
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:5, 2018

302

Extending BDI Multiagent Systems with Agent
Norms

Francisco José Plácido da Cunha, Tassio Ferenzini Martins Sirqueira, Marx Leles Viana and Carlos José Pereira

de Lucena

Abstract—Open Multiagent Systems (MASs) are societies in
which heterogeneous and independently designed entities (agents)
work towards similar, or different ends. Software agents are
autonomous and the diversity of interests among different members
living in the same society is a fact. In order to deal with this
autonomy, these open systems use mechanisms of social control
(norms) to ensure a desirable social order. This paper considers the
following types of norms: (i) obligation — agents must accomplish
a specific outcome; (ii) permission — agents may act in a particular
way, and (iii) prohibition — agents must not act in a specific way. All
of these characteristics mean to encourage the fulfillment of norms
through rewards and to discourage norm violation by pointing out the
punishments. Once the software agent decides that its priority is the
satisfaction of its own desires and goals, each agent must evaluate
the effects associated to the fulfillment of one or more norms before
choosing which one should be fulfilled. The same applies when agents
decide to violate a norm. This paper also introduces a framework
for the development of MASs that provide support mechanisms
to the agent’s decision-making, using norm-based reasoning. The
applicability and validation of this approach is demonstrated applying
a traffic intersection scenario.

Keywords—BDI aAgent, BDI4JADE framework, multiagent
system, normative agents.

I. INTRODUCTION

MULTIAGENT systems are societies in which

autonomous, heterogeneous and independently

designed entities can work toward similar or different goals

[1]. In order to deal with this autonomy and the diversity of

interests among the different members, those open systems

provide norms, which are mechanisms of social control to

ensure a desirable social order [1]. Such mechanisms regulate

the behavior of the agents by defining permission, obligation

and prohibition [2]. Moreover, agents may be encouraged to

fulfill a norm by obtaining rewards while being discouraged

to violate it by receiving punishments [3]. Although norms

are promising mechanisms to regulate an agent’s behavior,

the agent’s autonomy might generate circumstances in which

rather than fulfill the norm, the agent would prefer to violate

it in order to reach a private goal that it considers to be more

important. Within this context, new features were added to

Francisco José Plácido da Cunha is with the Software Engineering
Lab of Pontifical Catholic University of Rio de Janeiro, Brazil (e-mail:
fcunha@inf.puc-rio.br).

Tassio Ferenzini Martins Sirqueira is with the Software Engineering
Lab of Pontifical Catholic University of Rio de Janeiro, Brazil (e-mail:
tmartins@inf.puc-rio.br).

Marx Leles Viana is with the Software Engineering Lab of Pontifical
Catholic University of Rio de Janeiro, Brazil (e-mail: mviana@inf.puc-rio.br).

Carlos José Pereira de Lucena is with the Software Engineering
Lab of Pontifical Catholic University of Rio de Janeiro, Brazil (e-mail:
lucena@inf.puc-rio.br).

the BDI4JADE Framework [4] aiming to support normative

reasoning, i.e., to build agents that are able to deal with

desires and norms.

The original BDI4JADE Framework provides support

only to the implementation of BDI agents and not

the implementation of mechanisms that support normative

functions. By using the proposed new features, it is possible

to build BDI agents that are able to check if a norm should be

adopted, or not. In addition, these new features evaluate the

agent’s desires and the effects of the fulfillment, or violation,

of the norm. Lastly, it is possible to detect and solve conflicts

among norms, and select desires and plans according to the

agent’s choice, i.e., whether the agent decides to fulfill a norm

or not. The architectural support of this approach is provided

by the NBDI (norm-belief-desire-intention) architecture [5],

which extends the BDI (belief-desire-intention) architecture

[6] by including norms-related functions to support normative

reasoning. A traffic intersection scenario as well as the issues

related to norms adoption, evaluation, and compliance are used

to show the applicability of the new features.

The paper is structured as follows. Section II focuses on

the norms’ background; presents the BDI4JADE framework,

and offers an overview of the NBDI architecture. Section III

presents related work. Section IV presents the NBDI4JADE

architecture and details its implementation. Section V presents

a usage scenario about traffic intersection norms in Brazil.

Finally, Section VI shows the paper’s conclusion and future

work.

II. BACKGROUND

This section summarizes the basic notions that will be used

throughout this document, which aims to present the basic

concepts about norms and their use in multiagent systems.

The BDI4JADE framework and the NBDI architecture, which

contribute to this work, are also presented.

A. Norms and Normative Multiagent Systems

Norms are informal rules that are socially enforced and

represent an expected behavior towards a specific situation [7].

In the context of multiagent systems, norms are mechanisms

commonly accepted as efficient means capable of regulating

agent behavior and represent the way in which agents

understand the responsibilities of other agents [8], [1]. Thus,

agents work believing that other agents will behave according

to the settled norms. Norms, however, are mainly mechanisms

that enable agents to demand that other agents behave in

a certain way [9]. In addition, norms define permission,



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:5, 2018

303

obligation, or prohibition regarding the agents’ behavior.

Norms may be kept in place for different periods of time,

i.e., either while the agent remains in the society or only for

a short period of time, until the social goal has been fulfilled

[10].

According to Mahmoud et al. [11], the literature suggests

three different kinds of norms for normative multiagent

systems [12] such as: (i) regulative norms which specify

the behavior of a system by using obligations, prohibitions,

and permissions [12]; (ii) constitutive norms which, besides

regulating their own behavior can also create new norms

derived from other existing norms [13]-[15]; (iii) procedural
norms which are addressed to the agents in the normative

system in order to regulate the behavior [16].

The definition of the norms used in this work [3]

is represented by the following properties: Addressees,

Condition (for example, Activation, Expiration), Motivation

(for example, Rewards, Punishments), Deontic Concept, and

States. The description of each property is given below: (i)

Addressee is used to specify the agents or roles responsible

for norm compliance; (ii) Activation is the condition for the

norm to become active; (iii) Expiration is the validity condition

for the norm to become inactive; (iv) Rewards is used to

represent the set of rewards to be given to the agent for norm

compliance; (v) Punishments is the set of punishments to be

given to the agent for violating a norm; (vi) Deontic Concept is

used to indicate whether the norm establishes an obligation, a

permission, or a prohibition, and (vii) State is used to describe

the set of states or actions that are being regulated.

Normative systems are widely discussed as a mechanism

to regulate software agents [17]. Such systems are a

set of constraints on the agents’ behavior. By imposing

these constraints, the intention is to enforce a social

behavior. Normative systems are an important issue associated

with software compliance. Norms are important whenever

non-compliance is accidental (e.g., a message fails and

some participants are not informed about the regulations).

Alternatively, non-compliance may be deliberately rational

(e.g., a participant chooses to ignore the norms because it does

not see them as being in its own best interests), or deliberately

irrational [18]. Furthermore, norms are important because they

help shed light on the interaction of autonomous agents with

one another and on how to control agent access to autonomous

components [19].

B. The BDI4JADE Framework

BDI4JADE [4] is a framework based on the Java language

that gives support to the development and implementation

of Belief, Desire and Intention (BDI) agents – one of the

widely known architectures for designing and implementing

cognitive agents – and its implementation is a layer on top of

the JADE platform [20], which provides a robust infrastructure

to implement agents but does not support the BDI architecture.

Other BDI platforms based on the Java language, such as

Jason [21], JACK [22], Jadex [23], and the 3APL Platform [24]

have their agents implemented by using new programming

languages – AgentSpeak(L) [25], JACK Agent Language [26],

a Domain-specific Language (DSL) written in XML, and

3APL [27], respectively. This was the motivation behind the

creation of the BDI4JADE Framework.

C. The NBDI Architecture

The NBDI architecture [5] extends the BDI architecture

[6] by including norms-related functions to support normative

reasoning. Moreover, norms are considered a primary concept

that influences the agent’s decision while reasoning about its

beliefs, desires and intentions. The extension of the NBDI

architecture added three new components: (i) Belief + Norm

Review Function; (ii) Norm Selection Function, and (iii) Norm

Filter (Fig. 1).

The Belief + Norm Review Function helps the agent to

recognize its responsibilities towards other agents by adopting

new norms that specify such responsibilities. In addition, it

helps the agent to update the activated and adopted norms.

This function consists of two tasks: (i) verifying the adopted

norms and (ii) updating the norms. The first task checks if a

new norm unifies with one of the norms already adopted, i.e.,

if the new norm already exists in the agent’s belief base. This

task further verifies if the agent is the addressee of the norm.

Lastly, the first task updates the set of adopted norms in the

agent’s belief base if the new norm does not exist and the agent

is the addressee of the norm. The second task updates the set

of activated norms by evaluating the activation and expiration

conditions and changing the status of the norm to “activated”

or “deactivated”.

The Norm Selection Function aims at selecting the norms

that the agent has the intention to fulfill. To this end, this

function first evaluates the status of the norms, the rewards,

punishments and consequences and then, it detects and solves

possible conflicts among the different norms that can be

adopted.

Finally, the Norm Filter is responsible for discarding any

intention that does not bring benefits to the agent, retaining

intentions that are still expected and adopting new intentions.

This function modifies the original BDI Filter Function, adding

two additional steps: (i) selecting desires – this task selects

the desires that will become intentions, taking into account

the norms the agent wants to fulfill, and (ii) selecting plans –

this task selects plans that are also influenced by the norms

and will make the agents achieve their intentions.

III. RELATED WORK

In the architecture of normative multiagent systems,

the literature offers some research on normative systems.

Following are some frameworks and their description.

BOID Normative Architecture: Broersen et al. proposed in

this work, an architecture with an obligation component – the

belief, obligation, intention, and desire (BOID) architecture.

Such architecture adds an obligation component to the

traditional BDI architecture and uses logical criteria to deal

with the attitudes of the agent, with the changing environment

and to resolve conflicts by according to the agent type.

However, this approach does not address the danger of



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:5, 2018

304

Fig. 1 BDI Architecture + NBDI Architecture

mandatory norms that may interpose the agent’s autonomy

[28].

BIO Normative Architecture: in this approach, Governatori

and Rotolo proposed an architecture which considers the

beliefs, intentions, and obligations as components. As well as

the BOID architecture, BIO describes agents and their types

in defeasible logic [29].

The OP-RND Normative Framework: this approach

proposed a normative agent framework to regulate rules

and norms effectively, the OP-RND framework. Their agents

execute tasks based on pre-compiled tasks that considers their

beliefs of the reward and penalty. Obligation and prohibition

(OP) are rules imposed [30].

Boela et al. proposed an architecture of normative agents

that uses deontic logic and is an extension of the work [31],

specifying illegal behavior that an agent can carry out and its

consequences [15].

IV. NBDI4JADE - A FRAMEWORK TO BUILD NORMATIVE

AGENT

This section describes the main concepts of the proposed

NBDI4JADE framework, providing an overview and

discussing the different components that were changed,

or added to the BDI4JADE framework, in order to allow

NBDI4JADE to handle normative agents and to follow the

concepts of the NBDI architecture. Furthermore, this section

presents the NBDI4JADE class diagram and highlights details

about its kernel (frozen-spots) and flexible points (hot-spots)

[32].

A. The NBDI4JADE Framework

The NBDI4JADE framework supports the creation of

simulations that show the impact of norms in multiagent

systems. As such, NBDI4JADE enables the implementation

of normative agents, allowing it to build complex multiagent

systems and high-level abstraction.

To ensure a high-level abstraction, the NBDI4JADE

framework was designed as a layer on top of other existing

technologies, as shown in Fig. 2. NBDI4JADE was built as

an extension of the BDI4JADE framework, which is a BDI

framework but does not support the norms concept. The design

of NBDI4JADE considered the NBDI architecture, which

presents, conceptually, the extension points and the changes

needed in the BDI architecture in order to support normative

reasoning agents. BDI4JADE, in turn, is a layer on top of the

JADE framework, which provides a robust infra-structure to

implement agents, but does not follow the BDI architecture.

Fig. 2 The NBDI4JADE Architecture

B. Details of the NBDI4JADE Framework

The implementation of the NBDI4JADE framework aims

at supporting the development of BDI agents capable of

reasoning about their beliefs, desires and intentions, taking

norms into consideration. As such, the original components

used in the reasoning cycle of the BDI4JADE agent, which is

based on the BDI-interpreter algorithm presented in [6] were

modified. The reasoning cycle is implemented in six major

steps and each step is considered a component.

1) Revising beliefs: the first step consists of revising the

agent’s beliefs. This component was modified to enable

agents to recognize their responsibilities towards other

agents by adopting norms.

2) Removing finished goals: this step consists of removing

goals that might have been “finished”, i.e. the goals (i)

may have been achieved, (ii) are no longer desired, or

(iii) are considered unachievable. (This component was

not modified.)

3) Generating options: in this step, are determined the goals

(desires) that are available to the agent. This step is

responsible for generate new desired goals; establish



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:5, 2018

305

goals that are no longer desired, or preserve those goals

that are still desired. This component was changed to

generate options that take into account the norms of the

environment.

4) Removing dropped goals: when a goal, or set of goals, is

no longer considered desirable in the previous step, it is

removed from the agent’s set of goals and the observers

are notified about this occurrence (This component was

not modified.)

5) Deliberating goals: in this step, the current agent goals

are partitioned into two subsets (i) goals to be achieved

(intentions) and (ii) goals that are not achieved. The

latter will remain an agent’s desire, but the agent is not

committed to achieve it at the moment. (This component

was changed to consider the norms in the agent’s

belief base and to select plans that take the norms into

account.)

6) Updating goals status: based on the partition performed

in the previous step, the status of the goals is updated.

Selected goals are updated to the “trying to achieve”

status, and unselected goals are updated to the “waiting”

status. When a goal has the “trying to achieve” status,

the agent will select plans in order to achieve that goal.

(This component was not modified.)

Figs. 3-5 were designed using UML to demonstrate the

changes that have been made to extend the BDI4JADE

framework to deal with the norms concept. The red color

indicates classes that already existed in BDI4JADE and were

modified. The blue color indicates the new classes that were

added to represent the norms concept. The gray color is that of

those classes that did not suffer any changes in the deliberative

process.
Fig. 3 shows the new DefaultBeliefNormRevisionStrategy

class that extends the DefaultBeliefRevisionStrategy class and

adds the reviewNorms method. In addition, an interface to

manage the DefaultBeliefNormRevisionStrategy class as well

as two new classes to deal with the norms concept were added:

(i) the Norm class, representing the structure of the basic

concepts of a norm and (ii) the NormBase class, representing

the set of norms of the system with their respective methods

of manipulation.
Fig. 4 shows the changes in the deliberative goals

function of the agent’s reasoning cycle. As such, the

agent’s deliberative process considers the adoption of norms

regarding its actions. The main changes occurred in the

DefaultAgentDeliberationFunction class, which has received

new methods to select goals, plans and filters that will consider

the use of norms and their priorities.
Fig. 5 represents the intentional generation Function and the

agent’s plan to achieve its goals. The change in the BeliefBase
class propagates to the Capability class and to the options

generation class and agent selection plans. This change was

a reflex of the new classes – Norm and NormBase – and

it adds norms into the agent’s reasoning cycle. As a result,

the agent can decide whether to fulfill the norms or not by

taking into account the norm’s punishments and rewards. The

goals generation and the plans selection functions take into

account the concept of norm, which does not restrict the

agent’s autonomy. Therefore, the agent is now able to reason

about the norms addressed to it. Such process is important

when we consider normative conflicts.

C. Hot-Spots and Frozen-Spots

Frameworks are generators of applications that are directly

related to a specific domain [33]. This work proposes a

framework whose domain is the development of normative

agents.

Since frameworks are designed to generate complete

applications, there must be flexible points that are customized

to solve a particular problem. The initial proposed flexible

point is restricted to the strategy used to deal with norms.

According to their goals, agents can adopt a pressured, a

rebellious or a social strategy in their decision-making process.

Some features of the framework are present in all

applications in the domain. These immutable points constitute

the core of a framework and are called fixed points

(frozen-spots). The core is unchangeable and is also an

ever-present part of every domain instance. However, there are

also flexible parts in a framework providing extensible points

(hot-spots) that are customized by developers. The hot-spots

specifically defined by NBDI4JADE are:

1) DefaultBeliefNormRevisionStrategy: it invokes the

NormRevisionStrategy.reviewNorms() method for the

norms base of all agents;

2) DefaultAgentOptionGenerationFunction: it returns the

current set of goals but takes into consideration the

norms in place in the environment;

3) DefaultAgentDeliberationFunction: it returns the whole

set of goal, i.e., all goals will go to a “trying to achieve”

state without violating the norms;

4) DefaultAgentPlanSelectionStrategy: it returns null if the

set of plans is empty, and the first plan retrieved from

the set, otherwise, always respecting the norms imposed

on the agent;

NBDI4JADE provides a default implementation for each

one of these strategies and the hot-spots of BDI4JADE are

maintained.

The frozen-spots of NBDI4JADE are:

1) NormBase: it is the class that carries the methods for

norm manipulation, i.e., it manages the environment’s

existing and active norms;

All fixed points (frozen-spots) of the BDI4JADE were

maintained.

V. USAGE SCENARIO: TRAFFIC INTERSECTION NORMS IN

BRAZIL

The number of cars is continuously growing in Brazil. The

large increase in the Brazilian fleet brought the number of

cars to one car for every 4.4 inhabitants, i.e., it is estimated

that there are approximately 45.4 million private vehicles in

Brazil. Ten years ago, the proportion was 7.4 inhabitants per

vehicle [9]. With the increase in the number of vehicles on the

streets and the arrival of autonomous cars, the need arose to

create systems capable of assisting both traffic experts as well



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:5, 2018

306

Fig. 3 Revision Norms and Beliefs Function

Fig. 4 Deliberative Goals Function

as autonomous driver agents to better deal with unexpected

situations in day-to-day traffic. The right of way rules at

traffic intersections, for example, are difficult to follow at

uncontrolled intersections, i.e., intersections without signs.

Therefore, there are serious consequences when those rules

are violated. An intersection is a junction where two or more

roads meet, or cross.

According to data from the Brazilian Federal Highway

Patrol [9], the main causes of fatal accidents in 2016

were, among others: lack of attention (30.8%); high speed

(21.9%); alcohol consumption (15.6%); disregard for signs

(10%); reckless overtaking (9.3%); and sleep (6.7%). In

addition, 60% of these car accidents occurred at uncontrolled

intersection. According to the Brazilian Transit Code (BTC),

Article 29, the right of way rules for vehicles arriving at an

uncontrolled intersection are: (i) Norm1: vehicles moving on

main thoroughfares have the preference; (ii) Norm2: in the

case of a traffic circle, the ones circulating around it have

the preference, and (iii) Norm3: in all other cases, vehicles

coming from the right have the preference. In addition, Article
38, states that before making a right or left turn, or merging

into traffic, the driver must, as per its Sole paragraph, yield to

oncoming pedestrians, cyclists and vehicles, always respecting

the norms of preference described in article 29.

The NBDI4JADE framework can simulate and assist in the

planning of risk situations at uncontrolled intersections. For

example, in order to avoid accidents, a simulation can be

used to study the different strategies that can be adopted by



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:5, 2018

307

Fig. 5 Plan Generation Function

normative autonomous car agents.

A. Overview

The simulation consists of autonomous cars, highways,

traffic circles, and traffic intersections, respectively, as shown

in Fig. 6. The goal of the autonomous cars is to arrive

at their destination without accidents. To achieve this goal,

the autonomous car agent must be restricted by norms, but

due to its autonomy, the agent may decide whether to fulfill

these norms or not. Such simulations are, in fact, normative

multiagent systems that receive data with the following

information: (i) different types of traffic intersections, (ii)

autonomous car agents, (iii) norms to be followed by the

autonomous car agents, and (iv) different traffic scenarios.

Simulations allow autonomous cars to find different solutions

to prevent accidents at intersections.

To deal with these scenarios and understand the norms

applied to each scenario, the autonomous car agents have: (i)

a set of goals that is connected directly to their individual

satisfaction; (ii) a knowledge base collected by the simulation

environment to help characterize traffic risk; and (iii) a set of

strategies used to deal with the norms.

Fig. 7 presents the following scenario: three cars arrive at

an intersection at the same time. The agents’ goals are: (i) The

PINK autonomous car wants to proceed on street 1 and will

have to cross street 2 in order to do so; (ii) The YELLOW
autonomous car wants to proceed on street 2 and will have

to cross street 1, and (iii) The RED autonomous car is on

street 1 and wants to turn left onto street 2. However, there
are no traffic signs and the agents need to be able to make

decisions to avoid collision among the cars, taking into account

the Brazilian traffic rules.

As previously mentioned, articles 29 and 38 of the BTC

deal with the right of way rules at intersections. However,

neither Norm1 nor Norm2 of article 29 can be applied in this

scenario. To solve this situation, the autonomous car agents

need to decide whether they will fulfill or violate Norm3 of

article 29. This scenario considers that all autonomous car



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:5, 2018

308

Fig. 6 Brazilian rules of preference at intersections

Fig. 7 Traffic Intersection rules in Brazil

agents fulfilled all the norms. The agents’ internal reasoning

was built by using the NBDI4JADE framework and it is

described below as if the agents had fulfilled Norm3:

• The PINK autonomous car agent arrived at the

intersection and stopped be-cause the YELLOW car is

on its right;

• The YELLOW autonomous car agent arrived at the

intersection and stopped because the RED car is on its

right;

• The RED autonomous car agent arrived at the intersection

and there is no car on its right, therefore, the agent’s

reasoning cannot use article 29. To decide what to do,

the agent needs to use article 38.

However, the Brazilian Transit Code (BTC) does not cover

this situation, which creates an impasse. As such, we need

to improve the agent’s reasoning process in order to deal

with this issue. Sometimes, the analysis of the BTC articles

mentioned above will not be enough to allow the agent to make

a decision. Consequently, it is necessary to consider different

types of strategies that can be adopted by the agents to deal

with the norms. For instance, in the scenario presented in

Table I: (i) the PINK autonomous car agent adopts a pressured
strategy, i.e., it fulfills the norms to achieve its individual

goals, considering only the punishments that it will suffer;

TABLE I Strategies adopted by the autonomous car agents.

Strategies PINK YELLOW RED

Pressured X

Rebellious X

Social X

(ii) the YELLOW autonomous car agent adopts a rebellious
strategy, i.e., it considers only their individual goals and

violates all of the environment’s norms, and (iii) the RED

autonomous car agent adopts a social strategy, i.e., it complies

with the norms and then verifies if it is possible to fulfill

some of its individual goals. As a result, the PINK and RED

autonomous car agents give the preference to the YELLOW

autonomous car agent, which in turn accepts it because its

rebellious strategy encourages this agent to go ahead.

VI. CONCLUSION AND FUTURE WORK

This paper presents an initial architecture of an artificial

agent that is able to make decisions by normative reasoning.

The architecture is based on a NBDI architecture and

BDI4JADE framework and was applied by modeling the traffic



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:5, 2018

309

intersection rules in Brazil. The autonomous car agents make

decisions about whether to continue or give the right of way by

examining and reasoning about the norms of the environment

and the presence, or absence, of any car near it.

As future work, this research aims to study how the concept

of tests can be applied to verify normative systems. When

agents start their decision making process, their decisions can

lead to the violation of norms defined in the environment. An

extension of the proposed architecture can be created to test

normative MASs, allowing the extension to check potential

occurrences of such violations. Can these violations modify the
agent’s goals? Can we track and record the agent’s actions?
Which types of tests should be developed to check the potential
occurrences of violations? What happens to an environment
when an agent violates a norm? This research intends to

answer these questions in future work. Last but not least,

these tests will be applied in different usage scenarios, in order

to evaluate norms violation based on the analysis of agents’

behavior, thus understanding, to understand the fulfillment of

the agent’s internal goals.

ACKNOWLEDGMENT

This work has been supported by the Laboratory of Software

Engineering (LES) at Pontifical Catholic University of Rio de

Janeiro. Our thanks to CNPq and PUC-Rio for their support

through scholarships and fellowships. Francisco José Plácido

da Cunha also thanks Tecgraf Institute for their financial

support. Tassio Ferenzini Martins Sirqueira and Marx Leles

Viana thank Vianna Junior Institute for funding this work.

REFERENCES

[1] F. L. y López, “Social power and norms: Impact on agent behavior,”
Ph.D. dissertation, University of Southampton, 6 2003.

[2] N. Oren, M. Luck, and T. J. Norman, “Argumentation for normative
reasoning,” in Proc. Symp. Behaviour Regulation in Multi-Agent
Systems, 2008, pp. 55–60.

[3] V. T. da Silva, “From the specification to the implementation of norms:
an automatic approach to generate rules from norms to govern the
behavior of agents,” Autonomous Agents and Multi-Agent Systems,
vol. 17, no. 1, pp. 113–155, 2008.

[4] I. Nunes, C. Lucena, and M. Luck, “Bdi4jade: a bdi layer on top of
jade,” ProMAS 2011, pp. 88–103, 2011.

[5] B. F. d. S. Neto, V. T. da Silva, and C. J. P. de Lucena, “Nbdi: An
architecture for goal-oriented normative agents.” in ICAART (1), 2011,
pp. 116–125.

[6] A. S. Rao, M. P. Georgeff et al., “Bdi agents: From theory to practice.”
in ICMAS, vol. 95, 1995, pp. 312–319.

[7] A. Ahmad, “An agent-based framework incorporting rules, norms and
emotions (oprnd-e),” Ph.D. dissertation, PhD Thesis, Universiti Tenaga
Nasional, 2012.

[8] M. Alberti, A. Gomes, R. Gonçalves, J. Leite, and M. Slota, “Normative
systems represented as hybrid knowledge bases,” Computational Logic
in Multi-Agent Systems, pp. 330–346, 2011.

[9] B. F. dos Santos Neto, V. T. Da Silva, and C. J. P. de Lucena, “Using
jason to develop normative agents,” in Brazilian Symposium on Artificial
Intelligence. Springer, 2010, pp. 143–152.

[10] M. Luck, M. d’Inverno et al., “Constraining autonomy through norms,”
in Proceedings of the first international joint conference on Autonomous
agents and multiagent systems: part 2. ACM, 2002, pp. 674–681.

[11] M. A. Mahmoud, M. S. Ahmad, M. Z. Mohd Yusoff, and A. Mustapha,
“A review of norms and normative multiagent systems,” The Scientific
World Journal, vol. 2014, 2014.

[12] P. Caire, “A normative multi-agent systems approach to the use of
conviviality for digital cities,” Lecture Notes in Computer Science, vol.
4870, pp. 245–260, 2008.

[13] G. Boella and L. W. van der Torre, “Regulative and constitutive norms
in normative multiagent systems.” KR, vol. 4, pp. 255–265, 2004.

[14] R. Rubino, A. Omicini, and E. Denti, “Computational institutions for
modelling norm-regulated mas: An approach based on coordination
artifacts,” in AAMAS Workshops. Springer, 2005, pp. 127–141.

[15] G. Boella and L. van der Torre, “An architecture of a normative system:
counts-as conditionals, obligations and permissions,” in Proceedings
of the fifth international joint conference on Autonomous agents and
multiagent systems. ACM, 2006, pp. 229–231.

[16] G. Boella and L. van Der Torre, “Substantive and procedural norms in
normative multiagent systems,” Journal of Applied Logic, vol. 6, no. 2,
pp. 152–171, 2008.

[17] T. Balke, C. da Costa Pereira, F. Dignum, E. Lorini, A. Rotolo,
W. Vasconcelos, and S. Villata, “Norms in mas: definitions and
related concepts,” in Dagstuhl Follow-Ups, vol. 4. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013.

[18] T. Ågotnes, W. van der Hoek, and M. Wooldridge, “Robust normative
systems,” in Proceedings of the 7th international joint conference on
Autonomous agents and multiagent systems-Volume 2. International
Foundation for Autonomous Agents and Multiagent Systems, 2008, pp.
747–754.

[19] O. Kafalı, N. Ajmeri, and M. P. Singh, “Kont: Computing tradeoffs in
normative multiagent systems,” in Proceedings of the 31st Conference
on Artificial Intelligence (AAAI), To Appear, 2017.

[20] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing multi-agent
systems with JADE. John Wiley & Sons, 2007, vol. 7.

[21] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming
multi-agent systems in AgentSpeak using Jason. John Wiley & Sons,
2007, vol. 8.

[22] N. Howden, R. Rönnquist, A. Hodgson, and A. Lucas, “Jack intelligent
agents-summary of an agent infrastructure,” in 5th International
conference on autonomous agents, 2001.

[23] L. Braubach, W. Lamersdorf, and A. Pokahr, “Jadex: Implementing a
bdi-infrastructure for jade agents,” 2003.

[24] 3APL - An Abstract Agent Programming Language, 2017 (accessed
November 16, 2017), http://www.cs.uu.nl/3apl/.

[25] A. S. Rao, “Agentspeak (l): Bdi agents speak out in a logical computable
language,” in European Workshop on Modelling Autonomous Agents in
a Multi-Agent World. Springer, 1996, pp. 42–55.

[26] M. Winikoff, “JackTM intelligent agents: an industrial strength platform,”
Multi-Agent Programming, pp. 175–193, 2005.

[27] M. Dastani, M. B. van Riemsdijk, F. Dignum, and J.-J. C. Meyer,
“A programming language for cognitive agents goal directed 3apl,”
in International Workshop on Programming Multi-Agent Systems.
Springer, 2003, pp. 111–130.

[28] J. Broersen, M. Dastani, and L. Van Der Torre, “Resolving conflicts
between beliefs, obligations, intentions, and desires,” in ECSQARU,
vol. 1. Springer, 2001, pp. 568–579.

[29] G. Governatori and A. Rotolo, “Bio logical agents: Norms, beliefs,
intentions in defeasible logic,” Autonomous Agents and Multi-Agent
Systems, vol. 17, no. 1, pp. 36–69, 2008.

[30] A. Ahmad, M. Ahmed, M. Z. M. Yusof, M. S. Ahmad, and A. Mustapha,
“Resolving conflicts between personal and normative goals in normative
agent systems,” Journal of IT in Asia, vol. 4, no. 1, pp. 1–12, 2016.

[31] M. Alberti, M. Gavanelli, E. Lamma, P. Mello, P. Torroni, and G. Sartor,
“Mapping deontic operators to abductive expectations,” Computational
& Mathematical Organization Theory, vol. 12, no. 2-3, pp. 205–225,
2006.

[32] M. E. Fayad, D. C. Schmidt, and R. E. Johnson, Building application
frameworks: object-oriented foundations of framework design. John
Wiley & Sons, Inc., 1999.

[33] M. E. Markiewicz and C. J. de Lucena, “Object oriented framework
development,” Crossroads, vol. 7, no. 4, pp. 3–9, 2001.


