
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3920

Abstract—Among neural models the Support Vector Machine

(SVM) solutions are attracting increasing attention, mostly because
they eliminate certain crucial questions involved by neural network
construction. The main drawback of standard SVM is its high
computational complexity, therefore recently a new technique, the
Least Squares SVM (LS–SVM) has been introduced. In this paper we
present an extended view of the Least Squares Support Vector
Regression (LS–SVR), which enables us to develop new
formulations and algorithms to this regression technique. Based on
manipulating the linear equation set -which embodies all information
about the regression in the learning process- some new methods are
introduced to simplify the formulations, speed up the calculations
and/or provide better results.

Keywords—Function estimation, Least–Squares Support Vector
Machines, Regression, System Modeling

I. INTRODUCTION
HIS paper focuses on the Least Squares version of SVM
[1], the LS–SVM [2], whose main advantage is that it is

computationally more efficient than the standard SVM
method. In this case training requires the solution of a linear
equation set instead of the long and computationally hard
quadratic programming problem involved by the standard
SVM. It must also be emphasized that LS–SVM is closely
related to Gaussian processes and regularization networks in
that the obtained linear systems are equivalent [2].

While the least squares version incorporates all training
data in the network to produce the result, the traditional SVM
selects some of them (the support vectors) that are important
in the regression. The use of only a subset of all vectors is a
desirable property of SVMs, because it provides additional
information regarding the training data and concludes in a
more effective solution formulating a smaller network.
Similarly to the sparseness of a traditional SVM, sparse LS-
SVM solutions can also be reached by applying pruning
methods [3][4]. Unfortunately if this LS–SVM pruning is
applied, the performance declines proportionally to the
eliminated training samples, since the information (input-
output relation) they described is lost. Another problem is that
sparseness can be reached by iterative methods, which

Manuscript received July 20, 2005.
J. Valyon is with Budapest University of Technology and Economics-

Department of Measurement and Information Systems, Budapest, Hungary, H-
1521, pf. 91. (phone +36 1 463-2057; fax +36 1 463-4112; e-mail:
valyon@mit.bme.hu).

G. Horváth (e-mail: horvath@mit.bme.hu).
This work was partly sponsored by National Fund for Scientific Research

(OTKA) under contract T 046771.

multiply the algorithmic complexity.
Moreover the training data is often corrupted by noise,

which – if not handled properly – misleads the training. LS–
SVMs should also be able to handle outliers (e.g. resulting
from non–Gaussian noise). Another modification of the
method, called weighted LS–SVM [2], is aimed at reducing
the effects of this type of noise. The biggest problem is that
pruning and weighting – although their goals do not rule out
each other – cannot be used at the same time, because they
work in opposition.

This paper introduces a generalized approach that enables
us to accomplish both goals by allowing a more universal
construction and solution of the LS–SVM equation set. This
generalized approach is based on a simple geometric
interpretation of the problem represented in the kernel space.

The LS–SVM method is capable of solving both
classification and regression problems. The classification
approach is easier to understand and more historic. However,
the present study concerns regression, therefore only this is
introduced in the sequel, along with the most common
extensions (pruning, weighting, and a fixed size version). It
must be emphasized that all the methods can be applied to
classification as well.

This paper is organized as follows. Before going into the
details the main and distinguishing features of the basic
procedures are summarized is Section II. Section III presents
the geometric interpretation in the kernel space and
summarizes the main idea behind the propositions. Section IV
contains the details:
♦ It shows how the kernel space dimension can be reduced

using a so called partial reduction technique that results
in an overdetermined equation set and consequently a
sparse solution. (IV. A.).

♦ It proposes some possible ways to solve this equation set
(IV. B.).

♦ It presents a practical way to construct the
overdetermined equation set (IV. C).

♦ It gives the algorithmic complexity of the method (IV.
D.).

Section V. contains some experimental results, while
conclusions are drawn in section VI.

II. A BRIEF OVERVIEW OF THE LS-SVM METHOD
Only a brief outline of the LS-SVM method is presented, a

detailed description can be found in refs. [2]-[4], [6].
Given the { }N

iii ,d 1=x training data set, where p
i ℜ∈x

represents a p–dimensional input vector and iii zyd += ,

Extended Least Squares LS–SVM
József Valyon and Gábor Horváth

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3921

ℜ∈id is a scalar measured output, which represents the iy
system output disturbed by some iz noise. Our goal is to
construct an ()xfy = function, which represents the
dependence of the output id on the input ix . Let’s define the
form of this function as formulated below:

bbwy T
i

h

i
i +=+= ∑

=
)()(

1
xwx ϕϕ , (1)

[]Thwww ,...,, 21=w , []Thϕϕϕ ,...,, 21=ϕ .

The hp ℜ→ℜ:(.)ϕ is a mostly non-linear function, which
maps the data into a higher, possibly infinite dimensional
feature space. The main difference from the standard SVM is
in the constraints defined by the training samples [1]. The
optimization problem and the inequality constraints are
replaced by the following equations (Ni ,...,1=):

∑+=
=

N

i
i

T
peb

eCeJ
1

2
,, 2

1
2
1),(min www

w
 (2)

with constraints: () ii
T

i ebd ++= xw ϕ .
The first term forces a smooth solution, while the second

one minimizes the training errors (+ℜ∈C is the trade–off
parameter between the two terms). From this, a Lagrangian is
formed

(){ }∑
=

−++−=
N

i
iii

T
ip debewJebwL

1
),();,,(xw ϕαα , (3)

where the iα parameters are the Lagrange multipliers. The
solution concludes in a constrained optimization, where the
conditions for optimality are the followings:

() NidebL

NieC
e
L
b
L
w
L

iii
T

i

ii
i

N

i
i

N

i
ii

,...,100

,...,1 0

00

)(0

1

1

==−++→=
∂
∂

==→=
∂
∂

=→=
∂
∂

=→=
∂
∂

∑

∑

=

=

xw

xw

ϕ

ϕ

α

α

α

α

 (4)

This leads to the following overall solution:

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+ − dαIΩ1
1T 00

1

b
C

r

r

 (5)

where []Nddd ,...,, 21=d ., []Nααα ,..,, 21=α , []1,...,1=1
r

 and ,

)()(),(, ji
T

jiji K xxxx ϕϕ==Ω . Here ()jiK xx , is the kernel

function, and Ω is the kernel matrix. Throughout this paper
the RBF like kernel function is used, but other kernels can
also be applied [2].

For a given input x the response of an LS-SVM is a weighted
sum of N kernel functions, where the center parameters of
these kernel functions are determined by the training input
vectors xi :

() ()∑ = += N
i ii bKαy 1 ,xxx (6)

It is important to emphasize that according to (4) the iα
weights are proportional to the ie errors in the training points:

ii Ce=α . The following iterative methods are based on this
property of the LS–SVM.

A. LS–SVM pruning
A sparse LS-SVM can be obtained by applying a pruning

method, which eliminates some training samples based on the
sorted iα spectrum [2]-[4]. The iα values reflect the
importance of the training samples, therefore by eliminating
some training samples, represented by the smallest values
from this iα spectrum, the complexity of the result can be
reduced. The most irrelevant points are left out, by iteratively
leaving out the least significant ones. These are the ones
corresponding to the smallest iα values.

In a classical SVM sparseness is achieved by the use of an
ε–insensitive loss function, where errors smaller than ε are
ignored (e.g. ε–insensitive loss function). The pruning of LS-
SVM reduces the difference between the classical and the
least squares SVMs, because the omission of some data points
implicitly corresponds to creating an ε–insensitive zone [5].

The described method leads to a sparse model, but some
questions arise: How many neurons are needed in the final
model? How many iterations it should take to reach the final
model? Another problem is that a usually large linear system
must be solved in all iterations. The pruning is especially
important if the number of training vectors is large. In this
case however, the iterative method is not very effective.

B. Fixed LS–SVM
Another solution to this problem is called Fixed Size LS–

SVM [2], which uses an entropy based iterative method to
select a predefined (fixed) size subset of the training samples
as support vectors. After determining this optimal subset – in
the sense of the defined entropy measure – a final LS–SVM
network is trained.

C. Weighted LS–SVM
Weighted LS–SVM [2] addresses the problem of noisy data

– like outliers in a dataset –, by using a weighting factor in the
calculation based on the error variables determined from a
previous – first unweighted – solution. The method uses a
bottom–up approach by starting from a standard solution, and
calculating one or more weighted LS–SVM networks based
on the previous result. The weighting is designed such that the
results improve in view of robust statistics. Large ie –s mean
small weights and vice versa.

A common property of the described methods is that they

are all iterative, where every step is based on the result of an
LS-SVM solution. This means that the entire large problem
must be solved at least once, and a relatively large one in
every further iteration step. Another drawback is that pruning
and weighting cannot be easily combined, because the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3922

methods favor contradictory types of points. While pruning
drops the training points belonging to small iα -s, the
weighted LS–SVM increases the effects of these points

The proposed Generalized LS-SVM method leads to a
sparse solution, automatically answers the questions and
solves the problem described above.

III. THE MAIN IDEA
One of the most important features of a support vector

classifier or regressor is that they apply two consecutive
mappings. The first one maps the training data from the input
space into a higher-dimensional feature space, then by using
the kernel trick the feature space representation is mapped into
a kernel space. The feature space is defined by the

[]Th)(),...,(),()(21 xxxx ϕϕϕ=ϕ non-linear function set, while
the kernel space is defined by the kernel functions ()jiK xx ,

obtained using inner product as)()(),(ji
T

jiK xxxx ϕϕ= . The

main reason of introducing these mappings is to linearize the
problem: the solution of a problem in these spaces will be
linear even if in the original representation only a non-linear
solution could have been obtained [5]. In the kernel space, a
hyperplane is fitted on the training samples, so the task is to
determine the free parameters iα -s and b of this hyperplane
(see Eq. (6).

The main ideas introduced in this paper work in the kernel
space. As one of the main goals of this paper is to get a sparse
LS-SVM, we should define what sparseness means in the
kernel space. In general sparseness means that instead of using
all training samples, only a subset, namely the support vectors
are used. In the kernel space the degree of sparseness is
determined by the dimension of the hyperplane. If it is less
than the number of training samples (this is the case in a
traditional SVM) the solution will be sparse, while if the
dimensionality of the hyperplane equals to the number of all
training samples no sparseness is obtained. One major goal of
this paper is to propose a new way of dimension-reduction
without degrading the quality of an LS-SVM. Another feature
of the proposed approach is that it allows many different
linear fitting strategies (even a non-linear fit) in the kernel
space, so the result will be not only sparse, but a simpler
formulation, noise reduction and further reduction of
algorithmic complexity can also be achieved while the quality
is maintained. The unique feature of the propositions is that
they start directly from the kernel space formulation.

When an LS-SVM is constructed from N training samples:
1. The training samples are mapped to an N+1 dimensional

space, where N dimensions are defined by the kernel
functions and one by the desired output.

2. In the N+1-dimensional space an N-dimensional
hyperplane is fitted on the mapped samples. The free
parameters of the hyperplane are determined by the N
mapped training points, and one additional constraint

(∑ =
=

N

i
i

1
0α). For the sake of generalization and to avoid

overfitting the accuracy of the fit can be adjusted through
regularization. To trade off between training error and a
smooth solution the C regularization parameter is used (see
Eq. (2)), which is the same for all samples, and can be
considered as a predefined, intentional error term in the
kernel space fitting.

For a new sample x the response of the networks is
determined by Eq. (6). This response is a point in the
hyperplane and we expect that it will be close to the desired
output. When a sparse solution is looked for only a subset of
the training points are used to determine of the kernel space
and the hyperplane and the dimensions of both the kernel
space and the hyperplane are reduced. However, because of
this reduction some training points may be far from the
hyperplane, the accuracy of the mapping decreases. The main
problem is to reduce the dimension without decreasing the
accuracy.

In dimension reduction some questions arise: How many –
and which – dimensions are needed in the kernel space? In a
more definite form: can we use less than N dimensions, and
how can the necessary dimensions be selected? What is a
good value of C, or more generally, how should the
hyperplane be placed in the kernel space?

Having fewer dimensions in the kernel space result in a
sparse solution, while it means that we have more than the
required number of points for determining the hyperplane in
the kernel space. Having more points than dimensions in the
kernel space an overdetermined equation set is obtained and
this allows us to optimize the linear fit. The dimensionality of
the kernel space is high enough, if samples (not used in
determining this space) fall close to this plane after mapping.
This is illustrated in a simple example in Fig. 1. Here the
training points determine a hyperplane in the three-
dimensional kernel space. In this kernel space all training
points fit exactly the hyperplane. Reducing the dimension of
this hyperplane we should select which training points will be
used to define the two-dimensional hyperplane. At the same
time in general in this reduced kernel space there will be some
error in the mapping of the not used training points. Defining
a tolerance interval one can decide if the dimension reduction
can be allowed or not.

a.)

0 2 4 6 8 10
0

2

4

6

8

10

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3923

b.)

0 2 4 6 8 10 0

2

4

6

8

2

4

6

8

10

Fig. 1 The image of training samples in a kernel space of different

dimensions. Using all three samples as support vectors (kernel
centers), a three-dimensional kernel can space guarantees exact fit for
the samples. The dashed lines represent a zone in which errors can be

accepted (corresponding to the ε-insensitivity of SVM)

IV. THE PROPOSED METHODS
This section proposes some modifications and extensions to

the standard LS–SVM. Their main purpose is to gain control
over the model complexity and to improve the quality of the
results.

A. Using an overdetermined equation set
If the training set consists of N samples, then our original

linear equation set (see eq. 5) will have)1(+N unknowns,

the iα -s,)1(+N equations and 2)1(+N multipliers. These
factors are mainly the values of the ()jiK xx , kernel function

calculated for every combination of the training inputs. The
cardinality of the training set therefore determines the size of
the kernel matrix, which plays a major part in the solution, as
algorithmic complexity; the complexity of the result etc.
depends on this. It is easy to see that, in order to reduce
complexity, this matrix has to be manipulated. Let’s take a
closer look at the linear equation set of eq. 5..

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+ − dαIΩ1
1T 00

1

b
C

r

r

 (7)

The first row means:

0
1

=∑
=

N

i
iα (8)

and the j-th row stands for the:
() ()[]

() jNjN

jjkj

dK

CKKb

=+

+++++ −

xx

xxxx

,

...,., 1
11

α

αα
 (9)

condition.
To reduce the equation set, columns and/or rows may be

omitted.
If the k-th column is left out, then the corresponding kα is

also deleted, therefore the resulting model will be smaller. The
condition of eq. 8. automatically adapts, since the remaining
α -s will still add up to zero.

If the j-th row is deleted, then the condition defined by the
()jj d,x training sample is lost, because the j-th equation is

removed.
The most important component of the main matrix is the Ω

kernel matrix; its elements are the results of the kernel
function for pairs of training inputs:

()jiji K xx ,, =Ω (10)

To reduce the size of Ω some training samples should be
omitted. Each column of the kernel matrix represents an
additive term in the final solution, with a kernel function
centered on the corresponding ix input. The rows however,
represent the input–output relations, described by the training
points. The solution (α –weighting) is determined to satisfy
these. It can be seen that the network size is determined by the
number of columns, which -in order to reach sparseness- must
be reduced. The following reduction techniques can be used
on the kernel matrix (the names of these techniques are
introduced here for easier discussion):

Traditional full reduction
A training sample ()kk d,x is fully omitted, therefore both

the column and the row corresponding to this sample are
eliminated. In this case however reduction also means that the
knowledge represented by the numerous other samples are
lost. The next equation demonstrates how the equation
changes by fully omitting some training points. The deleted
elements are colored grey.

 (11)
This is exactly what traditional LS–SVM pruning does

since it iteratively omits some training points. The information
embodied in these points is entirely lost.

To avoid this information loss, one may use the technique
referred here as partial reduction.

The proposed partial reduction
In partial reduction, the omission of a training

sample ()kk d,x means that only the corresponding column is
eliminated, while the row -which defines an input-output
relation- is kept. Eliminating the k-th column reduces the
model complexity, while keeping the k-th row means that the
weighted sum of that row should still meat the kd regression
goal (as closely as possible).

By selecting some (e.g. M , NM <) vectors as “support
vectors”, the number of iα variables are reduced, resulting in

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3924

more equations than unknowns. The effect of partial reduction
is shown on the next equation, where the removed elements
are colored grey.

 (12)
This proposition resembles to the basis of the Reduced

Support Vector Machines (RSVM) introduced for standard
SVM classification in [13].

For further discussions, let’s simplify the notations of our
main equation as follows:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
= − IΩ1

1A
T

1
0

C
r

r

, ⎥
⎦

⎤
⎢
⎣

⎡
=

α
u

b
, ⎥

⎦

⎤
⎢
⎣

⎡
=

d
v

0
. (13)

The omission of columns with keeping the rows means that
the network size is reduced; still all the known constraints are
taken into consideration. This is the key concept of keeping
the quality, while the equation set is simplified.

It is important to mention that the hyperparameter C is not
necessarily needed in case of partial reduction, because as it
will be seen later, the overdermined system means that errors
inherently are expected at the samples. The original kernel
matrix formulation –including the regularization term C- is
used to show, how our proposition reduces the original
formulation, but it can be left out from the formulas entirely.
This corresponds to removing the second term from eq. 2.,
leaving that ie is optimized through the constraints.

The deleted columns can be selected many ways e.g.
randomly, or by using the method proposed in the sequel.

B. Solving the overdetermined system
It is easy to see that partial reduction leads to a sparse

solution, but having an overdetermined equation set, has
several other advantages. By having more equations than
unknowns, we have means to analyze this information set.
The solution of this equation set corresponds to a linear fitting
problem, where we have to fit an M+1-dimensional linear
hyperplane on the points defined by the N rows of the matrix.
Since N >> M+1, this can be done several ways.

The residual for the i-th data point ie is defined as the

difference between the observed response value, the desired
response id and the fitted response value iy , and is identified
as the error associated with the data. In the geometric
interpretation, the residual is the distance of the data sample
from the fitted hyperplane.

iii yde −= (14)
The solutions differ in the way they calculate the

accumulated error – which is then minimized – from the

residuals. The optimal solution depends on the statistical
properties of the dataset. (The term statistical here does not
necessarily mean a large number of samples, but it means
“more than one” which is the case in the original
formulations.) Some possible solutions:
♦ Linear least squares
♦ Weighted linear least squares

• Custom weighting
• Robust methods

 Least absolute residuals (LAR)
 Bisquare weights

♦ Interpolation techniques (Linear, Polynomial, Spline)
♦ Nonlinear fitting
It is important to emphasize that the proposed partial reduction
is essential, since it allows us to have more samples than
dimensions in the kernel space, which allows us to optimize
further in this space.
1) Linear least squares

Usually there are two important assumptions that are made
about the noise (z):
♦ The error exists only on the output.
♦ The errors are random and follow a normal (Gaussian)

distribution with zero mean and constant variance 2σ .
In this case we minimize the summed square of the residuals:

∑ −=∑=
==

N

i
ii

N

i
i ydeS

1

2

1

2)((15)

The solution of equation (14) can be formulated as
vAAuA TT = . (16)

The modified matrix A has)1(+N rows and)1(+M
columns. After the matrix multiplications the results are
obtained from a reduced equation set, incorporating AAT ,
which is of size)1()1(+×+ MM only. Our proposition, to
use partial reduction along with the linear least squares
solution has already been presented [7][8], where we named
this method LS2-SVM since it gives the least squares solution
of a least squares method.
2) Weighted methods
If the assumption that the random errors have constant
variance does not hold, weighted least squares regression may
be used. Instead of leveling the errors statistically, it is
assumed that the weights used in the fitting represent the
differing quality of data samples. The error term is:

∑ −=∑=
==

N

i
iii

N

i
ii ydwewS

1

2

1

2)((17)

The weighted solution can be formulated as:
WvAWAuA TT = . (18)

where W weight matrix is given by the diagonal elements of
the iw weights. The weights are used to adjust the amount of
influence each data point has on the estimated linear fit to an
appropriate level. This formulation is exactly the same that
was reached by Suykens in the Weighted LS-SVM but the
way it is derived differs greatly. Suykens introduces different
regularization parameters (C-s) for the samples, which leads to
the same result. In the method proposed here the weights can
be calculated from the statistical properties of the points in the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3925

kernel space. Another important difference is that the
proposed weighted solution is also sparse, so the weighting
can be determined from the distribution of many points.
♦ CUSTOM WEIGHTING - this method can be used if one had

a priori knowledge about the quality of the samples. If so,
weights can be defined, to determine how much each
learning sample influences the fit. Samples known to
have less noise are expected to fit more, than low-quality
ones.
The weights should transform the response variances to a
constant value. If the variances of the data are known, the
weights are given by:

21 iiw σ= . (19)
♦ LEAST ABSOLUTE RESIDUALS (LAR) – this method

minimizes the absolute difference of residuals, and not
the squared differences. This means that extreme values
have less influence on the fit.

♦ BISQUARE WEIGHTS – a method that minimizes a weighted
sum of squares, where the weight of each data point
depends on its distance from the fitted line. The farther
away is the point, the less weight it gets. This method fits
the hyperplane to the bulk of the data with the least
squares approach, while it minimizes the effect of
outliers. More details on robust regression can be found
in [9][10].

-15 -10 -5 0 5 10 15
0.85

0.9

0.95

1

1.05

1.1

Fig. 2 Linear interpolation and incremental learning

From the above described methods, in our experiments, we
will illustrate the bisquare weights method, which can be
effectively used in case of outliers. The reason for this is that
the effect of this solution is very straightforward and it is very
easy to verify the results - namely that the influence of an
outlier is reduced.
3) Interpolation techniques

The approximation of a complicated function by a simple
function is closely related to interpolation. Interpolation
techniques (linear, polynomial, spline), are mentioned here
because they allow us to have an exact answer for the training
samples even in case of a sparse solution. This may be
important in certain cases, e. g. if there is no noise, but a
sparse solution is required. Another advantage of these
methods is that they can be local, in a sense that a new sample
can be inserted, without recalculating the whole system. For

example in case of linear interpolation, a new training sample
can be inserted with only local effect. Linear interpolation
corresponds to having many different weighting sets on the
output, which depends on the input (or more directly the
corresponding point in the kernel space). Nonlinear fitting
means the same, but in that case, the weights change
continuously.

1 2 3 4 5 6 7 8 9 10
-10

-8

-6

-4

-2

0

2

4

6

8
data samples
least squares fit
roboust fit

Fig. 3 The least squares and the robust (bisquare) fitting in two

dimensions

4) Nonlinear fitting

All methods shown earlier apply a linear regression in the
kernel space. Generally, our goal is to map our data to a
higher dimensional (kernel) space, where it can be
approximated (or separated - in case of classification) linearly.
If the dimensionality of the kernel space is not large enough,
the data cannot be fit by a linear hyper plane. This can be a
result of being “too sparse”, which may be the result of an
extensive reduction. In this case the data can be fitted more
accurately, by a nonlinear in the kernel space. The
approximation results can still be calculated, but in this case it
will be a result of a nonlinear function of the kernels, instead
of the –linear– weighted sum, shown in eq. 7.

This possibility is only mentioned to give a more general
feel of the method. The nonlinear fitting is not discussed
further, since many questions arise about the applicability,
effect, and use of this solution.

C. Selecting support vectors
Standard SVM automatically selects the support vectors. To

achieve sparseness by partial reduction, the linear equation set
has to be reduced in such a way that the solution of this
reduced (overdetermined) problem is the closest to what the
original solution would be.

As the matrix is formed from columns we can select a
linearly independent subset of column vectors and omit all
others, which can be formed as linear combinations of the
selected ones. This can be done by finding a “basis” (the quote
indicates that this basis is only true under certain conditions
defined later) of the coefficient matrix, because the basis is by
definition the smallest set of vectors that can solve the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3926

problem.
The basic idea of doing a feature selection in the kernel

space is not new. The nonlinear principal component analysis
technique, the Kernel PCA uses a similar idea [11]. A basis
selection from the kernel matrix has been shown in [12].

This reduced input set (the support vectors) is (are) selected
automatically by finding a “basis” of the Ω (or the IΩ 1−+ C)
matrix. A slight modification of the common mathematical
method, used for bringing the matrix to the reduced row
echelon form, can be utilized to find a set of vectors that are
linearly independent. The linear dependence discussed here,
does not mean exact linear dependence, because the method
uses an adjustable tolerance value when determining the
“resemblance” (parallelism) of the column vectors. The use of
this tolerance value is essential, because none of the columns
of the coefficient matrix will likely be exactly dependent
(parallel).

The reduction is achieved as a part of transforming the TA
matrix into reduced row echelon form (Gauss-Jordan
elimination with partial pivoting) [14][15]. The algorithm uses
elementary row operations:
♦ Interchange of two rows.
♦ Multiply one row by a nonzero number.
♦ Add a multiple of one row to a different row.
The algorithm goes as follows:
1. Work along the main diagonal of the matrix starting at row

one, column one (i-row index, j-column index).
2. Determine the largest element p in column j with row

index
i ≥ j.

3. If p ≤ ε’ (where ε’ is the tolerance parameter) then zero out
the elements in the j-th column with index i ≥ j ;
else remember the column index (j) because we found a
basis vector (support vector). If necessary move the row,
to have the pivot element in the diagonal and divide the
row with the pivot element p. Subtract the right amount of
this row from all rows below this element, to make their
entries in the j-th column zero.

4. Step forward to the next diagonal element (i=i+1, j=j+1).
Go to step 2.

This method returns a list of the column vectors which are
linearly independent form the others considering tolerance ε’.

The tolerance (ε’) can be related to the ε parameter of the
standard SVM, because it has similar effects. The larger the
tolerance, the fewer vectors the algorithm will select. If the
tolerance is chosen too small, than a lot of vectors will seem to
be independent, resulting in a larger network. As stated earlier
the standard SVM’s sparseness is due to the ε-insensitive
margin, which allows the samples falling inside this boundary
to be neglected. According to this, it may not be very
surprising to find that an additional parameter is needed to
achieve sparseness in LS–SVM, and this parameter
corresponds to the one, which was originally left when
changing from the SVM to the standard least squares solution.

D. Complexity issues
This section deals with the algorithmic issues of the

described solutions. LS–SVM training requires the solution of
a linear equation set. In case of N training vectors this may
be solved using the LU decomposition in 2331 NN + steps,
each with one multiplication and one addition. If the training
set comprises N points, than the actual size of the equation
set is 1+N , but to keep the formulas simple the effect of the
one additional row is neglected. The reduced row echelon
form of a matrix can be reached in about 2N steps. The
proposed “support vector” selection is made based on the
result of this transformation. Let’s assume that the reduction
method leads to M selected vectors, and partial reduction is
used. In case of calculating the linear least squares solution,
the calculation of AAT and vAT (defined in (15)) requires

NM 2 and MN steps respectively. Solving this new equation
set costs 2331 MM + steps. So the total cost of the proposed

algorithm adds up to: 2322 31 MMMNNMN ++++ . If
NM << this means a smaller complexity compared to that of

traditional LS–SVM. It is important to mention that even if
there is no algorithmic gain, or it is rather small, this
calculation provides a sparse solution, with a good
performance. If –in order to reach sparseness– the iterative
pruning algorithm is applied to the traditional LS–SVM, than
an equation set –slowly decreasing in size– must be solved in
every step, which multiplies the complexity, whilst the errors
may grow.

V. EXPERIMENTS
The next figures show the results for a sinc(x) regression.

The training set contains 50 data samples burdened with
Gaussian noise.

Fig. 4. demonstrates that by using partial reduction along
with the described support vector selection method can lead to
almost the same quality result, but much less neurons. The
equation set is solved by the linear least-squares method.

-10 -5 0 5 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2 input data points
support vectors
partial red.
LS-SVM

Fig. 4 The continuous black line plots the result for a LS2-SVM using

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3927

the SV selection method described. The dashed line is the original
LS-SVM. (MSEpartial red.= 4.6*10-3, MSELS-SVM= 1.5*10-3)

It is important to mention that the result of the LS2-SVM is
based on a sparse network, containing 12 neurons, which were
marked as support vectors. If the number of training samples
is very high for the problem complexity, than the gain in the
network size can be very large.

The method works for multi-dimensional functions as well
(Fig. 5.) The number of training samples is 2500, while the
final network consists of only 63 neurons.

a.)

b.)

Fig. 5 Approximation of a two-dimensional sinc function. a.) The
plotted training samples and b.) the result of the partially reduced

LS–SVM, where the support vectors were selected by the
proposed method

The dimensionality of the function only affects the
calculation of ()jiK xx , , but nothing in the rest of the method.
Therefore the described process works irrespectively of
dimensionality. It is also independent from the kernel
function, since after calculating the kernel matrix, the
proposed methods can be applied, without any change.

In the last two experiments (Fig. 4. and Fig. 5.), the
complexity of the solution has been reduced greatly, while the
mean squared error stayed in the same order of magnitude.

We have proposed that in certain situations alternative
solutions of the overdetermined system may be useful.

Figure 6. shows the results of custom weighting. We have
60 samples burdened with Gaussian noise, where theσ of the
noise is known for all samples. It can be seen that the effect of
noise is reduced. The original LS-SVM is plotted, because the
weighted LS-SVM would give almost the same results as the
partially reduced solution, but in this case we have a sparse
solution.

-10 -5 0 5 10
-1

-0.5

0

0.5

1

1.5
input data points
support vectors
weighted part. red.
LS-SVM
SINC

Fig. 6 Custom weighting is applied with partial reduction.

(MSEweighted part. red.= 2*10-3, MSELS-SVM= 6*10-3)

The following experiment (Fig. 7.) shows the same problem
as Fig. 4, but in this case a few data points are corrupted to
provide outliers.

-10 -5 0 5 10
-1.5

-1

-0.5

0

0.5

1

1.5

2 input data points
support vectors
robust part. red.
LS-SVM

Fig. 7 The continuous black line plots the result for a partially

reduced LS-SVM solved by the bisquare weights method.
(MSErobust part. red.= 2.3*10-3, MSELS-SVM= 4.6*10-3)

It can be seen that by using a robust fitting method in the
kernel space, the effect of the outliers was successfully
reduced. Depending on the properties of noise, or on our a
priori knowledge, the other fitting methods can also be used
successfully.

VI. CONCLUSION
In this paper an extended view of the least squares support

vector machine was presented. The basic idea is that the
number of vectors chosen to be centers of kernels, and the
number of constraints can be different, which leads to an
overdetermined equation set. By achieving this equation set,
we have means to analyze, and weight the importance of the
constraints defined by the learning samples. This is especially
important, to deal with non Gaussian noise.

There describe methods lead to two important results:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3928

♦ A sparse LS-SVM solution
♦ Further means to analyze the problem and optimize the

solution.

REFERENCES
[1] V. Vapnik, "The Nature of Statistical Learning Theory", New–York:

Springer–Verlag., 1995
[2] J. A. K. Suykens, V. T. Gestel, J. De Brabanter, B. De Moor, J.

Vandewalle, “Least Squares Support Vector Machines”, World
Scientific, 2002

[3] J. A. K. Suykens, L. Lukas, and J. Vandewalle, “Sparse approximation
using least squares support vector machines”, IEEE International
Symposium on Circuits and Systems ISCAS'2000, 2000

[4] J. A. K. Suykens, L. Lukas, and J. Vandewalle, “Sparse least squares
support vector machine classifiers”, ESANN'2000 European Symposium
on Artificial Neural Networks, 2000, pp. 37–42.

[5] J.A.K. Suykens, J. De Brabanter, L. Lukas, and J. Vandewalle,
“Weighted least squares support vector machines: robustness and sparse
approximation”, Neurocomputing, 2002. pp. 85-105

[6] B. Schölkopf and A. Smola: Learning with Kernels. Support Vector
Machines, Regularization, Optimization, and Beyond. The MIT Press,
Cambridge, MA, 2002.

[7] J. Valyon and G. Horváth, „A generalized LS–SVM”, SYSID'2003
Rotterdam, 2003, pp. 827-832.

[8] J. Valyon and G. Horváth, „A Sparse Least Squares Support Vector
Machine Classifier”, Proceedings of the International Joint Conference
on Neural Networks IJCNN 2004, 2004, pp. 543-548.

[9] P. W. Holland, and R. E. Welsch, "Robust Regression Using Iteratively
Reweighted Least-Squares," Communications in Statistics: Theory and
Methods, A6, 1977, pp. 813-827.

[10] P. J. Huber, Robust Statistics, Wiley, 1981.
[11] B. Schölkopf, S. Mika, C.J.C. Burges, P. Knirsch, K.-R. Müller, G.

Rätsch, and A. Smola, „Input space vs. feature space in kernel-based
methods”. IEEE Transactions on Neural Networks, 1999, 10(5), pp.
1000–1017.

[12] G. Baudat and F. Anouar, “Kernel-based methods and function
approximation”. In International Joint Conference on Neural Networks,
pages 1244–1249, Washington DC, 2001. July 15–19.

[13] Yuh – Jye Lee and O. L. Mangasarian, “RSVM: Reduced Support
Vector Machines”, Proceedings of the First SIAM International
Conference on Data Mining, Chicago, 2001. April 5–7.

[14] W. H. Press, S. A. Teukolsky, W. T. Wetterling and B. P. Flannery ,
“Numerical Recipes in C”, Cambridge University Press, Books On-Line,
Available: www.nr.com, 2002

[15] H. Golub and Charles F. Van Loan, Matrix Computations”, Gene Johns
Hopkins University Press, 1989

