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Abstract—Among neural models the Support Vector Machine 

(SVM) solutions are attracting increasing attention, mostly because 
they eliminate certain crucial questions involved by neural network 
construction. The main drawback of standard SVM is its high 
computational complexity, therefore recently a new technique, the 
Least Squares SVM (LS–SVM) has been introduced. In this paper we 
present an extended view of the Least Squares Support Vector 
Regression (LS–SVR), which enables us to develop new 
formulations and algorithms to this regression technique. Based on 
manipulating the linear equation set -which embodies all information 
about the regression in the learning process- some new methods are 
introduced to simplify the formulations, speed up the calculations 
and/or provide better results. 
 

Keywords—Function estimation, Least–Squares Support Vector 
Machines, Regression, System Modeling 

I. INTRODUCTION 
HIS paper focuses on the Least Squares version of SVM 
[1], the LS–SVM [2], whose main advantage is that it is 

computationally more efficient than the standard SVM 
method. In this case training requires the solution of a linear 
equation set instead of the long and computationally hard 
quadratic programming problem involved by the standard 
SVM. It must also be emphasized that LS–SVM is closely 
related to Gaussian processes and regularization networks in 
that the obtained linear systems are equivalent [2]. 

While the least squares version incorporates all training 
data in the network to produce the result, the traditional SVM 
selects some of them (the support vectors) that are important 
in the regression. The use of only a subset of all vectors is a 
desirable property of SVMs, because it provides additional 
information regarding the training data and concludes in a 
more effective solution formulating a smaller network. 
Similarly to the sparseness of a traditional SVM, sparse LS-
SVM solutions can also be reached by applying pruning 
methods [3][4]. Unfortunately if this LS–SVM pruning is 
applied, the performance declines proportionally to the 
eliminated training samples, since the information (input-
output relation) they described is lost. Another problem is that 
sparseness can be reached by iterative methods, which 
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multiply the algorithmic complexity. 
Moreover the training data is often corrupted by noise, 

which – if not handled properly – misleads the training. LS–
SVMs should also be able to handle outliers (e.g. resulting 
from non–Gaussian noise). Another modification of the 
method, called weighted LS–SVM [2], is aimed at reducing 
the effects of this type of noise. The biggest problem is that 
pruning and weighting – although their goals do not rule out 
each other – cannot be used at the same time, because they 
work in opposition.  

This paper introduces a generalized approach that enables 
us to accomplish both goals by allowing a more universal 
construction and solution of the LS–SVM equation set. This 
generalized approach is based on a simple geometric 
interpretation of the problem represented in the kernel space.  

The LS–SVM method is capable of solving both 
classification and regression problems. The classification 
approach is easier to understand and more historic. However, 
the present study concerns regression, therefore only this is 
introduced in the sequel, along with the most common 
extensions (pruning, weighting, and a fixed size version). It 
must be emphasized that all the methods can be applied to 
classification as well. 

This paper is organized as follows. Before going into the 
details the main and distinguishing features of the basic 
procedures are summarized is Section II. Section III presents 
the geometric interpretation in the kernel space and 
summarizes the main idea behind the propositions. Section IV 
contains the details: 
♦ It shows how the kernel space dimension can be reduced 

using a so called partial reduction technique that results 
in an overdetermined equation set and consequently a 
sparse solution. (IV. A.).  

♦ It proposes some possible ways to solve this equation set 
(IV. B.). 

♦ It presents a practical way to construct the 
overdetermined equation set (IV. C).  

♦ It gives the algorithmic complexity of the method (IV. 
D.). 

Section V. contains some experimental results, while 
conclusions are drawn in section VI.  

II. A BRIEF OVERVIEW OF THE LS-SVM METHOD 
Only a brief outline of the LS-SVM method is presented, a 

detailed description can be found in refs. [2]-[4], [6].  
Given the { }N

iii ,d 1=x  training data set, where p
i ℜ∈x  

represents a p–dimensional input vector and iii zyd += , 

Extended Least Squares LS–SVM 
József Valyon and Gábor Horváth 

T 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3921

 

ℜ∈id  is a scalar measured output, which represents the iy  
system output disturbed by some iz  noise. Our goal is to 
construct an ( )xfy =  function, which represents the 
dependence of the output id  on the input ix . Let’s define the 
form of this function as formulated below: 

bbwy T
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i +=+= ∑

=
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1
xwx ϕϕ , (1) 

[ ]Thwww ,...,, 21=w , [ ]Thϕϕϕ ,...,, 21=ϕ . 

The hp ℜ→ℜ:(.)ϕ  is a mostly non-linear function, which 
maps the data into a higher, possibly infinite dimensional 
feature space. The main difference from the standard SVM is 
in the constraints defined by the training samples [1]. The 
optimization problem and the inequality constraints are 
replaced by the following equations ( Ni ,...,1= ): 
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with constraints: ( ) ii
T

i ebd ++= xw ϕ . 
The first term forces a smooth solution, while the second 

one minimizes the training errors ( +ℜ∈C is the trade–off 
parameter between the two terms). From this, a Lagrangian is 
formed 
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where the iα  parameters are the Lagrange multipliers. The 
solution concludes in a constrained optimization, where the 
conditions for optimality are the followings: 
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This leads to the following overall solution: 
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where [ ]Nddd ,...,, 21=d ., [ ]Nααα ,..,, 21=α , [ ]1,...,1=1
r

 and , 

)()(),(, ji
T

jiji K xxxx ϕϕ==Ω . Here ( )jiK xx ,  is the kernel 

function, and Ω  is the kernel matrix. Throughout this paper 
the RBF like kernel function is used, but other kernels can 
also be applied [2].  

For a given input x the response of an LS-SVM is a weighted 
sum of N kernel functions, where the center parameters of 
these kernel functions are determined by the training input 
vectors xi : 

( ) ( )∑ = += N
i ii bKαy 1 ,xxx  (6) 

It is important to emphasize that according to (4) the iα  
weights are proportional to the ie  errors in the training points: 

ii Ce=α . The following iterative methods are based on this 
property of the LS–SVM. 

A. LS–SVM pruning  
A sparse LS-SVM can be obtained by applying a pruning 

method, which eliminates some training samples based on the 
sorted iα  spectrum [2]-[4]. The iα  values reflect the 
importance of the training samples, therefore by eliminating 
some training samples, represented by the smallest values 
from this iα  spectrum, the complexity of the result can be 
reduced. The most irrelevant points are left out, by iteratively 
leaving out the least significant ones. These are the ones 
corresponding to the smallest iα values.  

In a classical SVM sparseness is achieved by the use of an 
ε–insensitive loss function, where errors smaller than ε are 
ignored (e.g. ε–insensitive loss function). The pruning of LS-
SVM reduces the difference between the classical and the 
least squares SVMs, because the omission of some data points 
implicitly corresponds to creating an ε–insensitive zone [5]. 

The described method leads to a sparse model, but some 
questions arise: How many neurons are needed in the final 
model? How many iterations it should take to reach the final 
model? Another problem is that a usually large linear system 
must be solved in all iterations. The pruning is especially 
important if the number of training vectors is large. In this 
case however, the iterative method is not very effective.  

B. Fixed LS–SVM  
Another solution to this problem is called Fixed Size LS–

SVM [2], which uses an entropy based iterative method to 
select a predefined (fixed) size subset of the training samples 
as support vectors. After determining this optimal subset – in 
the sense of the defined entropy measure – a final LS–SVM 
network is trained. 

C. Weighted LS–SVM  
Weighted LS–SVM [2] addresses the problem of noisy data 

– like outliers in a dataset –, by using a weighting factor in the 
calculation based on the error variables determined from a 
previous – first unweighted – solution. The method uses a 
bottom–up approach by starting from a standard solution, and 
calculating one or more weighted LS–SVM networks based 
on the previous result. The weighting is designed such that the 
results improve in view of robust statistics. Large ie –s mean 
small weights and vice versa. 

 
A common property of the described methods is that they 

are all iterative, where every step is based on the result of an 
LS-SVM solution. This means that the entire large problem 
must be solved at least once, and a relatively large one in 
every further iteration step. Another drawback is that pruning 
and weighting cannot be easily combined, because the 
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methods favor contradictory types of points. While pruning 
drops the training points belonging to small iα -s, the 
weighted LS–SVM increases the effects of these points 

The proposed Generalized LS-SVM method leads to a 
sparse solution, automatically answers the questions and 
solves the problem described above. 

III. THE MAIN IDEA 
One of the most important features of a support vector 

classifier or regressor is that they apply two consecutive 
mappings. The first one maps the training data from the input 
space into a higher-dimensional feature space, then by using 
the kernel trick the feature space representation is mapped into 
a kernel space. The feature space is defined by the 

[ ]Th )(),...,(),()( 21 xxxx ϕϕϕ=ϕ  non-linear function set, while 
the kernel space is defined by the kernel functions ( )jiK xx ,  

obtained using inner product as )()(),( ji
T

jiK xxxx ϕϕ= . The 

main reason of introducing these mappings is to linearize the 
problem: the solution of a problem in these spaces will be 
linear even if in the original representation only a non-linear 
solution could have been obtained [5]. In the kernel space, a 
hyperplane is fitted on the training samples, so the task is to 
determine the free parameters iα -s and b of this hyperplane 
(see Eq. (6). 

The main ideas introduced in this paper work in the kernel 
space. As one of the main goals of this paper is to get a sparse 
LS-SVM, we should define what sparseness means in the 
kernel space. In general sparseness means that instead of using 
all training samples, only a subset, namely the support vectors 
are used. In the kernel space the degree of sparseness is 
determined by the dimension of the hyperplane. If it is less 
than the number of training samples (this is the case in a 
traditional SVM) the solution will be sparse, while if the 
dimensionality of the hyperplane equals to the number of all 
training samples no sparseness is obtained. One major goal of 
this paper is to propose a new way of dimension-reduction 
without degrading the quality of an LS-SVM. Another feature 
of the proposed approach is that it allows many different 
linear fitting strategies (even a non-linear fit) in the kernel 
space, so the result will be not only sparse, but a simpler 
formulation, noise reduction and further reduction of 
algorithmic complexity can also be achieved while the quality 
is maintained. The unique feature of the propositions is that 
they start directly from the kernel space formulation. 

When an LS-SVM is constructed from N training samples:  
1. The training samples are mapped to an N+1 dimensional 

space, where N dimensions are defined by the kernel 
functions and one by the desired output.  

2. In the N+1-dimensional space an N-dimensional 
hyperplane is fitted on the mapped samples. The free 
parameters of the hyperplane are determined by the N 
mapped training points, and one additional constraint 

( ∑ =
=

N

i
i

1
0α ). For the sake of generalization and to avoid 

overfitting the accuracy of the fit can be adjusted through 
regularization. To trade off between training error and a 
smooth solution the C regularization parameter is used (see 
Eq. (2)), which is the same for all samples, and can be 
considered as a predefined, intentional error term in the 
kernel space fitting.  

For a new sample x the response of the networks is 
determined by Eq. (6). This response is a point in the 
hyperplane and we expect that it will be close to the desired 
output. When a sparse solution is looked for only a subset of 
the training points are used to determine of the kernel space 
and the hyperplane and the dimensions of both the kernel 
space and the hyperplane are reduced. However, because of 
this reduction some training points may be far from the 
hyperplane, the accuracy of the mapping decreases. The main 
problem is to reduce the dimension without decreasing the 
accuracy.  

In dimension reduction some questions arise: How many – 
and which – dimensions are needed in the kernel space? In a 
more definite form: can we use less than N dimensions, and 
how can the necessary dimensions be selected? What is a 
good value of C, or more generally, how should the 
hyperplane be placed in the kernel space? 

Having fewer dimensions in the kernel space result in a 
sparse solution, while it means that we have more than the 
required number of points for determining the hyperplane in 
the kernel space. Having more points than dimensions in the 
kernel space an overdetermined equation set is obtained and 
this allows us to optimize the linear fit. The dimensionality of 
the kernel space is high enough, if samples (not used in 
determining this space) fall close to this plane after mapping. 
This is illustrated in a simple example in Fig. 1. Here the 
training points determine a hyperplane in the three-
dimensional kernel space. In this kernel space all training 
points fit exactly the hyperplane. Reducing the dimension of 
this hyperplane we should select which training points will be 
used to define the two-dimensional hyperplane. At the same 
time in general in this reduced kernel space there will be some 
error in the mapping of the not used training points. Defining 
a tolerance interval one can decide if the dimension reduction 
can be allowed or not. 
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Fig. 1 The image of training samples in a kernel space of different 

dimensions. Using all three samples as support vectors (kernel 
centers), a three-dimensional kernel can space guarantees exact fit for 
the samples. The dashed lines represent a zone in which errors can be 

accepted (corresponding to the ε-insensitivity of SVM) 

 

IV. THE PROPOSED METHODS 
This section proposes some modifications and extensions to 

the standard LS–SVM. Their main purpose is to gain control 
over the model complexity and to improve the quality of the 
results. 

A. Using an overdetermined equation set 
If the training set consists of N  samples, then our original 

linear equation set (see eq. 5) will have )1( +N  unknowns, 

the iα -s, )1( +N  equations and 2)1( +N  multipliers. These 
factors are mainly the values of the ( )jiK xx ,  kernel function 

calculated for every combination of the training inputs. The 
cardinality of the training set therefore determines the size of 
the kernel matrix, which plays a major part in the solution, as 
algorithmic complexity; the complexity of the result etc. 
depends on this. It is easy to see that, in order to reduce 
complexity, this matrix has to be manipulated. Let’s take a 
closer look at the linear equation set of eq. 5.. 
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condition. 
To reduce the equation set, columns and/or rows may be 

omitted.  
If the k-th column is left out, then the corresponding kα  is 

also deleted, therefore the resulting model will be smaller. The 
condition of eq. 8. automatically adapts, since the remaining 
α -s will still add up to zero. 

If the j-th row is deleted, then the condition defined by the 
( )jj d,x  training sample is lost, because the j-th equation is 

removed.  
The most important component of the main matrix is the Ω  

kernel matrix; its elements are the results of the kernel 
function for pairs of training inputs: 

( )jiji K xx ,, =Ω  (10) 

To reduce the size of Ω  some training samples should be 
omitted. Each column of the kernel matrix represents an 
additive term in the final solution, with a kernel function 
centered on the corresponding ix  input. The rows however, 
represent the input–output relations, described by the training 
points. The solution (α –weighting) is determined to satisfy 
these. It can be seen that the network size is determined by the 
number of columns, which -in order to reach sparseness- must 
be reduced. The following reduction techniques can be used 
on the kernel matrix (the names of these techniques are 
introduced here for easier discussion): 

Traditional full reduction 
A training sample ( )kk d,x  is fully omitted, therefore both 

the column and the row corresponding to this sample are 
eliminated. In this case however reduction also means that the 
knowledge represented by the numerous other samples are 
lost. The next equation demonstrates how the equation 
changes by fully omitting some training points. The deleted 
elements are colored grey. 

 (11) 
This is exactly what traditional LS–SVM pruning does 

since it iteratively omits some training points. The information 
embodied in these points is entirely lost. 

To avoid this information loss, one may use the technique 
referred here as partial reduction. 

The proposed partial reduction  
In partial reduction, the omission of a training 

sample ( )kk d,x  means that only the corresponding column is 
eliminated, while the row -which defines an input-output 
relation- is kept. Eliminating the k-th column reduces the 
model complexity, while keeping the k-th row means that the 
weighted sum of that row should still meat the kd  regression 
goal (as closely as possible). 

By selecting some (e.g. M , NM < ) vectors as “support 
vectors”, the number of iα  variables are reduced, resulting in 
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more equations than unknowns. The effect of partial reduction 
is shown on the next equation, where the removed elements 
are colored grey. 

 (12) 
This proposition resembles to the basis of the Reduced 

Support Vector Machines (RSVM) introduced for standard 
SVM classification in [13]. 

For further discussions, let’s simplify the notations of our 
main equation as follows: 
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The omission of columns with keeping the rows means that 
the network size is reduced; still all the known constraints are 
taken into consideration. This is the key concept of keeping 
the quality, while the equation set is simplified. 

It is important to mention that the hyperparameter C is not 
necessarily needed in case of partial reduction, because as it 
will be seen later, the overdermined system means that errors 
inherently are expected at the samples. The original kernel 
matrix formulation –including the regularization term C- is 
used to show, how our proposition reduces the original 
formulation, but it can be left out from the formulas entirely. 
This corresponds to removing the second term from eq. 2., 
leaving that ie  is optimized through the constraints. 

The deleted columns can be selected many ways e.g. 
randomly, or by using the method proposed in the sequel. 

B. Solving the overdetermined system 
It is easy to see that partial reduction leads to a sparse 

solution, but having an overdetermined equation set, has 
several other advantages. By having more equations than 
unknowns, we have means to analyze this information set. 
The solution of this equation set corresponds to a linear fitting 
problem, where we have to fit an M+1-dimensional linear 
hyperplane on the points defined by the N rows of the matrix. 
Since N >> M+1, this can be done several ways. 

 
The residual for the i-th data point ie  is defined as the 

difference between the observed response value, the desired 
response id  and the fitted response value iy , and is identified 
as the error associated with the data. In the geometric 
interpretation, the residual is the distance of the data sample 
from the fitted hyperplane. 

iii yde −=  (14) 
The solutions differ in the way they calculate the 

accumulated error – which is then minimized – from the 

residuals. The optimal solution depends on the statistical 
properties of the dataset. (The term statistical here does not 
necessarily mean a large number of samples, but it means 
“more than one” which is the case in the original 
formulations.) Some possible solutions: 
♦ Linear least squares 
♦ Weighted linear least squares 

• Custom weighting 
• Robust methods 

 Least absolute residuals (LAR) 
 Bisquare weights 

♦ Interpolation techniques (Linear, Polynomial, Spline) 
♦ Nonlinear fitting 
It is important to emphasize that the proposed partial reduction 
is essential, since it allows us to have more samples than 
dimensions in the kernel space, which allows us to optimize 
further in this space.  
1) Linear least squares 

Usually there are two important assumptions that are made 
about the noise ( z ):  
♦ The error exists only on the output.  
♦ The errors are random and follow a normal (Gaussian) 

distribution with zero mean and constant variance 2σ . 
In this case we minimize the summed square of the residuals: 

∑ −=∑=
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N
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The solution of equation (14) can be formulated as 
vAAuA TT = . (16) 

The modified matrix A  has )1( +N  rows and )1( +M  
columns. After the matrix multiplications the results are 
obtained from a reduced equation set, incorporating AAT , 
which is of size )1()1( +×+ MM  only. Our proposition, to 
use partial reduction along with the linear least squares 
solution has already been presented [7][8], where we named 
this method LS2-SVM since it gives the least squares solution 
of a least squares method. 
2) Weighted methods 
If the assumption that the random errors have constant 
variance does not hold, weighted least squares regression may 
be used. Instead of leveling the errors statistically, it is 
assumed that the weights used in the fitting represent the 
differing quality of data samples. The error term is: 

∑ −=∑=
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i
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ii ydwewS

1

2

1
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The weighted solution can be formulated as: 
WvAWAuA TT = . (18) 

where W  weight matrix is given by the diagonal elements of 
the iw  weights. The weights are used to adjust the amount of 
influence each data point has on the estimated linear fit to an 
appropriate level. This formulation is exactly the same that 
was reached by Suykens in the Weighted LS-SVM but the 
way it is derived differs greatly. Suykens introduces different 
regularization parameters (C-s) for the samples, which leads to 
the same result. In the method proposed here the weights can 
be calculated from the statistical properties of the points in the 
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kernel space. Another important difference is that the 
proposed weighted solution is also sparse, so the weighting 
can be determined from the distribution of many points.  
♦ CUSTOM WEIGHTING - this method can be used if one had 

a priori knowledge about the quality of the samples. If so, 
weights can be defined, to determine how much each 
learning sample influences the fit. Samples known to 
have less noise are expected to fit more, than low-quality 
ones.  
The weights should transform the response variances to a 
constant value. If the variances of the data are known, the 
weights are given by:  

21 iiw σ= . (19) 
♦ LEAST ABSOLUTE RESIDUALS (LAR) – this method 

minimizes the absolute difference of residuals, and not 
the squared differences. This means that extreme values 
have less influence on the fit. 

♦ BISQUARE WEIGHTS – a method that minimizes a weighted 
sum of squares, where the weight of each data point 
depends on its distance from the fitted line. The farther 
away is the point, the less weight it gets. This method fits 
the hyperplane to the bulk of the data with the least 
squares approach, while it minimizes the effect of 
outliers. More details on robust regression can be found 
in [9][10]. 

-15 -10 -5 0 5 10 15
0.85
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Fig. 2 Linear interpolation and incremental learning 

From the above described methods, in our experiments, we 
will illustrate the bisquare weights method, which can be 
effectively used in case of outliers. The reason for this is that 
the effect of this solution is very straightforward and it is very 
easy to verify the results - namely that the influence of an 
outlier is reduced. 
3) Interpolation techniques 

The approximation of a complicated function by a simple 
function is closely related to interpolation. Interpolation 
techniques (linear, polynomial, spline), are mentioned here 
because they allow us to have an exact answer for the training 
samples even in case of a sparse solution. This may be 
important in certain cases, e. g. if there is no noise, but a 
sparse solution is required. Another advantage of these 
methods is that they can be local, in a sense that a new sample 
can be inserted, without recalculating the whole system. For 

example in case of linear interpolation, a new training sample 
can be inserted with only local effect. Linear interpolation 
corresponds to having many different weighting sets on the 
output, which depends on the input (or more directly the 
corresponding point in the kernel space). Nonlinear fitting 
means the same, but in that case, the weights change 
continuously. 
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Fig. 3 The least squares and the robust (bisquare) fitting in two 

dimensions 

 
 
4) Nonlinear fitting 

All methods shown earlier apply a linear regression in the 
kernel space. Generally, our goal is to map our data to a 
higher dimensional (kernel) space, where it can be 
approximated (or separated - in case of classification) linearly. 
If the dimensionality of the kernel space is not large enough, 
the data cannot be fit by a linear hyper plane. This can be a 
result of being “too sparse”, which may be the result of an 
extensive reduction. In this case the data can be fitted more 
accurately, by a nonlinear in the kernel space. The 
approximation results can still be calculated, but in this case it 
will be a result of a nonlinear function of the kernels, instead 
of the –linear– weighted sum, shown in eq. 7. 

This possibility is only mentioned to give a more general 
feel of the method. The nonlinear fitting is not discussed 
further, since many questions arise about the applicability, 
effect, and use of this solution. 

C. Selecting support vectors 
Standard SVM automatically selects the support vectors. To 

achieve sparseness by partial reduction, the linear equation set 
has to be reduced in such a way that the solution of this 
reduced (overdetermined) problem is the closest to what the 
original solution would be. 

As the matrix is formed from columns we can select a 
linearly independent subset of column vectors and omit all 
others, which can be formed as linear combinations of the 
selected ones. This can be done by finding a “basis” (the quote 
indicates that this basis is only true under certain conditions 
defined later) of the coefficient matrix, because the basis is by 
definition the smallest set of vectors that can solve the 
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problem.  
The basic idea of doing a feature selection in the kernel 

space is not new. The nonlinear principal component analysis 
technique, the Kernel PCA uses a similar idea [11]. A basis 
selection from the kernel matrix has been shown in [12]. 

This reduced input set (the support vectors) is (are) selected 
automatically by finding a “basis” of the Ω  (or the IΩ 1−+ C ) 
matrix. A slight modification of the common mathematical 
method, used for bringing the matrix to the reduced row 
echelon form, can be utilized to find a set of vectors that are 
linearly independent. The linear dependence discussed here, 
does not mean exact linear dependence, because the method 
uses an adjustable tolerance value when determining the 
“resemblance” (parallelism) of the column vectors. The use of 
this tolerance value is essential, because none of the columns 
of the coefficient matrix will likely be exactly dependent 
(parallel). 

The reduction is achieved as a part of transforming the TA  
matrix into reduced row echelon form (Gauss-Jordan 
elimination with partial pivoting) [14][15]. The algorithm uses 
elementary row operations: 
♦ Interchange of two rows. 
♦ Multiply one row by a nonzero number. 
♦ Add a multiple of one row to a different row. 
The algorithm goes as follows: 
1. Work along the main diagonal of the matrix starting at row 

one, column one (i-row index, j-column index). 
2. Determine the largest element p in column j with row 

index  
i ≥ j. 

3. If p ≤ ε’ (where ε’ is the tolerance parameter) then zero out 
the elements in the j-th column with index i ≥ j ; 
else remember the column index (j) because we found a 
basis vector (support vector). If necessary move the row, 
to have the pivot element in the diagonal and divide the 
row with the pivot element p. Subtract the right amount of 
this row from all rows below this element, to make their 
entries in the j-th column zero. 

4. Step forward to the next diagonal element (i=i+1, j=j+1). 
Go to step 2. 

This method returns a list of the column vectors which are 
linearly independent form the others considering tolerance ε’. 

The tolerance (ε’) can be related to the ε parameter of the 
standard SVM, because it has similar effects. The larger the 
tolerance, the fewer vectors the algorithm will select. If the 
tolerance is chosen too small, than a lot of vectors will seem to 
be independent, resulting in a larger network. As stated earlier 
the standard SVM’s sparseness is due to the ε-insensitive 
margin, which allows the samples falling inside this boundary 
to be neglected. According to this, it may not be very 
surprising to find that an additional parameter is needed to 
achieve sparseness in LS–SVM, and this parameter 
corresponds to the one, which was originally left when 
changing from the SVM to the standard least squares solution. 

D. Complexity issues 
This section deals with the algorithmic issues of the 

described solutions. LS–SVM training requires the solution of 
a linear equation set. In case of N  training vectors this may 
be solved using the LU decomposition in 2331 NN + steps, 
each with one multiplication and one addition. If the training 
set comprises N  points, than the actual size of the equation 
set is 1+N , but to keep the formulas simple the effect of the 
one additional row is neglected. The reduced row echelon 
form of a matrix can be reached in about 2N  steps. The 
proposed “support vector” selection is made based on the 
result of this transformation. Let’s assume that the reduction 
method leads to M  selected vectors, and partial reduction is 
used. In case of calculating the linear least squares solution, 
the calculation of AAT and vAT  (defined in (15)) requires 

NM 2  and MN  steps respectively. Solving this new equation 
set costs 2331 MM + steps. So the total cost of the proposed 

algorithm adds up to: 2322 31 MMMNNMN ++++ . If 
NM <<  this means a smaller complexity compared to that of 

traditional LS–SVM. It is important to mention that even if 
there is no algorithmic gain, or it is rather small, this 
calculation provides a sparse solution, with a good 
performance. If –in order to reach sparseness– the iterative 
pruning algorithm is applied to the traditional LS–SVM, than 
an equation set –slowly decreasing in size– must be solved in 
every step, which multiplies the complexity, whilst the errors 
may grow. 

V. EXPERIMENTS 
The next figures show the results for a sinc(x) regression. 

The training set contains 50 data samples burdened with 
Gaussian noise. 

Fig. 4. demonstrates that by using partial reduction along 
with the described support vector selection method can lead to 
almost the same quality result, but much less neurons. The 
equation set is solved by the linear least-squares method. 
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Fig. 4 The continuous black line plots the result for a LS2-SVM using 
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the SV selection method described. The dashed line is the original 
LS-SVM. (MSEpartial red.= 4.6*10-3, MSELS-SVM= 1.5*10-3) 

It is important to mention that the result of the LS2-SVM is 
based on a sparse network, containing 12 neurons, which were 
marked as support vectors. If the number of training samples 
is very high for the problem complexity, than the gain in the 
network size can be very large.  

The method works for multi-dimensional functions as well 
(Fig. 5.) The number of training samples is 2500, while the 
final network consists of only 63 neurons.  

a.) 

 

b.) 

Fig. 5 Approximation of a two-dimensional sinc function. a.) The 
plotted training samples and b.) the result of the partially reduced 

LS–SVM, where the support vectors were selected by the 
proposed method 

The dimensionality of the function only affects the 
calculation of ( )jiK xx , , but nothing in the rest of the method. 
Therefore the described process works irrespectively of 
dimensionality. It is also independent from the kernel 
function, since after calculating the kernel matrix, the 
proposed methods can be applied, without any change. 

In the last two experiments (Fig. 4. and Fig. 5.), the 
complexity of the solution has been reduced greatly, while the 
mean squared error stayed in the same order of magnitude. 

We have proposed that in certain situations alternative 
solutions of the overdetermined system may be useful.  

Figure 6. shows the results of custom weighting. We have 
60 samples burdened with Gaussian noise, where theσ of the 
noise is known for all samples. It can be seen that the effect of 
noise is reduced. The original LS-SVM is plotted, because the 
weighted LS-SVM would give almost the same results as the 
partially reduced solution, but in this case we have a sparse 
solution. 
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Fig. 6 Custom weighting is applied with partial reduction. 

(MSEweighted part. red.= 2*10-3, MSELS-SVM= 6*10-3) 

The following experiment (Fig. 7.) shows the same problem 
as Fig. 4, but in this case a few data points are corrupted to 
provide outliers. 
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Fig. 7 The continuous black line plots the result for a partially 

reduced LS-SVM solved by the bisquare weights method.  
(MSErobust part. red.= 2.3*10-3, MSELS-SVM= 4.6*10-3) 

It can be seen that by using a robust fitting method in the 
kernel space, the effect of the outliers was successfully 
reduced. Depending on the properties of noise, or on our a 
priori knowledge, the other fitting methods can also be used 
successfully. 

VI. CONCLUSION 
In this paper an extended view of the least squares support 

vector machine was presented. The basic idea is that the 
number of vectors chosen to be centers of kernels, and the 
number of constraints can be different, which leads to an 
overdetermined equation set. By achieving this equation set, 
we have means to analyze, and weight the importance of the 
constraints defined by the learning samples. This is especially 
important, to deal with non Gaussian noise. 

There describe methods lead to two important results: 
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♦ A sparse LS-SVM solution  
♦ Further means to analyze the problem and optimize the 

solution.  
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