
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2709

Extended Well-Founded Semantics in Bilattices
Daniel Stamate

Abstract— One of the most used assumptions in logic program-
ming and deductive databases is the so-called Closed World Assump-
tion (CWA), according to which the atoms that cannot be inferred
from the programs are considered to be false (i.e. a pessimistic
assumption). One of the most successful semantics of conventional
logic programs based on the CWA is the well-founded semantics.
However, the CWA is not applicable in all circumstances when
information is handled. That is, the well-founded semantics, if
conventionally defined, would behave inadequately in different cases.
The solution we adopt in this paper is to extend the well-founded
semantics in order for it to be based also on other assumptions. The
basis of (default) negative information in the well-founded semantics
is given by the so-called unfounded sets. We extend this concept
by considering optimistic, pessimistic, skeptical and paraconsistent
assumptions, used to complete missing information from a program.
Our semantics, called extended well-founded semantics, expresses
also imperfect information considered to be missing/incomplete,
uncertain and/or inconsistent, by using bilattices as multivalued
logics. We provide a method of computing the extended well-founded
semantics and show that Kripke-Kleene semantics is captured by
considering a skeptical assumption. We show also that the complexity
of the computation of our semantics is polynomial time.

Keywords—Logic programs, imperfect information, multivalued
logics, bilattices, assumptions.

I. INTRODUCTION

ONE of the most used assumptions in logic programming
and deductive databases is the so-called Closed World

Assumption (CWA), according to which the atoms that cannot
be inferred with the rules are considered to be false (i.e.
a pessimistic assumption). Such assumptions are needed as
the conventional logic programs with negation can be seen
as incomplete logic theories, i.e. we cannot always infer any
ground atom A or its negation from a logic program. In order
to enrich such a theory we can make assumptions on the
logical values of atoms that cannot be inferred from the rules.
This is similar to the process of reasoning by default.

One of the most successful semantics of conventional logic
programs based on the CWA is the well-founded semantics
[15]. However, the CWA is not applicable in all circumstances
when information is handled, as for example in a legal case,
where a person should be considered innocent unless the
contrary is proved (i.e. an optimistic assumption). That is,
all the semantics based on the CWA, in particular the well-
founded semantics, would behave inadequately in such a case.

In this paper we extend the well-founded semantics defini-
tion in order for it to be based also on alternative assumptions,
in particular on an optimistic assumption, according to which,
if in doubt then assume true.

Let us illustrate this through the following legal case exam-
ple:

D. Stamate is with the Department of Computing, Goldsmiths College,
University of London, SE146NW London, UK (phone +44-2079197864; fax
+44-2079197853; e-mail: d.stamate@doc.gold.ac.uk).

P : charge(X) ← suspect(X) ∧ ¬innocent(X)
free(X) ← suspect(X) ∧ innocent(X)
innocent(X) ← ∃Y(alibi(X,Y) ∧ ¬relatives(X,Y))
suspect(John) ← true

The only assertion made in the program is that John is
suspect, but we know nothing as to whether he is innocent.

If we consider the pessimistic assumption, then we are led
to assume that John is not innocent, and we can infer that John
must not be freed, and must be charged. If, on the other hand,
we consider the skeptical assumption, i.e. we assume nothing
about the innocence of John, then we can infer nothing as to
whether he must be freed or charged.

If we consider the optimistic assumption then inno-
cent(John) is true and we can infer that John must be freed,
and must not be charged.

A fourth approach, less intuitive than the previous ones,
is that in which in doubt we assume the value inconsistent
(i.e. a paraconsistent assumption). Let us consider the problem
of information integration from multiple sources which may
be mutually contradictory. This situation is common, as the
sources are independent, so contradictions may arise. While
querying such integration systems it may happen that some
sources would be temporarily unreachable (e.g. connection
problems, etc) so some inconsistencies may have been omitted
from the result to a query. If the use of consistent integrated
information (that is, the information on which the sources
agree) is essential for the application, then a solution would
be to compute and use the part of the answer which is safely
consistent. We can do this by considering the worst case, i.e.
by assuming that the part of the answer based on unreachable
sources is to be considered inconsistent, and rely only on the
part that remains consistent. That is, if in doubt we privilege
the inconsistency.

Considering our previous example, if we choose the in-
consistent assumption then we get suspect(John) is true,
innocent(John), free(John), charge(John) and all the
other ground atoms are all inconsistent.

The basis of (default) negative information in the well-
founded semantics is given by the so-called unfounded sets
[15]. We extend this concept by considering as default value
for underivable atoms any element of Belnap’s four-valued
logic [3]: true, false, unknown and inconsistent. Thus we
make an optimistic, pessimistic, skeptical and paraconsistent
assumption, respectively, that will be incorporated elegantly
in the definition of the well-founded semantics. Apart the
generalization, the difference between the definition in [15]
and ours is that the first one has rather a syntactic flavour,
while the second has a semantic flavour. Expressing this
concept in a semantic manner allows an elegant extension.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2710

As our previous discussion shows, the logic we will consider
contains at least four logical values, corresponding to the
four mentioned assumptions. However, in fact many real
life situations require processing of imperfect information,
that is incomplete, inconsistent, and/or uncertain/imprecise.
The use of multivalued logics to express the imperfection of
information may be needed. In order to illustrate this idea we
use the following example.

Suppose we combine information from two sources that
are the experts E1 and E2 which express their opinion on a
statement A. It may be that the two experts are not sure about
the truthness of A, due to the imperfection of the available
knowledge. The first expert may believe that A is true with
a degree of 0.6 of confidence (so there is a degree of 0.4 of
doubt), while the second expert may believe that A is true
with a degree of 0.8 of confidence (so there is a degree of 0.2
of doubt). If we want to combine the information obtained
from the two experts, a natural way would be to consider
the consensus of their beliefs: A is true with a degree of
confidence of 0.6, and a degree of doubt of 0.2. That is,
the pair 〈0.6, 0.2〉 would express the maximal confidence and
doubt the two experts agree on. We see such pairs of reals
between 0 and 1, expressing degrees of confidence and doubt
(note that they are not necessarily complementary w.r.t. 1), as
logical values, and we call the space of these logical values the
confidence-doubt logic - let us denote it by LCD. We have two
orders on LCD , namely the truth and knowledge orders denoted
≤t and ≤k, respectively. Intuitively speaking, an increase in
the truth order corresponds to an increase in the degree of
confidence and a decrease in the degree of doubt, while an
increase in the knowledge order corresponds to an increase
in both the degree of confidence and the degree of doubt.
The least and greatest elements under ≤t are 〈0, 1〉 and 〈1, 0〉,
representing no confidence, full doubt, and full confidence, no
doubt, respectively. They may be identified with the classical
logical values false and true. The least and greatest elements
under ≤k are 〈0, 0〉 and 〈1, 1〉, representing no confidence, no
doubt, and full confidence, full doubt, respectively. They may
be identified with the logical values unknown (denoted ⊥)
and inconsistent (denoted �).

Note that LCD has an interesting double algebraic structure
of lattice (given by the two orders). Such a structure is
captured by the concept of bilattice [9]. Bilattices will be used
here as multivalued logics in which we define the extended
well-founded semantics of extended logic programs. The four
assumptions to be considered correspond to a parameter α

whose value can be true, false, ⊥ or �(which, as we have
seen in the example of the confidence-doubt logic, are the
extreme values of the bilattice). Once fixed, the value of α

represents the “default value” for those atoms of a program
that cannot be inferred from the rules. If we want to work
under a particular assumption, we choose the appropriate value
for α, namely true for the optimistic assumption, false for
the pessimistic assumption,⊥ for the skeptical assumption and
� for the paraconsistent assumption.

We show that, for the pessimistic assumption our ex-
tended well-founded semantics captures the conventional well-
founded semantics [15], while for the skeptical assumption our

false

�

true

⊥

≤k

≤t

F Fig. 1. The logic FOUR

semantics captures the Kripke-Kleene semantics [5].
Our formalism of defining the semantics is paraconsistent,

in the sense that in our semantics inconsistent information does
not entail every conclusion, but it is localised.

The main motivation comes from the area of knowledge
acquisition, where on the one hand the knowledge may be
imperfect (incomplete, uncertain, etc), and on the other hand
contradictions may occur during the process of collecting
knowledge from different experts. Indeed, in multi-agent sys-
tems, different agents may give different answers to the same
query. It is then important to be able to process the answers
so as to extract the maximum of information on which the
various agents agree, or to detect the items on which the agents
give conflicting answers. Incompleteness of the knowledge
may be resolved by agents by using hypotheses. Thus one
may distinguish pessimistic, optimistic and skeptical agents,
according to the type of assumption they may use.

The paper is organized as follows. In Section II we define
the extended programs in multivalued logics expressed as
bilattices. In Section III we define our extended well-founded
semantics providing a method to compute it, and we show
that it can be obtained in polynomial time with respect to the
size of the set of facts from the program. Finally we present
some concluding remarks and suggestions for further research
in Section IV.

II. PRELIMINARIES

A. Bilattices

The bilattice approach introduced by M. Ginsberg [9]
is an important contribution to the concept of multivalued
logics. Bilattices and/or their derived sublogics are useful in
expressing uncertainty, incompleteness and inconsistency in
logic programming, artificial intelligence and databases [1],
[7], [8], [12], [13], [16].

If we consider the four extreme logical values from the
confidence-doubt logic LCD , then we get Belnap’s four-valued
logic [3], called FOUR, which is depicted in Figure 1. The
horizontal axis shows an increase in the degree of truth, while
the vertical axis shows an increase in the degree of knowledge.

As seen above, the confidence-doubt and Belnap’s logics
have an interesting algebraic structure of double lattice w.r.t.
the truth and knowledge orders. This structure is captured by
the concept of bilattice, defined as follows.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2711

Definition 1: A bilattice is a triple 〈B,≤t,≤k〉, where B is
a nonempty set, and ≤t and ≤k are partial orders each giving
B the structure of a lattice with a least and greatest elements.
�

For the bilattice B, join and meet under ≤t are denoted ∨
and ∧ (called extended disjunction and conjunction), and join
and meet under ≤k are denoted ⊕ and ⊗ (called gullibility
and consensus). The greatest and least elements under ≤t are
denoted true and false, and the greatest and least element
under ≤k are denoted � and ⊥. Note that the operations
∨,∧,⊕ and ⊗ are monotone w.r.t. the truth and knowledge
orders.

A bilattice has a negation, denoted ¬, if ¬ is a unary
operation which is antimonotone w.r.t. the truth order and
monotone w.r.t. the knowledge order. In addition ¬true =
false, ¬false = true, ¬⊥ = ⊥ and ¬� = �. Note that ¬
is an extension of the negation in the two-valued logic.

A bilattice is said to be distributive if all the distributive laws
built with the extended conjunction and disjunction, consensus
and gullibility, hold. Note that the bilattices FOUR and LCD

are distributive.
We use bilattices as spaces of logical values for the extended

programs we define in the next subsection.
We introduce the concept of limited bilattice, used when we

evaluate the complexity of the evaluation of the semantics we
will introduce.

Definition 2: The bilattice B is limited if there exists a
polynom p such that for any set of elements A = {a1, . . . , an}
from B, the closure of A w.r.t. the bilattice operations has no
more than p(n) elements. �

A trivial subclass of limited bilattices is that of the finite
bilattices, obviously. However, the limited bilattices class
contains also infinite bilattices, as the following proposition
shows:

Proposition 1: The confidence-doubt logic LCD is a limited
bilattice. �

B B. Extended Programs

Conventional logic programming has the set {false, true}
as its intended space of truth values, but since not every query
may produce an answer, partial models are often allowed (i.e.
⊥ is added). If we want to deal with inconsistency as well,
then � must be added. Fitting extended the notion of logic
program, that we will call extended program, to bilattices as
follows. Let B be a distributive bilattice with negation.

Definition 3: [6]
- A formula is an expression built up from literals and elements
of B, using ∧,∨,⊗,⊕,¬, ∃, ∀.
- A clause or rule r is of the form

P (x1, ..., xn)← φ(x1, ..., xn)
where the atomic formula P (x1, ..., xn) is the head, denoted
by head(r), and the formula φ(x1, ..., xn) is the body, denoted

by body(r). It is assumed that the free variables of the body
are among x1, ..., xn.
- A program is a finite set of clauses with no predicate letter
appearing in the head of more than one clause (this apparent
restriction causes no loss of generality) . �

Fitting also defined the family of conventional logic pro-
grams. A conventional logic program is one whose underlying
truth-value space is the bilattice FOUR and which does not
involve ⊗,⊕, ∀,⊥,�. Such programs can be written in the
customary way, using commas to denote conjunction.

III. EXTENDED WELL-FOUNDED SEMANTICS OF

EXTENDED PROGRAMS

In the remaining of this paper, in order to simplify the
presentation, we assume that all extended programs are in-
stantiated programs. Moreover, we use the term “program” to
mean “extended program”, unless explicitly stated otherwise.

A. Interpretations

We can extend the two orders on bilattice B to the set of
all interpretations over B, denoted by V(B). An interpretation
I of a program P is defined as a partial function over the
Herbrand base HBP , and a completion of I is any total
interpretation I ′ such that I(A) = I ′(A), for any atom A

in the domain of definition of I , denoted by def(I). When
comparing interpretations, we consider their least completion.
The least completion of an interpretation I is defined to be
the completion J of I such that J(A) = ⊥, for every atom A

not defined under I .

Definition 4: Let I1 and I2 be two interpretations having
the least completions I ′1 and I ′2, respectively. Then I1 ≤t I2

if I ′1(A) ≤t I ′2(A) for all ground atoms A (and similarly for
≤k). �

The total interpretations can be extended from atoms to for-
mulas as follows: I(X∧Y) = I(X)∧I(Y) (and similarly for
the other bilattice operations), I((∃x)φ(x)) =

∨

t∈GT I(φ(t)),
and I((∀x)φ(x)) =

∧

t∈GT I(φ(t)), where GT stands for the
set of all ground terms.

However we are interested to see now how partial inter-
pretations can be used to evaluate formulas. If B is a closed
formula then we say that B evaluates to the logical value β

with respect to an interpretation I, denoted by B ≡ β w.r.t. I,

or by B ≡I β, if J(B) = β for any completion J of I . The
reason we consider completions is that if I is an interpretation
then some of the atoms of B may not be associated with a
logical value under I , and therefore we will not be able to
evaluate B. However, there are formulas B in which these
atoms do not matter for the logical value that can be associated
to B. For example consider B = A∨C and the interpretation I

defined by I(C) = true, then no matter how A is interpreted
B can be evaluated to true. Thus we can write B ≡I true.

The following lemma provides a method of testing whether
B ≡I β by computing the logical value of the formula B w.r.t.
only two completions of the interpretation I .

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2712

Lemma 1: Let I⊥ and I� be two completions of I defined
as follows: I⊥(A) = ⊥ and I�(A) = � for every atom A of
HBP not in def(I). Then B ≡I β iff I⊥(B) = I�(B) = β.
�

We use also the concept of compatibility of interpretations,
defined naturally by:

Definition 5: The interpretations I and J are said to be
compatible if, for any atom A, I(A) and J(A) are both defined
then I(A) = J(A). �

B B. Semantics of Extended Programs

Given a program P , we consider two ways of inferring new
information from P . First by activating the rules of P and
deriving new information through an immediate consequence
operator T . Second, by a kind of default reasoning based on
the assumption we make in each of the optimistic, pessimistic,
skeptical and paraconsistent approaches, respectively.

The immediate consequence operator T that we use takes
as input an interpretation I and returns an interpretation T (I),
defined as follows: for all ground atoms A,

T (I)(A) =

{

β if A← B ∈ P and B ≡I β

undefined, otherwise

Each assumption is expressed as a hypothesis Hα which
formally is an interpretation I that assigns the value α (for
α = true, false,⊥ and �) to every atom of its domain of
definition def(I). Roughly speaking, the hypothesis concerns
some of the atoms of the Herbrand base whose logical values
cannot be inferred by rule activation. The hypothesis must
be tested against the “sure” knowledge provided by the rules
of P and by a given fixed interpretation I (which can be
the everywhere undefined interpretation). The test consists of
“adding” Hα to P and I , activating the rules of P and deriving
all information that can be derived by T . If at the end of this
process every atom in def(Hα) is assigned the value α, this
means that the hypothesis Hα is a sound one, i.e. that the
assignment of the value α by Hα is not in contradiction with
P and I . Hence the following definition:

Definition 6: Let P be a program and I a partial interpre-
tation. A hypothesis Hα is called sound (w.r.t. P and I) if the
following hold:

1) Hα is compatible with I and
2) for every atom A in def(Hα), if there is a rule r of

P with head(r) = A then body(r) ≡ α w.r.t. I ∪Hα.
�

Several remarks are in order here concerning the above de-
finition. First, let us observe that if we restrict our attention to
conventional logic programs (recall that the class of extended
programs strictly contains the conventional programs), then the
concept of sound hypothesis for α = false reduces to that of
unfounded set of Van Gelder et al. [15]. The difference is
that the definition in [15] has rather a syntactic flavour, while

ours has a semantic flavour. Moreover, our definition not only
extends the concept of unfounded set to multivalued logics, but
also generalizes its definition w.r.t. the optimistic, pessimistic,
skeptical and paraconsistent assumptions (corresponding to
α = true, false,⊥ and �, respectively).

Second, the compatibility of Hα with I (point 1 of the
definition) implies that I ∪ Hα is an interpretation. This is
necessary in order to be able to evaluate the bodies of rules in
P (point 2 of the definition). We recall that Lemma 1 provides
an efficient method for this evaluation.

Finally, let us stress that the bodies of rules are evaluated
with respect to completions of I ∪ Hα (and not just w.r.t.
I ∪ Hα). This ensures that every atom appearing in a rule
body is assigned a logical value before evaluation takes place.

As we explained earlier, given a program P and a partial
interpretation I , we derive information in two manners: by ac-
tivating the rules (i.e. by applying the immediate consequence
operator to I) and by making an assumption/hypothesis Hα

and testing it against P and I (roughly speaking, this test is
point 2 of Definition 6). If Hα passes the test then it is sound
and the information represented by Hα can be derived. In the
whole, the information that we derive comes from T (I)∪Hα,
assuming of course that T (I)∪Hα is indeed an interpretation,
i.e. assuming that T (I) and Hα are compatible. The following
proposition asserts that this is the case.

Proposition 2: If Hα is sound w.r.t. the program P and the
interpretation I then T (I) and Hα are compatible interpreta-
tions. �

We note that, for any given P , I and α, there is at
least one sound hypothesis Hα (the everywhere undefined
interpretation), thus the set of sound hypotheses is nonempty.
The following lemma shows that the union of two sound
hypotheses is a sound hypothesis:

Lemma 2: If Hα
1 and Hα

2 are sound hypotheses w.r.t. an
interpretation I, so is their union Hα

1 ∪Hα
2 . �

In fact, it is straightforward to extend this lemma to the
union of any set of sound hypotheses w.r.t. I . Therefore the
class of sound hypotheses has a greatest element which is
obtained by the union of all sound hypotheses Hα w.r.t. I ,
that we denote by Hα

max(I):

Proposition 3: Let P , I and α be fixed. Then there is a
sound hypothesis Hα

max(I) such that: T (I) ∪Hα ≤k T (I) ∪
Hα

max(I), for all sound hypotheses Hα w.r.t. I . �

Now, roughly speaking, the semantics that we would like
to associate with a program P is the maximum of information
that we can derive from P under a sound hypothesis Hα

but without any other information. To implement this idea we
proceed as follows:

1) In order to ensure the maximum of derived information
we use the greatest sound hypothesis Hα

max(I).
2) As we do not want any extra information (other than

P and Hα
max(I)), we use the everywhere undefined

interpretation, call it I⊥.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2713

3) In order to actually derive the maximum of information
from P and I⊥, we apply the operator T ∪ Hα

max

iteratively, until fixpoint, starting with I = I⊥.

The above idea of computation is formally justified by the
following proposition.

Proposition 4: The following sequence of interpretations
Ii, i ≥ 0, is increasing w.r.t. knowledge order, and has a limit
denoted lfpα(P):

I0 = I⊥

Ii+1 = T (Ii) ∪Hα
max(Ii)

Ij =
⋃

i<j Ii if j is a limit ordinal. �

Note that, intuitively speaking, lfpα(P) represents all the
information that can be inferred from the program P . Obvi-
ously it is a fixpoint of the operator T ∪Hα

max. Moreover, we
ca show that lfpα(P) has an important property namely that
it satisfies the rules of the program P .

Definition 7: An interpretation I is a model of a program
P if for every rule A← B of P , I(B) ≤t I(A). �

This definition comes from the intuitive remark that, as the
consequence is derived from a premise, the degree of truth of
the consequence should be at least the degree of truth of the
premise.

Proposition 5: The interpretation lfpα(P) is a model of P .
�

This justifies the following definition of semantics for P .

Definition 8: The interpretation lfpα(P) is defined to be
the extended well-founded semantics of P w.r.t. the logical
value α, that we denote by ewfsα(P). �

Considering the four different assumptions, we have the
following relationships between the semantics obtained:

Proposition 6: If P is a program then:

1) ewfs⊥(P) ≤k ewfstrue(P) ≤k ewfs�(P) and
2) ewfs⊥(P) ≤k ewfsfalse(P) ≤k ewfs�(P). �

The last result of the subsection compares our seman-
tics with the conventional well-founded semantics [15] and
Kripke-Kleene semantics [5] of a program P , denoted wfs(P)
and kks(P) respectively.

Theorem 1: If P is a conventional program and the bilattice
is FOUR then ewfsfalse(P) = wfs(P) and ewfs⊥(P) =
kks(P). �

 C. Computing the Extended Well-founded Semantics

We now give a method for computing the greatest sound
hypothesis Hα

max used in the definition of the semantics we
have introduced.
Given the interpretation I , consider the following sequence
〈PFi(I)〉, i ≥ 0:

PF0(I) = ∅;
PFi+1(I) = {A | A ← B ∈ P and B �≡ α w.r.t. Ji,I},

for i ≥ 0, where Ji,I is the interpretation defined by:

Ji,I(A) =

⎧

⎨

⎩

I(A) if A ∈ def(I),
α if A ∈ (HBP \ PFi) \ def(I),
undefined, otherwise.

Roughly speaking, in the above computation we want to
evaluate step by step the atoms that could potentially have
a logical value different than α in ewfsα(P). The rest of the
atoms in the Herbrand base makes up the domain of definition
of Hα

max. We have the following results:

Proposition 7: The sequence 〈PFi(I)〉, i ≥ 0 is increasing
with respect to set inclusion and it has a limit, denoted PF (I).
�

Theorem 2: Let P , I and α be fixed. If J is an interpretation
defined by : J(A) = α for any A ∈ (HBP \ PF (I)) and
J(A) = undefined for any other ground atom A, then
Hα

max(I)= J . �

We note that, if we restrict our attention to conventional
programs in the logic FOUR and the pessimistic approach
(i.e. α = false), the set PF (I) corresponds to the set of
potentially founded facts of [2].

If we compute the semantics of the program P provided
in the introduction, for each of the pessimistic, optimistic,
skeptical and paraconsistent approaches respectively, we get
the following table, where we have included on the first row
only the ground atoms built with predicates defined by the
program rules1:

Table1: The extended well-founded semantics of P
Hypothesis Hα s(John) i(John) f(John) c(John)

any atom is false true false false true

any atom is true true true true false

any atom is ⊥ true ⊥ ⊥ ⊥
any atom is � true � � �

We conclude this section with a complexity result showing
that our semantics can be computed in polynomial time with
respect to the size of the set of facts from the program.

Formally, let B be a limited bilattice and let P = PRules ∪
PFacts be a program with no function symbol, where PFacts

is the set of facts (i.e. the set of rules of the form A ← c

where c is a logical value from the bilattice B) and PRules

is the set of rules (i.e. the remaining part of P). Note that as
the program is function free, the fixpoint computation of our
semantics terminates in a finite number of steps.

1All the other ground atoms are assigned the corresponding logical value
α, and have been ommitted.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2714

Theorem 3: The complexity of the computation of the ex-
tended well-founded semantics of the program P in a limited
bilattice is polynomial w.r.t. |PFacts|. �

IV. CONCLUDING REMARKS

We have proposed an approach for handling imperfect
information in logic programs by defining the extended well-
founded semantics. We consider imperfect information to
be missing/incomplete, uncertain and/or inconsistent. In our
semantics, the missing information is completed by using op-
timistic, pessimistic, skeptical and paraconsistent assumptions.
The imperfect information is handled by using bilattices as
multivalued logics. We provide a method of computation of
our semantics and show that, for the pessimistic assumption
our extended well-founded semantics captures the conven-
tional well-founded semantics, while for the skeptical assump-
tion our semantics captures the Kripke-Kleene semantics. The
conventional logic program semantics are mostly based on
pessimistic and skeptical approaches, while the optimistic ap-
proach has been uncommon. [4] provides an excellent survey
of paraconsistent semantics of logic programs.

We have also shown that the complexity of the evaluation of
the extended well-founded semantics with respect to the size
of the set of program facts is polynomial time, if we restrict
the multivalued logic we use to a limited bilattice. We are
currently investigating the possibility of using our approach in
the area of intelligent agents used for retrieval and integration
of imperfect information.

REFERENCES

[1] ARIELI, O. and AVRON, A. The Logical Role of the Four-Valued
Bilattice, Proc. 13th Annual IEEE Symp. on Logic in Computer Science,
118-126, 1998

[2] BIDOIT N., FROIDEVEAUX C., Negation by default and unstratifiable
logic programs, TCS, 78, 1991

[3] BELNAP, N. D., Jr, A Useful Four-Valued Logic, in: J. M. Dunn and
G. Epstein (eds.), Modern Uses of Multiple-valued Logic, D. Reichel,
Dordrecht, 1977.

[4] DAMASIO, C. and PEREIRA, L., A survey of paraconsistent semantics
for logic programas, in: D. Gabbay and P. Smets (eds.), Handbook of
Defeasible Reasoning and Uncertainty Management Systems, vol. 2,
Kluwer, 1998.

[5] FITTING, M. C., A Kripke/Kleene Semantics for Logic Programs, J.
Logic Programming, 2:295-312, 1985

[6] FITTING, M. C., Bilattices and the Semantics of Logic Programming, J.
Logic Programming, 11:91-116, 1991

[7] FITTING, M. C., The Family of Stable Models, J. Logic Programming,
17:197-225, 1993

[8] FITTING, M. C., Fixpoint semantics for logic programming - a survey,
Theoretical Computer Science, 278:25-51, 2002

[9] GINSBERG, M. L., Multivalued Logics: a Uniform Approach to Reason-
ning in Artificial Intelligence, Computationnal Intelligence, 4:265-316,
1988.

[10] GINSBERG, M. L., Bilattices and modal operators, J. of Logic Compu-
tation, 1:41-69, 1990.

[11] LOYER, Y., SPYRATOS, N., and STAMATE,D., Computing and Compar-
ing Semantics of Programs in Four-valued Logics, in: Proceedings of
the 24th Symposium on Mathematical Foundations of Computer Science
(MFCS′

99), LNCS 1672, Springer Verlag, 1999
[12] LOYER Y., SPYRATOS N. and STAMATE D. Parameterised Semantics for

Logic Programs - a Unifying Framework, Theoretical Computer Science,
308(1-3), 429-447, 2003

[13] LOYER Y., SPYRATOS N. and STAMATE D. Hypothesis-based semantics
of logic programs in multivalued logics, ACM Transactions on Compu-
tational Logic 15(3), 508-527, 2004

[14] PRZYMUSINSKI, T. C. The well-founded semantics coincides with the
three-valued stable semantics, Fundamenta Informaticae, 13(4):445-464,
1990

[15] VAN GELDER, A., ROSS, K. A., SCHLIPF, J. S., The Well-Founded
Semantics for General Logic Programs, J. ACM, 38:620-650, 1991

[16] SIM K. M. Bilattices and Reasoning in Artificial Intelligence: Concepts
and Foundations Artificial Intelligence Review 15:3, 219-240, 2001

