributes  
The selection of relevant attributes is probably the most 

important factor in determining the effectiveness of a 
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keyphrase extraction algorithm. Many attributes have been 
evaluated in our experiments, e.g. the length of a document, 
the number of characters in a term, the number of occurrences 
of a term in the collection, etc. However, only five of them 
have been found useful for keyphrase extraction:  

• The TF×IDF attribute has already been discussed; see 
Section II-A for details.

• The position attribute is the same as Kea’s distance;
see Section II-C for details.

• The title attribute is a flag that indicates if a term 
appears in the title of the document. A term that occurs 
in the title of the document is often more valuable than 
a term that does not. Titles may not provide enough 
information on their own, but they may contain some 
important words. In fact, it has been reported that the 
use of abstracts in addition to titles brings substantial 
advantages in retrieval effectiveness and that the 
additional utilization of the full texts of the documents 
appears to produce little improvement over titles and 
abstracts alone in most subject areas [11]. If a term is 
found in the title, title is set to 1; otherwise, it is set to 
0.

• The proper noun attribute is a flag that indicates if a 
term is a proper noun. If a term is a proper noun, 
proper noun is set to 1; otherwise, it is set to 0.  

• The number of terms attribute is the number of terms in 
a term phrase.  

B. The KE algorithm  
The KE algorithm is based on GenEx and Kea (for details 

of the differences between KE, GenEx, and Kea, see Section 
III-C) and consists of seven steps:

• Step 1 is to tag the input document and to select all the 
words which have been tagged as adjective, verb and 
noun and are not included in the stopword list. 
Although it is unlikely that adjectives and verbs will be 
output, they help to boost the score of their noun form 
(provided their stems are the same as the noun’s) and 
therefore increase the likelihood that it will be output.

• Step 2 is to stem the selected words, to calculate the 
TF×IDF, position, title and proper noun of each term, 
to assign a score to each term based on these attributes, 
and to sort the terms in descending order of score (if 
two terms have the same score, they are ranked in 
ascending order of position).

• Step 3 is to select all the noun phrases in the document. 
Like KE, LAKE uses a part-of-speech tagger to select 
candidate phrases if they match one of the many 
manually predefined linguistics-based patterns (see 
Section II-D). Nevertheless, we believe this could be 
simplified by selecting only noun phrases, which can 
be naively defined as zero, one or two nouns or 
adjectives followed by a noun or a gerund, from the 
document. This is because almost all the keyphrases 
are noun phrases and they normally follow this 
definition [15].  

• Step 4 is similar to Step 2. The main differences are 
that noun phrases, instead of words, are stemmed, the 
TF×IDF, position, title, and number of terms of each 
term phrase is calculated, and if two term phrases have 
the same score, they are ranked in ascending order of 
position followed by descending order of number of 
terms.

• Step 5 is to expand the single terms to term phrases. 
For each term, find all the term phrases that contain the 
term, and link it with the highest scoring term phrase. 
The result is a list of term phrases. The scores 
calculated in Step 2 are used to rank this list because it 
is generally preferable to represent documents and 
measure the importance of each representation element 
in terms of single terms rather than term phrases [10]. 
Term phrases, on the other hand, are used for output 
purposes. This is because documents are summarized 
by a set of phrases, not words.  

• Step 6 is to eliminate duplicates from the list of term 
phrases. More than one term may be linked to the same 
term phrase. If that is the case, the term phrase will be 
linked to the highest scoring term.  

• Step 7 is to identify the most frequent corresponding 
phrase in the document for each of the linked term 
phrases. If a term phrase is linked to more than one 
phrase, the most frequent phrase will be chosen. This 
step also eliminates subphrases if they do not perform 
better than their superphrases. If phrase P1 occurs 
within phrase P2, P1 is a subphrase of P2 and P2 is a 
superphrase of P1. If a phrase is a subphrase of another 
phrase, it will only be accepted as a keyphrase if it is 
ranked higher; otherwise it will be deleted from the 
output list.  

C. Comparison with GenEx and Kea  
KE is based on GenEx and Kea, but differs from them in 

several ways:  
• Purely statistical methods have been used in GenEx 

and Kea. KE, however, uses a combination of 
statistical and computational linguistics techniques for 
keyphrase extraction. Part-of-speech tagging, which is 
a useful computational linguistics technique, has been 
used to improve the quality of candidate phrases. Only 
words which have been tagged as adjective, verb and 
noun are selected as candidate phrases.  

• KE uses a different set of attributes to discriminate 
between keyphrases and non-keyphrases: TF×IDF,
position, title, proper noun and number of terms. Kea 
uses only two attributes: TF×IDF and distance.
GenEx, on the other hand, uses many more attributes, 
but it does not use TF×IDF and title.

• KE uses a different machine learning algorithm; it is 
tuned by an artificial neural network (for details of the 
training of KE, see Section IV-B). GenEx is tuned by a 
genetic algorithm, whereas Kea is based on a naïve 
Bayes learning technique. 
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• KE is a different model; it consists of seven steps, and 
takes both words and phrases as candidate phrases. Kea 
is a simple model; it only selects phrases as candidate 
phrases, so it does not involve any linking between 
words and phrases. GenEx is more complicated; it 
consists of ten steps, considers both words and phrases, 
and involves many post-processing tasks.  

The experimental results summarized in Table II suggest 
that these differences make KE a better algorithm than GenEx 
and Kea.

IV. EXPERIMENTS

This section explains how we evaluate the output 
keyphrases and train the KE algorithm, compares the 
individual performance of different attributes, the 
performance of different TF×IDF combinations and different 
keyphrase extraction tools, and the performance of KE on 
different learning methods and different corpora.  

A. Methodology  
KE has been tested on two different corpora. The first 

corpus is the same as the one used in GenEx and Kea, and it 
has been used to train and test KE in all our experiments 
(except the one in Section IV-G). The criteria used for 
evaluating the output keyphrases are also the same as in 
GenEx and Kea (i.e. a machine-extracted keyphrase is said to 
be correct if its stem matches the stem of an author-assigned 
keyphrase), so direct comparison is possible. For details of 
this corpus and the evaluation method used, see [16]. The 
second corpus is different and larger than the first one, and it 
has been used to test the generalization performance of KE. 
The evaluation criteria are the same as the first corpus.  

B. Training of KE  
The set of terms (i.e. output of Step 2) and the set of term 

phrases (i.e. output of Step 4) were tuned separately by a fully 
connected 4-9-1 back-propagation neural network. The 
resulting sets were then combined to perform Step 5, 6 and 7 
of the KE algorithm. The number of hidden units affects the 
generalization performance of a neural network. We have 
tested different numbers of hidden units, and found that nine 
hidden units give the best result. Also, it is possible to have 
more than one hidden layer in a neural network, but one 
hidden layer is adequate for most applications. KE has been 
tuned and tested on a neural network with two hidden layers, 
but the difference between that and one hidden layer is not 
statistically significant. Therefore, only one hidden layer is 
used.

The experiments also indicate that the term set often 
requires more training iterations than the term phrase set. A 
training iteration involves all the documents in the training set 
and the selection of 150 terms (or term phrases), including 
both keyphrase and non-keyphrase examples, from each 
document. The cross-validation method has been used to 
estimate the appropriate point to stop training to avoid 
overfitting.  

C. Different attributes 
Five different attributes are used in the KE algorithm, but 

we have only compared the individual performance of four 
attributes: TF×IDF (using the standard TF and Kea’s IDF), 
position, title, and proper noun. Number of terms has not been 
evaluated in this experiment. Since number of terms is always 
one when it comes to single terms, the attribute (if used alone) 
cannot discriminate between different terms. Therefore, we 
decided not to evaluate the individual performance of this 
attribute.  

Fig. 1 shows the comparison of the individual performance 
of different attributes with varying number of output 
keyphrases. Precision is the proportion of the keyphrases 
extracted that are correct. The experiments indicate that the 
performance of position is more stable than TF×IDF. The 
average precision of position lies between 0.21 and 0.25, 
whereas TF×IDF lies between 0.16 and 0.35. Also, there is a 
tendency for the average precision of TF×IDF to fall. The 
experiments also show that the performance of position is 
always better than title, and that proper noun gives the worst 
performance. We conclude that position is the best individual 
indicator of keyphrase extraction. This confirms the findings 
by Edmundson (1969) and Kupiec et al. (1995) that location-
based methods give the best performance, though their work is 
concerned with sentence extraction and they use a different set 
of attributes. For details of their work, see [7].  
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D. Different TF×IDF combinations  
As mentioned before, there is no universal definition of 

TF×IDF. Four different TF×IDF definitions have been 
discussed: standard TF, standard IDF, normalized TF, and 
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Kea’s IDF. Three different combinations of TF×IDF have 
been implemented using these definitions and tested in our 
experiments.  

Fig. 2 shows the comparison of different TF×IDF
combinations with varying number of output keyphrases. The 
difference between the standard TF and Kea’s IDF and the 
standard TF and standard IDF is not statistically significant, 
though the former tends to give more stable results. The 
average precision of the standard TF and Kea’s IDF lies 
between 0.30 and 0.34, whereas the standard TF and standard 
IDF lies between 0.27 and 0.35. The average precision of the 
normalized TF and standard IDF lies between 0.22 and 0.40, 
and has a tendency to fall. 

TABLE II
EXPERIMENTAL RESULTS FOR DIFFERENT KEYPHRASE EXTRACTION TOOLS 

 Average Number of Correct 
Keyphrases

Standard 
Deviation 

KE  1.50 1.32 
GenEx 1.45 1.24 
C4.5  1.40 1.28 
Kea 1.35 0.93 
Kea-C4.5 1.20 0.83 
Word 
2000

0.85 0.93 

TABLE III
EXAMPLES OF THE KEYPHRASES EXTRACTED BY KE

Title  Brain Rhythms, Cell Assemblies and 
Cognition: Evidence from the Processing 
of Words and Pseudowords  

Author-assigned 
Keyphrases

Brain theory, cell assembly, cognition, 
event related potentials, ERP, 
electroencephalograph, EEG, gamma 
band, Hebb, language, lexical processing, 
magnetoencephalography, MEG, 
psychophysiology, periodicity, power 
spectral analysis, synchrony

Machine-
extracted
Keyphrases (Top 
5)

Words, processing, cell, cell assemblies, 
spatiotemporal activity patterns  

Title  Precis of: The Roots of Thinking  
Author-assigned 
Keyphrases

Analogical thinking, animate form, 
concepts, evolution, tactile-kinesthetic 
body  

Machine-
extracted
Keyphrases (Top 
5)

Thinking, concept, tactile kinesthetic 
body, hominid evolution, thesis  

E. Different keyphrase extraction tools  
We have compared the performance of KE with other 

keyphrase extraction tools: GenEx, C4.51, Kea, Kea-C4.52,

1 C4.5 consists of a set of parameterized heuristic rules that are fine-tuned 
by the C4.5 decision tree learning algorithm. Some of these parameters are 
used in GenEx.  

and Microsoft Word 2000 (the AutoSummarize3 feature). C4.5 
and Kea-C4.5 have not been discussed because they have 
mainly been used as a standard of comparison for evaluating 
the performance of GenEx and Kea respectively. Please refer 
to [4], [16] for details of C4.5 and Kea-C4.5. Microsoft Word 
was chosen because it is a very popular word processing tool 
with the extraction of keywords and key sentences feature. 
Five keyphrases have been extracted from each testing 
document by these tools and compared with the corresponding 
author-assigned keyphrases. The number of output keyphrases 
is set to five because AutoSummarize always generates 
exactly five keyphrases. Also, unlike the other tools, 
AutoSummarize cannot be trained and the output keyphrases 
always contain exactly one word.

Table II shows the number of correct keyphrases identified 
by different keyphrase extraction tools. Results of GenEx, 
C4.5, Kea, and Kea-C4.5 are from [4]. The experiments 
indicate that KE (using the standard TF and Kea’s IDF) 
performs better than the other tools (in terms of the average 
number of correct keyphrases) and that the difference between 
KE, GenEx, C4.5 and Kea is not statistically significant. Since 
Word 2000 can only extract five single words from each 
document and most of the keyphrases in the corpus contain 
more than one word, it is not surprising that Word 2000 gives 
the worst performance. Table III shows the keyphrases 
extracted by KE from two testing documents. Correct 
keyphrases are printed in bold.  

F. Different learning methods  
In addition to neural networks, we have used the C4.5 

decision tree learning algorithm [9] to tune KE. There are two 
reasons for doing this:  

• Different machine learning methods should give 
approximately the same performance results, but some 
methods might be more suitable for keyphrase 
extraction than others. As shown in the experiment in 
Section IV-E, the choice of a learning method does 
affect the performance of a keyphrase extraction 
algorithm: GenEx and Kea give different results when 
they are tuned by different learning methods.  

• The experiment in Section IV-E suggests that KE 
performs better than other keyphrase extraction tools. 
Nevertheless, the improvement in performance could 
be a result of the algorithm (and the selection of 
attributes) itself and/ or the learning method (i.e. neural 
networks) employed. Both GenEx and Kea have been 
tuned by the C4.5 learning method, and the tuned 
keyphrase extraction algorithms have been used as a 
standard of comparison for evaluating the performance 

                                                                                                    
2 Kea-C4.5 is a variation of Kea. The pre- and post-processing are the same 

as Kea. The only difference is that it uses the C4.5 decision tree learning 
technique, instead of a naïve Bayes learning technique.  

3 The AutoSummarize feature aims at extracting key sentences from a 
given document and is available from the Tools menu. The generation of 
keywords is actually a by-product of AutoSummarize. When AutoSummarize 
is used, it also fills in the Keywords field of the document’s Properties, which 
is available from the File menu.  
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of GenEx and Kea. If KE is tuned by the C4.5 learning 
method, we can exclude the effect of neural networks 
and evaluate only the performance of the algorithm. 

The C4.5 learning algorithm is an unstable classification 
algorithm, i.e. the constructed classifier (i.e. a decision tree) is 
sensitive to small changes to the training data, so bagging has 
been used to improve performance by reducing variance [14], 
[18]. Both GenEx and Kea have been tuned by 50 bagged 
C4.5 decision trees [4], [16]. To ensure comparability, the 
same has been carried out on KE: 50 bagged C4.5 decision 
trees were used to tune the term set and the term phrase set 
separately. 

There are a number of options, which allow users of the 
C4.5 program [9] to improve decision tree performance, such 
as the –c option and the –m option. The –c option sets the 
confidence threshold for pruning, and the –m option sets the 
minimum number of examples needed to form a leaf of the 
decision tree.

We have evaluated the performance of different numbers of 
training examples and different values of –c and –m, and 
found that KE gives the best performance when 200 terms and 
150 term phrases are selected from each training document 
with –c set to 50% and –m to 10. The experiments also 
indicate that, in general, simple trees give better results than 
bushy trees. We believe this is because bushy trees tend to be 
overtrained on the training set.  

Fig. 3 shows the performance of KE and KE-C4.5 (i.e. KE 
tuned by the C4.5 learning method). The experiments indicate 
that the performance of KE is more stable than KE-C4.5 (the 
average precision of KE lies between 0.30 and 0.34, whereas 
KE-C4.5 lies between 0.27 and 0.35), and that KE often gives 
better performance results than KE-C4.5, except when the 
desired number of output keyphrases is set to one. We 
conclude that neural networks are better for keyphrase 
extraction than the C4.5 learning algorithm.  

Although KE gives better results when it is tuned by neural 
networks, neural networks have been criticized for their poor 
interpretability (i.e. the level of understanding and insight 
provided by the model). It is difficult to extract classification 
rules from neural networks. The C4.5 learning algorithm, 
however, can do that easily. Although the performance of KE-
C4.5 is not as good as KE, KE-C4.5 can help us to understand 
how a phrase has been classified as a keyphrase or a non-
keyphrase in this experiment. Fig. 4 and Fig. 5 show the 
decision trees constructed from the term set and the term 
phrase set respectively. Decision nodes are represented by 
rounded rectangles. All the attributes of KE have been 
normalized, so they lie in the range of 0 to 1.  

The process of term classification is simplified by seven 
rules (see Fig. 4). Terms, that first appear at the beginning of 
the document, appear in the title, and have been tagged as 
proper noun, are useful for identifying keyphrases. TF×IDF,
however, is trickier; it depends on the values of other 
attributes, but, in general, large TF×IDF values are not 
preferred.

The process of term phrase classification is also simplified 

by seven rules (see Fig. 5). Term phrases, that first appear at 
the beginning of the document, appear in the title, or not in the 
title but contain more than one term, are useful for identifying 
keyphrases. Large TF×IDF values are again not preferred.
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Fig. 3 Comparison of KE and KE-C4.5

Fig. 4 Decision tree for classifying terms  

Fig. 5 Decision tree for classifying term phrases  

G. Different corpus  
To ensure comparability, KE has been trained and tested on 

the same set of documents as GenEx and Kea. Nevertheless, 
we would like to see how KE performs when it is tested on a 
different, larger corpus. For convenience, we use Corpus B to 
refer to this corpus, and Corpus A to refer to the set of 
documents used by GenEx and Kea and in our previous 
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experiments.  
Corpus B is used to evaluate the generalization performance 

of KE (tuned by neural networks using the training set in 
Corpus A). Corpus A and Corpus B are disjoint. Corpus B 
contains 231 articles selected from four journals. The journals 
are from different subject areas, including life sciences, 
mathematical sciences, and social sciences. Please see Table 
IV for the sources of Corpus B. All the articles contain 
keyphrases supplied by the authors.  

To evaluate the correctness of the output keyphrases, we 
need a set of documents which contain author-assigned 
keyphrases. Journal articles are, as far as we know, the main 
source of these kinds of documents. It is not easy to find 
documents with author-assigned keyphrases in other areas. 
Even if some documents do contain keyphrases, the quality of 
these keyphrases might not be as good as those in journal 
articles. For example, keyphrases could be found in the meta
tag of some web pages. However, these phrases are often 
unreliable and misleading, so most major search engines, 
including AltaVista, have stopped using them [13]. A recent 
study also confirms that the importance of these phrases to 
search engine ranking is little [3]. Therefore, journal articles 
have been used in this experiment.  

Fig. 6 shows the comparison of the performance of KE on 
different journals with varying number of output keyphrases. 
KE does not seem to perform well in Corpus B compared with 
Corpus A. We believe this is because of the higher 
compression (or document-keyphrase) ratio in Corpus B. On 
average, there are 7936.83 words and 4.58 keyphrases per 
document in Corpus B compared with 4350.20 and 8.35 for 
the testing set in Corpus A. KE gives similar performance 
results on these journals, except when the desired number of 
output keyphrases is set to two. Most of the average precision 
of these journals lies around 0.20.  

TABLE IV
SOURCES OF CORPUS B

Journal Name  Field  Number of 
Documents  

Journal of Molecular 
Biology  

Molecular
Biology  

46

Information and Software 
Technology  

Information 
Systems  

65

Journal of Economic 
Behaviour and Organization  

Economics 
and
Econometrics  

57

International Journal of 
Educational Development  

Education  63  

All   231  
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Fig. 6 Comparison of the performance of KE on different journals

V. DISCUSSION OF RESULTS 

The above performance numbers are misleadingly low. 
Author-assigned keyphrases are often a small subset of the set 
of good quality keyphrases for a given document. On average, 
there are only 7.46 keyphrases per document in Corpus A 
(both training set and testing set) and 4.58 in Corpus B, and 
these phrases constitute less than 1% of the document length. 
A more accurate picture can be obtained by asking human 
assessors to evaluate the machine-extracted keyphrases. 
GenEx has been tested on 267 web pages: 62% of the 
keyphrases extracted from these pages are rated by human 
assessors as ‘good’, 18% as ‘bad’, and 20% as ‘no opinion’. 
This suggests that about 80% of the keyphrases extracted by 
GenEx are acceptable [17]. The quality of machine-extracted 
keyphrases may not be as good as author-assigned keyphrases. 
Nevertheless, machine-extracted keyphrases could give the 
author a useful starting point for further manual refinement 
when author-assigned keyphrases are not available.  

Some of the machine-extracted keyphrases are rather close 
to their corresponding author-assigned keyphrases, but 
because of the stemmer employed, they are regarded as 
different. For example, the author-assigned keyphrase ‘cell 
assembly’ is considered different from the machine-extracted 
keyphrase ‘cell assemblies’ (see the first example in Table III) 
because the stemmer maps ‘assembly’ to ‘assemb’ and 
‘assemblies’ to ‘assembl’. However, this kind of problem is 
inevitable if an automatic performance measure is used.  

We notice that some common words are ranked fairly high 
in the output list despite the use of stopword lists and IDF. 
These words come from two main categories. Recall that the 
score of a term (or term phrase) is dependent on TF×IDF,
position, and other attributes. Terms such as ‘chapter’ tend to 
occur at the beginning of the document. Early occurrence 
often boosts the score of these terms and increases the 
likelihood that they are output, though their IDF might be low. 
In addition, because of the nature of the corpora, terms such as 
‘person’, which tend to occur rather frequently in everyday 
documents, appear only in a few documents. This boosts the 
IDF of these terms and improves their ranking. A possible 
way of solving this problem is to add these common words to 
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the stopword lists, but this will make KE more domain 
dependent, and that is not what we want.  

The use of proper noun appears to degrade the performance 
of KE. This is probably because the training and testing 
documents are all academic papers, which tend to contain 
many proper nouns, especially in the References section. 
Indicator phrases [7] may be used to resolve this problem by 
ignoring all the words in the References section, but this will 
make KE more domain dependent. However, we believe that 
proper nouns might be useful in some domains (e.g. news) 
where they tend to occur less frequently, but further testing is 
needed to support this.  

The domain independence of KE has also been confirmed 
in our experiments. KE successfully extracts keyphrases from 
documents on different subject areas (in Corpus B) while it 
has been trained on something totally different (i.e. training 
set in Corpus A).  

Syntactic methods (e.g. the use of italics) seem helpful in 
extracting high quality keyphrases, and initially they were 
considered as an attribute for keyphrase extraction. However, 
all the documents in Corpus A are in ASCII and Unicode 
format, so we cannot implement this.  

VI. CONCLUSIONS AND FUTURE WORK 

We have discussed a new domain independent keyphrase 
extraction algorithm called KE, and shown that it performs 
better than other keyphrase extraction tools, including GenEx 
and Kea, and that it significantly outperforms Microsoft Word 
2000’s AutoSummarize feature. Machine-extracted 
keyphrases can provide valuable information about the 
content of a document, though they are not as good as author-
assigned keyphrases. KE is currently targeted at the extraction 
of keyphrases from plain text, but it will be interesting to see 
if the use of hyperlink information in web documents can 
boost the quality of the output keyphrases.
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