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Exterior Calculus: Economic Profit Dynamics

Troy L. Story

Abstract—A mathematical model for the Dynamics of Economic Il. DIFFERENTIAL ONE-FORMS

Profit is constructed by proposing a characteriefiiterential one- 1o oyierior derivative of a scalar functibrin exterior
form for this dynamics (analogous to the actionHamiltonian

dynamics). After processing this form with exterdalculus, a pair of calculus (a differential one-forrdf ) is the same operation on
characteristic differential equations is generaded solved for the f as the exact differential of a scalar functiofi in
rate of change of profR as a function of revenu(t) and cosC (t).  conventional calculus (exact differentidf ); namely, the
By contracting the characteristic differential doem with a vortex operation represents an infinitesimal changef innduced by
vector, the Lagrangian is obtained for the DynanutsEconomic  gp arbitrary displacement of a point. Howe\dr,is already a
Profit. scalar, whereadf must be contracted with a tangent vector

Keywords—Differential geometry, exterior calculus, Hamiltani  ©© become a scalar. The ope.ratioln of c.ontracti(.m,ot.éd by
geometry, mathematical economics, economic funstiomnd df (v) thus removes the arbitrariness in the directibthe

dynamics displacement, where this direction is the samehas af the
tangent vectorv (tangent vectors and the exterior derivative
operator are denoted by boldface symbols and afduadl,
SING as a background a recent paper on the applicat respectively).
of exterior calculus to Economic Growth Dynamic$, [L  In this setting, consider an-dimensional differentiable
the present paper uses exterior calculus to symthesset of manifoldM with n local coordinates< . At every point ofM,
differential equations for the dynamics of EconorRirofit
PR, C, 1), whereR(t) is the revenueC(t) is the costand is  (a) there exists a basis set of tangent vecforsdx* } for an
the time. The differential equations produced arves for
the rate of change of price as a function of theemee and
cost. The following principle is used:

Mathematical models of dynamics employing exteriotb) there exists a basis set of differential onenﬁc){dxk} for
calculus are mathematical representations of thesanifying  an n-dimensional vector space of differential one-forni§
principle; namely, the description of a dynamictegs with a
characteristic differential one-form on an odd-diasienal
differentiable manifold leads, by analysis with eidr
calculus, to a set of differential equations antharacteristic The tangent bundléfM (=UTM,) and cotangent bundle

tangent vector which define transformations of shstem [2]. T*Mm (: UT*MX), where the cotangent spa®M, is the

The origin of this principle is Arnold’s [3] use differential
forms to define Hamiltonian geometry. dual of tangent spaceTM,, have the natural structure of a

The background for the mathematical structure fud tdifferential manifold of dimension r2with local coordinates

present mathematical model has been presentededdf@ 4, {Xk,dxk (v)} and {xk,d f (a/axk )} respectively. A
5]; however, for the convenience of the readerticecll
contains a discussion of differential forms, anehtin section
Ill, it is shown how differential one-forms are dse develop contraction dS(¢)=df (v), where¢ €T (T*Mx) ; hence,
a model for a dynamic system. With this preparatithe
model for dynamics on differential forms is applig¢d

|I. INTRODUCTION

n-dimensional vector space of tangent vecterdelonging to
tangent spaceTM, and

on tangent spacdM, .

differential one-form dS on T*M, is defined by the

Economic Profit dynamics in section IV. ds=df (Glaxk)dxk @)
The model allows computation of the rate of chaofjthe
profit P (R, C, t) as a function of the revenie(t) and the cost lll. DYNAMICS

C(t); these results are entirely dependent on theofighis

A A . In Arnold’s treatment [3] of Hamiltonian mechaniasd in
differential geometric approach.

the present case of economic profit as a dynamstesy, a
temporal coordinatex’ is introduced as an additional local

coordinate for M, TM andT*M, thereby changing

o o ) ) TM andT*M into odd-dimensional manifolds. As a result, an
Troy L. Story is with the Division of Science andaMematics,

Morehouse College, Atlanta, GA USA 30314-2773, émaiddditional termd f(9/0x°)dx° is added to (1), where
tstory@morehouse.edu
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df(6/8x°) is defined as a function of all rf2+1)

coordinates; henced f (8/8x°) describes the phase flow on

the extended cotangent bundle. Using for d f (8/8x")
and Qdx° for d f (8/8x°)dx°, the equation fodS becomes

dS=hdx* + Q(x°,.x" by ,...h, )dx’ )

39] B [89] a 0 @

:[Wﬁ_ﬁﬁ x°

The foregoing discussion leads to the following fp@ints:
first, contraction of dS with the vortex vectoR , gives

dS(R)=—b, (992/ b, )+ ®)

In Hamiltonian mechanicd, , andx’are represented by ynere dS(R) is the Lagrangian on extended tangent space

the momenta, Hamiltonian and time, respectively, fou the
example discussed in section 1V, other variabldsplay the
role of b, andx’, as well as ofSandx“. Hence, for the
remainder of this section the geometry of extengédse
space is presented in a general setting that ngtapplies to
Hamiltonian mechanics (which defines
geometric optics, irreversible thermodynamics, kldwle

this geometryf1

(xk,dxk/dxo,xo). Secondly, note that for (4), where the

exterior derivative of a characteristic differehtime-form is
contracted on a pair of tangent vectors and sealemuthe
unigue scalar zero, the analysis refers to vodbes which do
ot end. For vortex tubes which end in an elemgntalume,

dw(€,m) is set equal to a unique scalar other than zero. A

dynamics, Navier-Stokes dynamics, and economic #rowprevious application [2] of the present model te #ource

dynamics, but also to Economic Profit dynamics.

dependent Maxwell equations illustrates the diffeee in

The general procedure begins by taking the exteriprocedure required for such vortex tubes.

derivative ofdS to get the following differential two-form:

dw = db_ A dx*
), [0 0N (3
g oe | an+

where w=dS. If x* and b, are to describe mappings of the
temporal coordinate’ onto the direction of the system phas

flow, then (a)x* and b, must be functions ofx’ alone and
(b) the following contraction must be satisfiedeaich point
(q( X x") of the transformation:

dw(&,m)=0 (4)

where the tangent vectd is given by

S

[dbk]i+[dxk] o 9 ©)

_ —_— _Jr_
dx®)ob,  |dx®)ax  ax°

and wheren is an arbitrary vectordw is a mapping of a pair
of vectors onto an oriented surface; if the conioac

These results lead to the following proposal fbphysical
processes assumed to proceed in a characteriséctidn.
Mathematical models of dynamics employing extecalculus
are mathematical representations of the same uogifyi
principle; namely, the description of a dynamictegs with a
characteristic differential one-form on an odd-disienal
manifold, leads by analysis with exterior calcutosa set of
differential equations and a vortex vector whichfirde
transformations of the systems.

e

IV. EcoNomIC PROFITDYAMICS ON A DIFFERENTIAL ONE-
Forwm

The principle described in sections Il and IIhsw applied
to Economic Profit dynamics. In analogy with Hawnilian
dynamics, the present investigation proposes aréffitial one-
form for Economic Profit dynamics on an odd-dimensil
differentiable manifold. It is then shown that thmse of
exterior calculus predicts a pair of differentiguations and a
characteristic tangent vector (the vortex vectooy this
dynamics. This pair of equations are solved far tate of
change of Economic Profit with respect to the rexeR (t)
and costC (t). By contracting the characteristic differential
one-form with the vortex vector, the Lagrangiaoliained for
Economic Profit dynamics.

dw(£,m)=0, then the mapping is defined only if the A. Differential one-form for Economic Profit dynamics;

coordinatesdh, / dx’ and dx* / dx° of ¢ have the values
dx /dx® =—(9/db,) and do /fdx’ =(0Q /ox*)  (6)

By substituting the coordinate values from (6) irff), the
vortex vectorR is obtained, as given by

Dynamics
Using as a starting point the Omega funcigi ,C',t),

the differential one-form proposed for Economic fRro
dynamics is

dW, =R dC' +P(R,C',t)dt 9)
where Wy plays the role of the action in Hamiltonian
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mechanics, P(R,C‘,t) is the characteristic function (the

Omega function, e.g., the Hamiltonian), R is the revenue, Cis
the cost, and t isthetime. The variable R (t) (compare to
momentum in Hamiltonian mechanics) is conjugate to the
“position”  variable C'(t), as indicated by the following
conditions for conjugacy:

(a)R =dW, (9/9C' ) = contraction of dW, with 9/0C’
()R =R (t) and C = C(t) (10
(c)P=P(R.Ct)

Using the symbol w = dW, , the exterior derivative of dW, is

dw=dR AdC'
P, [oP oP (11)
_ [%]dc + ﬁ]olR +[5Jdt A dt

Following the procedure of Story ([1], [2], [4], and [5]),
consider the vectors g,neT(T*Mc),where T(T*MC> is

the tangent of the cotangent space at point C' on the manifold
and where vector ¢ and arbitrary vector n are

_[dR) 9 fac) 0 o
g_[olt]aa +[ dt]aci i (12)
n:BR%Hica%Jr% (13)

Employing the mapping dw:(€,m) — dw(€,n), note that this
mapping and the contraction

dw (&, n)=0 (14
are defined only it the coordinates @ and O:j—lj of ¢
have the values

‘ d
ac'__(op _R:+[6_P] 15
dt OR dt acC'

for arbitrary tangent vector v . These equations define the

relationship between coordinates [%—?,%,1] and coordinate

values [%,%,1} for tangent vector ¢ at each point of the
transformation; hence, the arbitrariness in the coordinates of
¢ isremoved. The characteristic tangent vector obtained by

replacing the coordinatesfor ¢ from (12) with the coordinate

values defined by the two differential equations (15), is called
the vortex vector (section IVC). This vector gives the direction
(the vortex direction) of the system phase flow, with the vortex
lines (integral curves of the differential equations passing
through points of a closed curve) called the vortex tube.

B. Solutions
Focusing on the differential equation d—R:[E] note
dt oC'
that a positive time rate of revenue earned by selling a
. d _— . .
commodity, d—Fj>0 , implies an increase in the rate of

profit growth with respect to cost. The converse holds; namely,
dR

rr <0, impliesadecreasein the rate of profit growth with
respect to cost.
Focusing on the differential equation di: _| 9P , it
dt OR
is noted that an increase in the speed of production costs,
d‘%> 0, implies a decrease in rate of profit growth with
respect to revenue; conversely, a decrease in the speed of

production costs, dd%t <0, implies an increase in the rate of

profit growth with respect to revenue.
Consider the solutions to these characteristic differential

equations. Assuming [%] is constant over the time interval

of interest, the equation d—P‘ = [E] , has the solution
dt oC'

R = +[%]t+ constant of integration (16)

By plotting R vs t, astraight lineis predicted with a slope

[% ; thus, the rate of change of profit with respect to costs
can be computed from (R, t) data.
Following the same procedure for the eguation
di: — E , while assuming ﬁ is constant of thetime
dt OR OR
interval of interest, leads to the solution
C' = —[S—RP t+ constant of integration (17)
. . . ' oP
In this case the straight line predicts a dope of — ﬁ ;

hence, the rate of change of profit with respect to revenue can
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be computed from(Ci, t) data. Solutions in egns. (16 & 17)

therefore provide a quantitative measure of thditpgoowth,
based on observations of time rates of changeefahenue
and the production costs.

C. Vortex vector, Lagrangian

By substituting the coordinate values frorg(% = —[ oP ]

R
d_R:+[£]

and -
dt '

(18)

[ac' OR |oR JaC’ ot

ap] 0 [ap] o 0
This vector gives the direction of the system cleang
(R.C',t)-space, an extended cotangent space.

The Lagrangian of the system is obtained [2] bytiaxting
the characteristic differential one-fornd\W, with the vortex
vector R, giving for the Lagrangian,

8P]+p_+R[dCi

dw, (R)=-R R 3 (19)

|+

D. Integral Invariant of Economic Profit
Let ~, and ~, be two closed curves in a N2 1)-

dimensional manifold M ™
through points of~,

. The vortex lines passing
and ~, form a vortex tube for the

extended phase spac(aR ,C' ,t) with ~, —~, = do, where
o is a section of the vortex tube awd is the boundary of
o . The vortex lines ofv (= dW, ) on the extended phase

space give a one-to-one projection onto the axis. By
Stokes’ formula,

w— w= | w= | dw (20)
go-pe=le=]
However, according to egns. (15) it was shown ttat
equations
‘ d
' (op j:%ﬁ] 21)
dt OR dt oC'

arrive only whendw(£,m) = 0. Hence, the integral ofiw

po=g.

Eqn. (22) impliesw = dW, = R dC' + P(R,C',t)dtis an
integral invariant of Economic Profit Dynamics.

is zero, implying
(22)

V. CONCLUSION

The principle applied in this paper is identicalthe one
applied in other areas of Hamiltonian geometry (geiic
optics, thermodynamics, Black holes, classical
electromagnetism, classical string theory, Naviek8s
dynamics, and economic growth dynamics). By applyin
exterior calculus to economic profit dynamics, a& s
differential equations and a characteristic tangesdtor for
economic profit are constructed. Solution of theg@ations
gave rates of change of the profit with respeateienue and

into (12), the vortex vector is obtained ascost. Since a critical and quantitative means ohsugng

economic profit as a function of revenue and castan
extremely useful societal tool, it is expected ttiag results
presented here will focus more attention to thisaaiof
mathematical economics and to other applicationsthis
differential geometric model of dynamics.
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