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Abstract—This paper treats different aspects of entropy measure
in classical information theory and statistical quantum mechanics, it
presents the possibility of extending the definition of Von Neumann
entropy to image and array processing. In the first part, we generalize
the quantum entropy using singular values of arbitrary rectangular
matrices to measure the randomness and the quality of denoising
operation, this new definition of entropy can be implemented to
compare the performance analysis of filtering methods. In the second
part, we apply the concept of pure state in quantum formalism
to generalize the maximum entropy method for narrowband and
farfield source localization problem. Several computer simulation
results are illustrated to demonstrate the effectiveness of the proposed
techniques.

Keywords—Von Neumann entropy, Filtering, array, DoA,
Maximum Entropy Method.

I. INTRODUCTION

N communication theory, Shannon entropy [1] is statistical

measure that characterizes the uncertainty of information
source, it is logarithmic function of probability distribution
of source, when the signal transmitted is deterministic, the
entropy is null, in the other hand when the signal is random,
entropy is maximal, so there is total lack of information.
Shannon’s entropy is applied in image processing [2] to
measure the randomness in order to analyse the texture of
images. In quantum information theory, the statistical measure
of mixture of quantum systems uses Von Neumann entropy
[3], which the extended concept of Shannon entropy to the
quantum field, where it is based on eigenvalues of density
operators.

In this paper, we propose an extension of Von Neumann
entropy to several aspects of multidimensional signal
processing, in the following section we brievely present a
description of classical and quantum entropies, in the third
section, we apply the quantum entropy in filtering process
and in the last part we generalize the Maximum Entropy
Method (MEM) for narrowband and farfield punctual source
localization problem, using statistical processing of signals
received by an array of sensors.

II. CLASSICAL AND QUANTUM ENTROPIES
A. Classical Entropy

We consider a continuous random process x, Wwith
probability density function p(z), which takes values in an
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interval .J, using natural logarithm, the corresponding entropy
is defined by the following integral :

he(z) = — /J p() In p(a)da ()

this definition requires the convention 0ln0 = 0, for discrete
process x = {1, ..., zx } with discrete probability distribution
p(z;), the entropy is :

he(x) == pilnp; 2)

i>1

the function h.(z) represents a measure of uncertainty or
lack of information, for example if we know the value of
the second outcome p(x2) = 1 and p(x;) = 0 for ¢ # 2
then h.(x) = —1Ilnl = 0, this result means that we have
complete knowledge of the process z, in the other hand if all
the probabilties are equal p(z;) = 1/K, in this case we have
he(z) = InK and the entropy is maximal, in fact this result
can be obtained using Lagrange multipliers where we search
for maximum of function h.(z) subject to the constraint that
Zf( p(x;) = 1. This second example is rooted in statistical
mechanics where the considered system ( consisting of very
large number of particles) undergoes a process and reaches
the equilibrium when the entropy is maximal, the total energy
of the system is equipartitionned over all the constituents. For
random process x given by Gaussian distribution A/ (p, o) the
theoretical value [1] of the entropy is :

h(z) = f/Rp(x) Inp(z)de = % (1+In(2m0?)  (3)

he(z) is only dependent on variance o2. Similarely, for N
dimensional random process X € RY, the corresponding
probability density function [4] is:

1 _
p(X) = e—%(X—u)TF (X —p) )

\/Qﬂ'N‘F|

with |T'| is the determinant of covariance matrix I' = (X X7
which is symmetric and positive-definite and mean vector ;1 €
RY, the entropy is given by :

_ % (N +In ((2m)N 1)) 5)

To calculate h.(z) or h.(X), of discrete vector or
matrix respectively, requires the computation of normalized
histogram, therefore it is necessary to choose an adequate
number of bins. The above definitions are valid in signal
and arry processing fields, in quantum information theory, the
quantum entropy uses other mechanism that we present in the
next part.

he(X)
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B. Quantum Information Entropy

The quantum theory [3] is a generalization of classical
mechanics where the state of a system is described by space
phase. If we conisder N dimensional Hilbert space, the state
of system, in quantum information theory, is represented by
an ensemble of operators. For example, a quantum source is
described by state vector called ket |¥;) € CV*1 that contains
all the information of the system, as example the photon’s
polarization state. A density matrix of quantum system of
mixed state is a statistical set of all possible quantum states
with associated probilities \;, a density operator is given by
spectral decomposition :

N
p=> \i|W) (T 6)

i=1
where |¥;)" = (¥, and (.)* is the conjugate transpose

transformation, the states |¥;) are orthogonal (¥;|W¥;) = d;;
and the probabilties va Ai = 1, the Von Neumann entropy
[3] of mixed state is :

N
hqe(p) = — Z Ailn\; = =Tr(plnp) (7
i=1
The entropy of pure state is zero where the operator is
idempotent p? = p, while that of mixed state is always greater
than zero and becomes maximal h,(p) = In N when the
state is totally mixed (p = N~'Iy). Among the properties
of hg(p) is that it is invariant under unitary transformation,
for unitary matrix U € CN*N guch that UUT = In, we
have hy(UpU™) = hy(p). From this definition, we conclude
that the quantum entropy is dependent only on eigenvalues,
hq(p) is defined for square operators. If we want to extend this
concept into signal processing field, then the generalization
of hq(p) in (7) consists of using normalized singular values
instead of eigenvalues, with this proposition we can use the
quantum entropy to measure the randomness of arbitrary
rectangular matrix X € RY*¥ this mechanism is explained
in the following section.

III. QUANTUM ENTROPY AND FILTERING

In this part, we extend Von neuman entropy to image
processing using singular values, and we demonstrate the
advantage of this proposition. We begin by explainig the
Singular Value Decomposition (SVD), let us consider X €
RN*K unitary matrices U € RN*N,| VvV ¢ REXK and
diagonal matrix ¥ € RN*E verify X = UZVT, the
diagonal elements of X are the singular values >;; = s; for
i =1{1,..., N}, the "Quantum transformation” herein consists
of normalization \; = s;/ Ziv s;, where \; are interpreted as
probability coefficients such as va A; = 1, next the extended
Von Neumann entropy is :

N
he(X) = — Z il (8)

which is maximal if \; = 1/N. In image processing,
comparing two samples is usually done using Root Mean

Square Error (RMSE) because classical entropy is not
effective in this case, to clarify this idea let us take a
simple example of two matrices X; = [1,1;3,5] and
Xo = [3,3;7,9], classical entropy is the same for both
samples, h.(X1) = h.(X3) = 1.0397 although X; # Xo,
however if use the gantum extension in (8), we find that
he(X1) = 0.206 and h,(Xz) = 0.1648, this example
shows the advantage of using singular values. A second
example that we present is focused on measuring the
quality of filtering, for this purpose we consider a sample
X ¢ R?*0%272 ojven in Fig. | with corresponding Von
Neumann entropy h, = 3.1049, we progressively add a zero
mean Gaussian noise n where the noise standatd deviation o
is in the range [0.01,2] and the result Y = X + n for final
value 0 = 2 represents an ergodic state as shown in Fig.
2, each time we denoise Y using Generalized Wiener filter [5].

Fig. 1: Initial state.

Fig. 2: Final state.

During the processing, we measure the quantum entropies
of the additive noise hy(n), the noisy sample h,(Y") and
the recovered sample hq(Y), the obtained results are given
in Fig. 3, we realize that hy(n) =~ 5.40 is independent
of noise power and tends to In280, the function of noisy

sample h,(Y") converges to hy(n) and hy(Y') diverges slowly
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Fig. 3: Quantum entropy variations of four different matrices
with respect to noise power.

from original value hq(X), the gap between the entropy
functions of original and recovered samples is interpreted as
irreversibility of process. As conclusion of this section, Von
Neumann entropy can be implemented to measure the quality
of denoising process instead of RMSE.

Depending on the nature of input matrix X, interpreting

the result of quantum entropy h,(X) can have an ambiguity
relativeley to the classsical entropy h.(X), we treat two
examples to clarify this difference.
Let us consider an identity operator of dimension N such
as [IN]”' = J;j, this operator has two values Card(Iy) =
{0,1}, we compute the two associated entropies to show the
difference of interpretation, the normalized eigenvalues of Iy
are \; = 1/N and the quantum entropy is maximal :

N
ho(In) = =Y AilogA; =log N ©)
=1

In the other hand, the probabilites of inputs 0 and 1, in terms
of classical entropy, are :

1
1)=—
p(1) = &
(10)
N -1
p(0) = ~—
the classical entropy has the following expression :
2
. , (V-1
he(In) = — ;p(Z) log p(i) = log N' — “——"log(N — 1)
(11

Fig. 4 represents the variations of two metrics h.(Iy) and
hqe(In) with respect to the variation of dimension N.

We can remark that at N = 2, the two functions are equal
he(I2) = hg(Iy) = log2 and the interpretation of the state
of matrix is ambiguous because when the dimension /N tends
to infinity, the quantum entropy indicates that I represents
totally mixed state in terms of quantum mechanics. Contrary to
the classical entropy, the result of h.(Iy) is valid interpretation
because when the dimension is larger, the randomness of Iy

— — — Classical entropy
6l Quantum entropy
+ log(N)
5t
g4
e
& 3t
2t
1t
~ ~
0 e |
20 40 60 80 100

Dimension N

Fig. 4: Quantum and classical entropies of identity operator
I with varying dimension N.

is diminished which is expressed by the behavior of h.(Iy)
that tends to zero.

A counter example that we present is a class of constant square
matrices X € RV*Y defined as :

a ... a
X=|: - (12)
a ... a

where a is constant, in this cas we demonstrate that the
interpretation of the entropy result for both h.(X) and
he(X) are in agreement. For classical entropy, the input
matrix X is uniform as p(a) = 1 and the entropy is zero
he(X) = —p(a)logp(a) = 0. For quantum entropy, we use
the normalized eigenvalues, the spectrum of constant matrix
X is given by :

ox = [Na,01xn—-1] (13)

normalizing the spectrum ox yields to the spectrum
[1,01xn—1] that corresponds to null quantum entropy
he(X) = —1logl — (N —1)0log0 = 0, we remark in this
example that the results are in agreement.

In the next section we present another viewpoint of
maximum entropy principle in array processing, a field that
combines statistical signal processing, interferometry and wave
propagation.

IV. ARRAY PROCESSING AND MAXIMUM ENTROPY
PRINCIPLE

A. Signal Model

The aim of array processing is to characterize radiating
sources by analyzing the wavefield intercepted by array of
N antennas [6], it is mainly based on statistics of received
data subject to the geometry of the antenna and the nature of
emitting sources. In this part, we only focus on studying a
single parameter which is the angular positions of punctual
sources located in large distance relatively to the array as
illustrated in Fig. 5.
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Fig. 5: Two dimensional propagation model, three punctual
sources imping on linear array of sensors in horizontal plane.

After a period 7' of data acquisition, if there were P
sources that were impinging, such that P < N, then after
downconversion into digital form, the received signals at
instant ¢ are given by:

x(t) = A(0)s(t) + n(t) (14)

where x(t) € CV*1, A(9) € CNXP is the steering matrix
that depends on the geometry of the array, s(t) € CF*! is
the vector of complex envelopes of radiating sources and
n(t) € CNV*! is zero mean and complex random process due
to thermal noise and interefences between the waves during
the propagation. A simple configuration of the antenna is the
Uniform Linear Array (ULA) where the steering matrix has
Vandermonde structure A(6) = [a(61), ..., a(fp)] with vector
a(0;) = [1,e7m, .. e dN=Dm:]" " the spatial frequencies
are p; = 2mwdsin (092-)/\*1 with d being the inter-element
distance between sensors and 6; is the i*" Direction of Arrival
(DoA). A is the wavelength of incoming waves where we
suppose that all sources have the same carrier frequency
f = cA™! with ¢ is the speed of phase.

In (9) we suppose that the signal sources s(t) are slowly
varying envelopes relatively to the carrier waves, and the
distance d must be less or equal to half the wavelength since
the spatial frequency is bounded by —7m < p; < m. The
analysis of random matrix X € CN*¥ is usually done using
second order statistics {(x(t)zT(t)), indeed, the theoretical
expression of covariance matrix is :

ZX HXT(t
(15)

Only an estimate of I" is obtained because of finite number of
samples K, T'ss = (ss™) is the correlation matrix of symbols
s(t) and T\, = o¢%Iy is covariance matrix of noise n(t)
which is uncorrelated between the sensors and statistically

independent of s(t) with same variance 2.

I'= (z(t)z™(t)) = Kl_l)r_rgoo

= AT, AT+T,

Let us consider an N dimensional Hilbert space, based on
the fact that data is a combination of signal plus noise, the
spectral decomposition of I' contains two subspaces (signal
and noise), the decomposition is given by :

r= ZA ) ul\—ZA ) (ui] + Z Aj |uy) (ujl

j=P+1

(16)
\; is the eigenvalue that corresponds to the i*" eigenvector
|u;) € CN*1 in compact form we have T' = UAU" where
U is unitary matrix and A is diagonal matrix. The eigenspace
is written as U = [U,,U,] with U, € CN*F is the signal
subspace and U,, € CV*N=F i noise subspace. Following
this partition, the projectors into both subspaces are P; =
U US and Ps = U,U, where they form a complete base
P+ P, =Iy.

As mentionned earlier, we only search for angular positions
of punctual emitters, thus we have to use the expression of
steering matrix in (9) and choose a range of scan 2 =
[Omin, Omaz), if we consider a steering vector a(6) with 6 € (Q,
we have :

0 If 6 is DoA
_ ot -
f(0) =a"(0)Pra(0) = { #0  Otherwise

After assembling all the values for 6, we obtain an angular
spectrum f(0) = (a™(0)P,a())” " whose indexes of highest
peaks represent the estimated DoAs. The subspace U, is
extracted from U based on the clustering of eigenvalues \; into
two sets where noise eigenvalues \; ~ o2, this mechanism is
known as Multiple Signal Classification (MUSIC) [6]. Among
other techniques of localization is the Maximum Enropy
Method which we generalize in the next section.

a7

B. Generalized Maximum Entropy Method

In narrowband localization problem, the Maximum Entropy
Method (MEM) [7] gives accurate results when the carried
signals s(t) are ergodic and complex random processes, which
is the model of cosmic sources, this technique is based
on an optimization problem where we search for a vector
which minimizes the output power of the array subject to the
constraint that at least one element of solution vector equals
one :

Min{a"Ta} Subject to a®e; =1 (18)

e; is the i*" column of identity matrix, the Lagrangian of this
problem is given by:

L(a,\) =a™Ta— X1 —ate;) (19)

A minimum of the above function is reached when the first

order derivative is zero dL(a,\)/0a = 0, the covariance

matrix I" is Hermitian (I'" = I') which yields to 2I'a — \e; =
0, using the constraint, the solution is given by :

F_lei 1

a=——=0oal" "¢ 20

1, i (20)

where « is a constant, the MEM matrix is given by the

relation P; = aat = T'"!e;el T~ which is dyadic operator
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constructed from i*" column of inverse of covariance matrix.
If the localization problem is two dimensional (azimuth ¢
and elevation ¢), P; is of rank one and may present some
deviations [7] in locating highest peaks, therefore we propose
a Generalized MEM (G-MEM) which is full rank operator.

The idea is to sum over all possible operators P; for
i = {1,...,N} after transforming them into projectors, P;
contains a single non zero eigenvalue g as 1Tr(P;) = [,
using the definition of density matrix of pure state in quantum
mechanics, we have :

P

P = 21
Pi= 7)) 21
pi is projector such that Vn € N, p' = p;, the Von Neumann
entropy becomes h(p;) = _Zﬁ\; Ailn);, = —1Inl1 = 0,
finally the generalized operator is given by :
N N p
= p = Z 22
VI e @

rank{Q} = N, the corresponding eigenvalues are given in
ascending order {A\; ~ Ao~ ...~ Ap < Apj1 < ... <Ay},
the advantage of the generalized operator’s spectrum is that
signal eigenvalues are attenuated or “annihilated”. To evaluate
the performance of G-MEM we present in the next section a
comparative study.

C. Results and Discussion

In this section, we conduct several computer simulations

to evaluate the resolution power of the operator @), for all
tests we consider a uniform array of N = 20 identical and
isotropic sensors separated by half the wavelength, Rayleigh
limit angular resolution of this array is Ogppw =~ 6°, we
suppose that P = 2 far field and narrowband punctual sources
are impinging from azimuths ¢; = 13° and 03 = 15° in
the same horizontal plan with the array, which means that
the elevation angles are p; = @2 = m/2. The sources are
equipowered 0; = o2 = 1 watt, and transmit random BPSK
symbols. The number of samples is set to K = 60 snapshots.
In the first test, we compute the average of L = 100 Monte
Carlo trials of G-MEM operator where SNR = 5dB, the
result is given in Fig. 6.
We remark that the localization function is of high resolution
as given in the magnified plot where the two sources are
separated, with no sidelobes in other directions. To evaluate
G-MEM comparatively to other spectra, we choose five
different subspace operators which are MUSIC projector,
Orthonormal Propagator [8], Ermolaev-Gershman [9] and
Minimum Norm [6]-[9] operators, for each value of SNR
we calculate the average of L = 100 trials of RMSE between
true and estimated DoAs, the results are given in Fig. 7.

In the range [—5dB,5dB], MUSIC projector gives most
accurate results, the performance of Minimum Norm and
Ermolaev-Gershman is almost the same, G-MEM function
comes in the fourth position and Orthogonal Propagator has
the height incertainty. Staring from 10dB, the quadratic errors

Localization function f(0)

—50 0 5‘0

0[]
Fig. 6: Average of 100 realizations of G-MEM localization
function with N = 20, K = 60, § = [13°,15°], d = \/2 and
SNR = bdB.

10 T T
— — — MUSIC
© - Ermolaev-Gershman
——+—— Propagator-Ortho
101 Q - Minimum norm
N
% 10°
=
[
4 .
10 F £
107 :
-5 0 5 10 15 20
SNR [dB]

Fig. 7: Average of 100 realizations of RMSE for each DoA
operator with N = 20, K = 60, ¢ = [13°,15°] and d = \/2.

of all operators are almost equivalent in this configuration.

In the last test, we measure the resolution of the G-MEM
localization function comparatively to MEM operator in the
presence of spatially correlated noise, we choose the noise
spectral matrix I', by the following [10] :

o2ple—vleim(z=y)/2

where k is the spatial correlation length and o2 is the noise
power. Using the same configuration and anntennas-sources as
in the previous test, Fig. 8 represents the results of G-MEM
and MEM localization functions where the index of MEM
operator is 1 and the parameters of correlated noise are o2 = 1,
p=04and k =6.

Fig. 9 represents the absolute value of noise spectral matrix
Ty.

The effet of spatially non uniform noise is present in both
angular functions at —30° approximately and the DoAs are
detected with different magnitudes.
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Fig. 8: G-MEM and MEM localization functions in the
presence of colored noise with N = 20, K = 60, § =
[13°,15°], d = )\/2, 02 =1,p=0.4 and k = 6

number of sensors

5 10 15 20
number of sensors

Fig. 9: Absolute value of operator I', configured with
parameters N =20, 02 =1, p=0.4 and k = 6.

V. CONCLUSION

The quantum entropy is a generalization of Shannon
information entropy, in this paper, we have proposed the
application of quantum version of entropy in image and array
processing fields. To measure the quality of filtering operation,
we have extended Von Neumann entropy using singular values.
Concerning the narrowband source localization problem, we
have generalized the maximum entropy method into a full rank
attenuator operator of signal subspace generated by radiating
sources. Monte Carlo simulation results proved the accuracy
of the proposed methods.
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