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Abstract—In this work we use the Discrete Proper Orthogonal
Decomposition transform to characterize the properties of coupled
dynamics in thin-walled beams by exploiting numerical simulations
obtained from finite element simulations. The outcomes of the will
improve our understanding of the linear and nonlinear coupled
behavior of thin-walled beams structures. Thin-walled beams have
widespread usage in modern engineering application in both large
scale structures (acronautical structures), as well as in nano-structures
(nano-tubes). Therefore, detailed knowledge in regard to the
properties of coupled vibrations and buckling in these structures are
of great interest in the research community. Due to the geometric
complexity in the overall structure and in particular in the cross-
sections it is necessary to involve computational mechanics to
numerically simulate the dynamics. In using numerical computational
techniques, it is not necessary to over simplify a model in order to
solve the equations of motions. Computational dynamics methods
produce databases of controlled resolution in time and space. These
numerical databases contain information on the properties of the
coupled dynamics. In order to extract the system dynamic properties
and strength of coupling among the various fields of the motion,
processing techniques are required. Time- Proper Orthogonal
Decomposition transform is a powerful tool for processing databases
for the dynamics. It will be used to study the coupled dynamics of
thin-walled basic structures. These structures are ideal to form a basis
for a systematic study of coupled dynamics in structures of complex
geometry.

Keywords—Coupled dynamics, geometric complexity, Proper
Orthogonal Decomposition (POD), thin walled beams.

I. INTRODUCTION

EAMS, especially thin-walled ones, form the basic

components in many types of complex structures. They
are widespread in almost all engineering fields, used as a basic
structural element in civil engineering, as rotating blades in
turbines and helicopter, as stiffeners in aircraft fuselage and
aeronautical structures, and as basic members in robots,
various machinery, space and marine multi-body mechanisms,
and recently in nanostructures. As a result for their wide
usage, cross sections of various geometries have been invented
to meet various design requirements. Thin-walled beams with
complex cross sections forms a class of technologically
important structures encountered in many sectors of
mechanical sciences and biological systems.

Basic issues dealing with nonlinear coupled dynamics and
normal modes of vibrations in linear and nonlinear thin-walled
beams are topics of increasing interest in modern engineering
sciences. The main factors that affect the coupled dynamics in
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a thin-walled beam are the following: (1) the complexity of
the geometry of the cross section: Perpendicular force acting
on the beam will produce flexural motion coupled to torsion
motion. (2) large displacements and rotations and (3) The
complexity of loading conditions, for example, if the
aerodynamic loads acting on a wing do not coincide with the
elastic axis, motions with combined bending and twisting will
be induced.

The coupled dynamics of a thin-walled beam can be very
complicated if all the sources inducing coupling (cross-section
geometry, loading, and geometric nonlinearity) act
simultaneously. Clearly high fidelity modeling and reliable
computational models are needed to predict the dynamics of a
thin-walled beam structure. Classical methods involving
analytic computations are valid only for very small motions
for structures of very simple geometries. The majority of the
available analytical solutions deal with coupled vibrations in
beams by considering the linear inertial coupling that comes
out of beams cross section geometry. At the same time, they
ignore the geometric nonlinear coupling due to the effect of
large displacements and/or rotations. The most obvious
drawback of the classical linear methods is their weakness to
provide an effective way to compute the dynamics of
complicated structural systems composed of multiple beams,
or combination of beams and other structural members.

The limitations of the analytical computations methods
(linear and perturbations) formed an impetus to develop
powerful numerical computational methods where the modern
electronic digital computer plays a crucial role in regard to
high speed and low cost of computations. For example, the
Finite Element method can be used to derive discrete
computational models to simulate with controlled accuracy
and resolution in time and space the dynamics of complicated
structures.

When simulating the dynamics of a structural system using
a numerical computational method (FE), numerical databases
are produced. In this numerical databases accurate information
on the system dynamic properties, such as the Normal Modes
of vibration and coupled dynamics are available but hidden in
the numerical database. Without suitable processing for the
numerical databases, it is very difficult to extract the hidden
information. This leads to a search for methods to process
numerical solutions databases and try to extract important
properties. Here we use the Proper Orthogonal Decomposition
transform to process these databases. The POD is a powerful
tool for obtaining optimum spatial and temporal information,
and providing bases for model reduction of nonlinear
structural systems [6]-[9].
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II. LITERATURE REVIEW

Bishop and Johnson [3] classified the thin-walled beams
structures based on their cross-section geometry and the
location of the shear center into the following categories:

(1) Fig. 2 (a) depicts a cross-section symmetric about two
perpendicular directions; the shear center s and the
centroid ¢ are coincident. Examples are rectangular and
circular cross sections beams. In such case the bending
and the torsional vibrations are nearly independent
(decoupled) for a uniform beam moving at sufficiently
small strain energy level. The linear vibration properties
for the axial, transverse and torsion can be obtained from
the classical beam theories (Bernoulli-Euler and
Timoshenko). However, geometric nonlinearity is going
to couple all elementary motions if the displacements and
rotations of the cross-section are large.

(2) Fig. 2 (b) depicts a cross-section symmetric about one
direction; the shear center s and centroid ¢ lie on the
same horizontal coordinate axis but separated by a non-
zero distance. A channel cross section is such an example.

(3) Fig. 2 (c) depicts a cross-section without any symmetry; it
is the general case in which the shear center s and the
centroid ¢ are separated by distances € ande,. In this

case, the bending and torsional vibrations interact
(coupled) due to the no coincidence of the shear and
centroid centers.

Several analytic models have been derived to describe
aspects of the coupled dynamics in beams. Timoshenko
derived the governing differential equations. Dokumaci [4]
obtained an exact solution for the coupled bending and
torsional for the Timoshenko beam neglecting the shear
deflection, the rotary inertia and the warping effect. The
solution was obtained by assuming harmonic motion of radian
frequency @ , to reduce the partial differential equation into a
coupled ordinary differential equation. Jun Li [10], using
d’Alembert principle, derived the bending-torsion coupled
governing equation of motion for an axially loaded
Timoshenko beam including the shear deformation, the rotary
inertia and the warping stiffness. The differential equation for
coupled vibrations can be written in the form:
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where U(X,t) is the transverse displacement in the y-

direction, 6’( X,t) is the rotation about the z-axis (shearing),

and ¢(X,t) is the torsional rotation about the x-axis. Clearly

this model describes the coupling due to the bending motion
of the beam in the y direction, which will excite the
torsion ¢ as well as the shearing@. El, is the flexural rigidity
in the y direction, m is the mass per unit length, GJ is the
torsional rigidity, EI" is the warping rigidity, r is the radius
of gyration of the beam cross section and P is the static axial
loading. The dynamic transfer matrix method was used in
order to solve this coupled system to determine the coupled
natural frequency and mode shapes.

For the third case where no cross-section symmetry exists,
the shear center s and the centroid ¢ are separated by
distances € and e,in the both directions. Vlasov [12]

developed a torsion theory in which restrained warping is
included. This theory is also called “warping torsion” or “non-
uniform torsion”. In Vlasov’s theory the torsion is not constant
along the x-axis. Based on Vlasov model for the coupled
flexural torsional vibrations including the rotary inertia, shear
deformation and warping stiffness are in the below differential
equation for coupled vibrations:
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where U, (X,t) and U,(x,t) denote the flexural motion of

the beam in the y- and z-directions, and R, (X,t) denote the
torsional rotation about the x-axis. The terms El,, El,
represent respectively the flexural rigidities about the y and
z directions. Term |, represents the polar moment of inertia
of the cross-section about the shear center, J is the torsional
constant, I', is the warping constant, A is the cross sectional
area, and p is the mass density.

In this model, strong interaction between the two bending
motions and the torsion will exist. The coupling exists due to
the location of the shear center in distance from the location of
the center of mass. The complexity of the geometry is lumped
into two parameters.

Many approaches have been developed to solve this
coupled equation. Friberg [5] derived the dynamic stiffness
matrix, and Tanaka and Bercin [11] used symbolic algebra
techniques to solve it and to obtain the coupled frequencies
and mode shapes for different boundary conditions. The
Classic Modal Analysis approach was implemented by
assuming a known spatial behavior of the beams for the two
lateral displacements and the torsional rotation as:
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U,(x,t)=u, (x)sin(at),
U, (%) = U (X)sin(et), &)
R (x,t)=r (x)sin(et)

where @ is the circular frequency. The spatially distributed
amplitudes and the frequency are the new unknowns [11].

L

Fig. 1 Thin-walled bean with arbitrary cross-section, the shear center
and the centroid are not coincident
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Fig. 2 Symmetry properties of cross-sections: (a) double symmetry,
(b) single symmetry, (c) no symmetry

It is well known that accurate solutions for the thin walled
beam dynamics can be obtained based on the computational
methods represented by the Finite element methods (FEA) [2].
The numerically obtained solution for the free vibration of the
beam contains information on the modal properties that is
hidden in the numerical database. Proper operation (post-
processing) is necessary in order to extract the dynamics
properties. We claim that such a proper operation is the Time-
POD transform.

III. POD ANALYSIS OF RODS

The method of Proper Orthogonal Decompositions (POD)
for coupled fields is a powerful tool since it can process the
database of information (numerical solution) and extract a
small number of optimum spatio-temporal patterns or modes.
Each pattern is the product of a function of time and a function
of space. Here will apply the POD method to analyze the free
motions of thin walled cantilever beam to extract the coupled
dynamics from the numerical solution obtained from FEA.

We briefly present the POD method for coupled dynamic in
thin walled beam. The POD version presented here is based on

the Karunen-Loeve expansion developed to process stochastic
processes in statistics and fluid mechanics. Let the augmented
vector:

_ U,(s.t)
V(s,t)= B(S’t) =U,(s,t) C))
R&D ] | g sty

represents the spatiotemporal evolution of a motion over the
time intervalt €[T,T,]. The motion can be expressed as

follows:
V(s,t) =<V (s,t) > (5)+V(s,t) (5)

! j V (s, t)dt (©6)

<V(s,t)>(s)=
(8,0)>(s) T

where the first term in (5) is the average of the motion and the
second term is its fluctuation. We assume that the fluctuation
of the motion can be expanded in a series of modes, that is:

V(s,t) =" A ()4, Dn(s) 7

A generic mode is characterized by amplitude A (t), a

shape or spatial patternwl/lm&)(s), and energy contentA, .

This expansion shall be called Proper Orthogonal
Decomposition if the amplitudes and energies are the eigen-
functions and eigen-vectors to the following eigen-problem:

[ct.nA@dr = 4,A,0 ®)

The term C (t, r), called the time autocorrelation operator, is

defined by the autocorrelation in time operation:

C(tr)= Iv(s,t)v(s,r)ds =JL‘Z{Vm (s,t)-<V, > (s)}{vm (s,7)-<V, > (s)}ds 9)

The shapes are obtained via the projection operation:
— — T, -
P (S)=[4, Dn(s) = .L‘ V(s,HA, (t)dt (10)

The amplitudes as well as the shapes form orthonormal sets
of functions. For this reason the expansion is called Proper
Orthogonal (PO). Moreover, the trace of the autocorrelation
operator is energy like quantity of the motion since it is a
quadratic form of the displacements and rotations. A motion is
characterized uniquely by the POD energy spectrum, which is
the set:

Az{ﬂm}::l an
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The constants A, are called energies since their sum adds

up to be the trace of the autocorrelation operator. That a
motion involves in general coupling between translational
displacement and rotational displacement is reflected by the
fact that the shape of a POD mode (@m(s)) is a vector

composed of the three elements, that is:

- % (s) Zom(S)
Wa(s) = {_m } =| 7, (5) (12)
n(®) ¥, (9)

where, #,.,(S), ¥;n(S) are the bending POD mode shape in y
and z directions respectively and W, (S) is the POD mode
shape for the torsion about x axis.

Clearly the shape of a POD mode reveals how the
displacement filed is coupled with the rotation field.

By computing the POD modes for a motion, we can
determine how the motion couples in different patterns. The
POD approach can further form the bases to identify the
dominant degrees-of-freedom by calculating the norm
(participation) of each mode component. The norms of the
components of a POD mode:

Con = Z22n(8) = %J.(;(Zm(s))zds

Con = 20(8) = [+ [ ()08 (13)
2§ R

n = Wi (8) = [T (¥ (9)7ds

Using the above approach to process the finite element
solution after rearranged it into a database of snapshots shall
lead to property identification of the coupled beam. More
information can be found in [6]-[9].

C4

TABLEI
PROPERTY DETAILS FOR THE BEAM STUDIED IN THE EXAMPLE
Symbol Meaning Value
El, Bending rigidity 6.75023x10°Nm’
El, Bending rigidity 2.89392x10"Nm’
kGA Torsional rigidity 8.83721x10°N
Er Warping rigidity 454717 Nm*

| Polar moment of inertia 32.41 Kg.m

L Beam length 2.0m
Distance between shear
1 center S and the centroid 0.06350784 m

Distance between shear -0.08040439 m

2 center S and the centroid
b Beam width 0.3m
h Beam height 0.2m

IV. APPLYING THE POD TO EXTRACT THE COUPLED
VIBRATIONS IN LINEAR THIN WALLED BEAMS

The introduced POD-based methodology will be used to
process the numerical solutions generated by the FE
computational model. We consider the free vibration of the
arbitrary cross-section thin-walled beam depicted in Fig. 1.
The beam geometric and material properties are presented in
Table I. In order to follow a systematic way in the analysis, we
go through the following steps:

1. The natural frequencies and mode shapes for the clamped-
free beam boundary condition will be obtained by solving
the coupled (2).

2. Then, the free vibration for the same case will be obtained
by numerically solving the FE model for the same beam.
The FE model is composed of 40 two-node finite
elements. The free motion is excited by applying an
impulsive force at the free end of the beam pointing in the
negative Yy direction. The simulation for the beam

dynamics is produced by numerical time integration of the
FE model. The solution is recorded every dt=0.0001
second for a total time of 0.5 seconds.

3. Finally, the numerical solution (database) is arranged in
snapshots matrix and transformed into Proper Orthogonal
modes by using the Time POD transform. Comparison
between the analytical solution and the POD results will
be discussed.

A.POD Transform of the FE Numerical Database

In the discussion about the POD for coupled dynamics we
have seen that the POD method characterizes in principle the
dynamics of an infinite-degrees-of-freedom system in terms of
a finite number of proper orthogonal modes. Each POD mode
is characterized by the fraction of the energy of the motion it
carries, a function of time A, (t) characterizing the mode

distribution over the time domain, and a vector function of
space @ _(s) characterizing the spatial distribution of the

coupled fields.

In the dynamic analysis of the cantilever thin-walled beam,
a concentrated impact force was applied at its tip in order to
excite the dynamics. The impact force excites many modes of
vibration that will interact synchronously: some must be slow-
related to the low order modes of vibration, and some quite
fast-related to the higher order modes. Also, due to the
geometric properties of the beam, the following couplings are
expected to take place: (1) coupling between bending and
torsional motions, (2) coupling between the two bending
motions, and (3) coupling between the high and low order
modes of vibration.

The POD transform for the discrete dynamics reveals that
the energy is distributed over a finite number of POD modes.
Fig. 3 reveals that the first four modes contain about 99.99%
of the total “energy”. The first POD mode dominates with
energy content at 98.7 %. This is the main property of the
POD technique: namely its ability to compute from data the
mathematical structure of the finite number of orthogonal
modes that compose a motion. The PO modes describe
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optimally the degrees-of-freedom that a motion activates. We
mention that a continuous flexible structure can be resolved
into an infinite number of degrees-of-freedom.

The fact that the beam motion is dominant by one POD
mode is important for many reasons. It is useful because it will
help focus on the dominant dynamics, and it provides
weighting factors that can be used to obtain more practical
reduced models for the beam. As example for this beam, the
reduced model can reach a high accuracy by involving the first
POD mode because the latter contains 98.7 % of the energy of
the motion.

The plot for the amplitude of the first POD reveals that the
temporal behavior of the first POD mode in an oscillation
dominated by one harmonic. The FFT transform, Fig. 4,
determines a large amplitude harmonic with frequency at 37.1
Hz, plus another relatively higher frequency equal to 94.37 Hz
but with small amplitude. Comparing the obtained frequency
by the one from the analytic solution, it turns out that the
dominant frequency is very close to the first torsional natural
frequency of the beam (Table II). This result is quite important
as far as the physical meaning of the POD modes is
concerned.

le+0
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le-2 1
le-3 1
le-4 1
le-5 1
e le-6 |
~  le-7
le-8 1
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Fig. 3 The energy distribution for the POD modes. A finite number of
modes contain more than 99.9 % of the energy
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Fig. 4 The first POD amplitude: amplitude (upper), the FFT analysis
(lower)

TABLEII
COMPARISON BETWEEN THE ANALYTICAL SOLUTION FREQUENCIES AND THE
FIRST POD MODE FREQUENCIES

Natural frequencies ~ Frequencies of first

No from analytic solution ~ POD amplitude
1 37.49 Hz 37.1 Hz
2 69.09 Hz 95.69 Hz

It is important to know the kind of motion that generated
the frequencies of the first POD mode, without depending on
the analytical solution. In order to do so, we examine the
shapes of the first POD mode. Plots for the first POD mode
shape components are shown in Fig. 5. The magnitudes of the
mode components (norms) indicate the level of participation
of each component in the total mode dynamics. It is obvious
that the torsional component of the mode dominates over the
two flexural components Fig. 6 (b).

The norms of the components of the POD will provide a
direct measure about the participation of each component in
the mode. The norms and the normalized POD mode are
shown in Fig. 6. The norm of the torsional component (C41) is
0.982287 whereas the norms of the bending comments are
respectively 0.294505 and 0.284605. This means the dominant
frequency of 37.10 Hz is generated essentially from the
torsional vibration. But because of the asymmetry in the cross-
section geometry, the two transverse motions are directly
coupled to the torsional motion. And this goes with the fact
that in the asymmetric beam cross-section, any force applied
to the beam will excite torsional motion. In fact the applied
force can be presented as pure bending force acting on the
shear center s and a moment about the x axis applied at the
centroid. Clearly this will lead to strong coupling between the
torsion and the bending modes.
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Fig. 5 The components of the shape for the first POD mode, the
torsional component is dominant

We must also not forget that for this case the total torsional
strains are the sum of those due to pure torsion and those due
to wrapping. And as it is well known for the thin-walled beam,
warping has strong effect on the coupled natural frequencies
[1].

The second POD mode with energy 0.007417 has the
amplitude shown in Fig. 7. The dominant frequency in this
mode is at 27.34 Hz, and the other two are at 37.10 Hz and
95.69 Hz. The dominant frequency is identical to the first
coupled bending vibration mode of the beam. Again we
concluded that by the help of the results obtained from the
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analytical solution. The first normal mode of vibration has
frequency at 27.34 Hz. In this mode we can see that the
amplitude has more than one frequency, which means that this
motion is coupled. The interesting in this result is that the
POD represents the coupling between the slow and fast
dynamics.

Again if we compare the results we again from the POD
analysis and the result from solving the linear coupled
problem we can see that the error is acceptable, Table III. This
enhances the conclusion we made before that the proposed
method can extract the natural frequencies from processing the
free dynamics.

The normalized mode shapes and their norms (Fig. 8)
reveal that the dominant motion is the bending vibration of the
beam in the y direction Also it is revealed that this motion is
coupled to torsional motion about the x-axis and with smaller
amount to bending vibration in the z direction.

Up to this point by analyzing the first two POD modes, we
managed to gain a full understanding for the dominant
dynamics, the strength of the coupling and their effect on the
beam behavior.
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Fig. 6 (a) The shape of the first POD mode: normalized components
of POD mode vs. components of the first linear mode, (b) The norms
of the components of the POD mode, and (c) The dominant
component and the identical linear component

The third POD mode contains a smaller amount of energy,
which is 0.005173. The third POD amplitude shown in Fig. 9,
the dominant frequencies in this mode are the 126.9108 Hz
and the 97.62367 Hz. By involving the norms of the POD
mode shape components, Fig. 11, we realize that the 97.62367
Hz is the frequency of the second bending mode of the beam
in the z direction, while the 126.9108 Hz is the second normal
mode of the beam in torsion. The conclusion is that the third
POD mode represents a coupling between the torsion and the
bending at higher modes.

The fourth POD mode has a very small amount of energy,
0.0004789. The dominant component is the bending vibration
in the z direction.

The results from the beam analysis give evidence on the
capabilities of the POD method to analyze deeply a
complicated dynamic behavior. The interesting result is the
fact that the PO modes are somehow related to the linear
normal modes of the coupled system. This relation is not very
clear at this point.
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Fig. 7 The second POD mode: amplitude (upper), the FFT analysis
(lower)

(B)

N

Fig. 8 (a) The normalized components of the second POD mode and
(b) their norms

TABLE III
COMPARISON BETWEEN THE ANALYTICAL SOLUTION FREQUENCIES AND THE
SECOND POD MODE FREQUENCIES

No Freq. Analytic Solution Freq. First POD amplitude

1 27.19 Hz 27.34 Hz
2 37.49 Hz 37.1 Hz
3 96.09 Hz 95.69z

B. Examine the Effect of Warping on the Beam Dynamics

We mentioned that in thin-walled beam with axis
symmetry, if a pure torsion will act over the beam section, and
the cross section of the beam is free to warp, then the warping
will take place without causing any axial or shearing strains.
While in the case where the beam cross section has no axis of
symmetry, the warping will vary along the beam due to the
torsion and hence there will be axial and/or bending strains.
The spatial rate of change of the angle of twist will not be
constant, but will vary along the axis of the beam, as result,
the stresses, and thus the strains, are considered to depend
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exclusively on beam internal forces caused by the applied
loading. The membrane force and bending moments are
related to the centroid axis while the torsional moment and
shear forces are related to the shear center axis. One of the
most important computational difficulties is the accurate
calculation under non uniform torsional loading of the beam
response when it exhibits a significant cross sectional warping.
Vlasov torsion theory, in which warping is included. The
torsion is not constant along the x-axis. The rotations of the
beam cross-section follow the following differential equation:

64¢ 82¢
Er—-GJ—=M 14
ox* ox? * 14

where GJ is the torsional stiffness, EI' is the warping
stiffness and M, is the distributed torsion moment along the

beam and I is the warping constant.
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Fig. 9 (a) The third POD mode: amplitude, and (b) FFT analysis

TABLE IV
COMPARISON BETWEEN THE ANALYTICAL SOLUTION FREQUENCIES AND THE
THIRD POD MODE FREQUENCIES
No  Freq. Analytic Solution Freq. First POD amplitude
1 96.09 Hz 95.69 Hz
2 126.14 Hz 12691 Hz

In this part we will use the POD method to investigate the
warping effect on the beam dynamics. This will be done by
processing the dynamics including the warping effect using
the POD and compare to the beam dynamic without warping.

Fig. 12 compares the POD spectra for a case without
warping and the same case including the warping effect. We
notice that warping does not affect significantly the energy
fraction of the dominant mode; but it does affect significantly
the energy distribution over higher modes. Now, the effect of
warping will be investigated by monitoring the norms of the
components of the POD modes. In the dominant mode
components, Fig. 13 the warping effect reduced the
magnitudes of norms of the two bending and torsion
components. The warping appears to have significant value

of C,, =0.58. The importance of this result is that we could

determine quantity and quality of the warping effect on the
total beam dynamics.
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Fig. 10 The third POD mode: the normalized components (A), and
their norms (B).
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Fig. 11 The fourth POD mode: (a) the normalized components, and
(b) the norms
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Fig. 12 Normalized energy distribution in the POD modes, for the

case without warping (rectangles), and the case with warping
(triangles)

In the second mode, Fig. 14, the warping has no significant
effect on the dominant component (bending in y direction);
whereas small effect appears on the torsional component.

In the third mode, Fig. 15, we can see that the warping
component dominates. In particular, warping lowered
considerably the torsional component and less the other
components. In the fourth mode, Fig. 16, the warping has
affects slightly the components of the mode. The general
conclusion is that the effect of the warping is more prominent
in the torsion component of the POD modes.

V.CONCLUSION

Using the Discrete Time-POD transform we processed
finite element numerical simulations of free motions of thin-
walled beams to find the interesting result that the motions are
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characterized by a small number of POD modes. For each
POD mode, interesting information on the coupling between
displacement and rotation fields is extracted. Because the
norms of the components of shapes of the POD modes
quantify the level of coupling between the fields, we used
them to examine the effect of warping on the coupled
dynamics. We found that warping has significant effect on the
POD modes in which the dominant motion is the torsion,
while is has less effect on the POD modes where the motion is
dominated by bending modes.
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Fig. 13 Effect of warping on the norms of the first POD mode shape,
the warping reduces the norms of the bending and the torsion
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Fig. 14 The effect of warping on the norms of the second POD mode
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Fig. 15 The effect of warping on the norms of the third POD mode
shape, the warping reduced the torsional motion
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Fig. 16 The effect of warping on the norms of the fourth POD mode
shape

Time proper orthogonal decomposition transform can be
used to process finite element simulations of high fidelity
models to characterize coupling in generic motions of thin-
walled beams of arbitrary cross-section.
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