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Extend three-wave method for the
(3+1)-Dimensional Soliton Equation
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Abstract—In this paper, we study (3+1)-dimensional Soliton equa-
tion. We employ the Hirota’s bilinear method to obtain the bilinear
form of (3+1)-dimensional Soliton equation. Then by the idea of
extended three-wave method, some exact soliton solutions including
breather type solutions are presented.
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[. INTRODUCTION

The study of exact solutions of nonlinear partial differential

equations plays an important role in soliton theory and explicit
formulas of nonlinear partial differential equations play an
essential role in the nonlinear science. Also, the explicit
formulas may provide physical information and help us to
understand the mechanism of related physical models. Re-
cently, many kinds of powerful methods have been proposed to
find exact solutions of nonlinear partial differential equations,
e.g., the tanh-method [1], the homogeneous balance method
[2], homotopy analysis method [3], [4], [5], [6], [7], [8],
the F'—expansion method [9], three-wave method [10], [11],
[12], extended homoclinic test approach [13], [14], [15], the
(%)—expansion method [16] and the exp-function method
[171, [18], [19], [20], [21].
In this paper, by means of the Three-wave method, we will
obtain some exact and new solutions for the (3+1)-dimensional
soliton equation. In the following section we have a brief
review on the Three-wave method and then we apply the
method to find explicit formulas of solutions of the (3+1)-
dimensional soliton equation in Section 3. The paper is con-
cluded in Section 4.

II. THREE-WAVE METHOD

Dai et al. [22], suggested the three-wave method for nonlin-
ear evolution equations. The basic idea of this method applies
the Painlevé analysis to make a transformation as

u="T(f) )]

for some new and unknown function f.Then we use this
transformation in a high dimensional nonlinear equation of
the general form

F(uuutvuxvuyvuzuu:cxuuyyuuzm'") =0, ()
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where v = u(z,y,z,t) and F is a polynomial of u and its
derivatives. By substituting (1) in (2), the first one converts
into the Hirota’s bilinear form, which it will solve by taking
a special form for f and assuming that the obtained Hirota’s
bilinear form has three-wave solutions, we can specify the
unknown function f. For more details see [22], [23].
III. (3+1)-DIMENSIONAL SOLITON EQUATION

In this paper, we investigate explicit formula of solutions
of the following (3+1)-dimensional Soliton equation given in
(24]

Bugs — (24 + Ugge — 2uty)y + 2(ugdy; tuy)p =0, (3)

or equivalently

SUgyy — (2umt + Uppza — 2uxumx)y + Q(Urxuy)r =0. (4)

To solve eq. (3) we introduce a new dependent variable w
by

w=—3(Inf), )

where f(z,y,z,t) is an unknown real function which will be
determined. Substituting eq. (5) into eq. (4), we obtain the
following Hirota’s bilinear form

(3D.D, — D,D? —-2D,D,)f- f =0, (6)
where the D-operator is defined by
D;an];D?f((m:%t) ! g(l’,’l 7t) =

o o o 9 \kr O o
(Ber — 902) " (Byr — 95 (omr — 2)" ™

[f (21,91, t1)g(22, Y2, t2)],
and the right hand side is computed in
TI=T2=2, 1 =Y2=Y, t1 =la =1

Now we suppose the solution of eq. (6) as

f(z,y,z,t) = e 4 8; cos (&) + o cosh (£3) + dz et (8)
where

&1 =a1v+dyt )

and

and a1,d1,01,a4,b5,¢i,d; and §; are some constants to
be determined later. Substituting eq. (8) into eq. (6),
and equating all coefficients of exp(¢1), exp(—¢&1), sin (£2)
,cos (&2), sinh (£3) and cosh (€3) to zero, we get the following
set of algebraic equations for ay,d1,01,a;,b;,¢:,d;,0;, (i = 2,3)
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2dsbs + as3bs + 3a12a3bs — 3azes = 0,

—3as?bza; +3aics —ar13bs — 2d1bs = 0,
—3ai2asby + az3by + 3ascy — 2daby =0,

a13by + 2d1by — 3as%bra; — 3aice =0,

—3as2asbs — 3ascs — 3as2asbs + az’by (1D
+a3®b3 — 2daby + 2dsbs + 3 azcy =0,

—3as2bsag + 2dobs + 2dsbs + 3 as?bsas

—3ascs — 3azca — as>bs + az3by = 0,

—2 (Slzdzbg + 4512a23b2 -3 522(1363

+3 512612(:2 +4 (522(1331)3 + 2 522d3b3 =0.

Solving the system of equations (11) with the aid of Maple,
yields the following cases:

A. Casel:

12)

for some arbitrary complex constants aq, bo, b3, c3 and §;, i =
1,2, 3. Substitute eq. (12) into eq. (5) with eq. (8), we obtain
the solution as

fla,y,2,t) = e 461 cos (&) + 62 cosh (€3) + 3% (13)
and
7a167£1 + 53&1661
e~&1 + §1 cos (&) + 02 cosh (€3) + dzest
(

u(z,y,z,t) = —3

14)
for
o ai (a12b3 - 363) t
§1=a1x — T7
(15)
bacgz
§a = by + 2b33 ; &3 = b3y + c3z

If 63 > 0, then we obtain the exact breather cross-kink
solution

u(z,y,z,t) =

6 a11/d3 sinh(¢; — )
2 /83 cosh(&; — 0) + 61 cos (€2) + 62 cosh (&3)

for 1
0 = 5 111(63)

If 65 < 0, then we obtain the exact breather cross-kink solution

u(z,y,z,t) =

6 a1/ —0d3 cosh(& — 0)
2y/—03sinh(& — 6) + 01 cos (&) + 2 cosh (&3)

for
1
0= 3 In(—d3).

B. Casell:

by (2dy + a1®)

az =bz3=c3=dy=0,c0 = 3a
1

(16)
as (2 dl + a13 - a32a1)

ds =
3 2(11

for some arbitrary complex constants ai,as,be,d1,0;,
1 = 1,2,3. Substitute eq. (16) into eq. (5) with eq. (8), we
obtain the solution as follows

f(z,y,2,t) = e~ 1§, cos (&2) + b2 cosh (&3) + 83681 (17)

and
u(z,y,z,t) = —3(—aie”® + dysinh (&) as + dzase™)
Y, 2y 1) = e~ + § cos (€2) + 02 cosh (€3) + dzeft
(18)
for

&1 = ayx +dit,

by (2 di + a13) z

& = boy + 30 ) (19)

as (2 dl + a13 - a32a1) t

2&1

§3 = azT +

If 65 > 0, then we obtain the exact breather cross-kink solution
u(z,y,z,t) =

6 a11/d3 sinh(£; — 0) — 353 sinh (£3) a3
2+/83 cosh(&1 — 0) + 1 cos (£2) + G2 cosh (£3)

for

1
6= In(ds).

If 65 < 0, then we obtain the exact breather cross-kink solution

u(z,y,z,t) =

6 a1/ —d3 cosh(&; — 0) — 302 sinh (€3) as
2+/—d3sinh(&§ — 6) + 01 cos (§2) + d2 cosh (€3)

for
1
0= 5 In(—d3).
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C. Caselll:

a23b3 — 2&382 + a32b3a2
a; =d; =0,c3 = %a )
2

by — _a2b3 de — as (3 a23l)3 —6agce + a32b3a2)
2 as 8 4(12()3 ’
do — a23b3 - 3&362 (S _ 62&32
2 2b3 5 U1 a22 ’

(20)
for some arbitrary complex constants as, da, 01, d2. Substitute
eq. (20) into eq. (5) with eq. (8), we obtain the solution as
follows

f(x,y,2,t) =1+ 01 cos (§2) + dacosh (€3) + 03 (21)
and
3 61 sin (fg) ag — 3 62 sinh (fg) as
= 22
u(x,yﬁ:,t) 1+(51 COS (.52) +(52 COSh (€3)+53’ ( )
for
3bs — 3ascy) t
£ = anr azbsy (az 3 QJCZ)

- +Cz+ )
as 2 2()3

a93bs — 2ascy + as?bsas) z
53:a3x+b3y+(2 3 3C2 3 32)

2a2

as (3 a23b3 — 6@302 + a32b3a2) t

4CL2b3 ’
and
62&32
01 =
1 a22
D. CaselV:
. b263 as (4 a32b3 — 303)
a; = —as,ay = 1a3,Cy = ——— =
1 3, U2 3, €2 b3 , U1 2b3 )
dy — 1 (4&32b3 — 303) as do — as (4(132b3 — 303)
2 2bs e 2bs

(23)
for some arbitrary complex constants as,be, b3, c3,0;,
1 = 1,2,3. Substitute eq. (23) into eq. (5) with eq. (8), we
obtain the solution as follows

f(@,y,2,t) = e 5 + 61 cos (&) + 62 cosh (&) + d3e* (24)
and
u (x7 y7 Z’ t) =

_3 aze¢ + 46y sin (£3) az — do sinh (£3) az — dzaze’?
e~81 + &1 cos (€2) + 3 cosh (€3) + dzes

(25

for

_ as (4@32173 —SCg)t

§1 = —azz + b5

. bg(;gz 7 (4 a32b3 -3 (33) ast

= — — boy —

§2 = —iazx — by ™ 20 ,

as (4as?bs —3c3)t
& = —agx — bgy — c3z + 3 (Las’hs )

2 b3

If 635 > 0, then we obtain the exact breather cross-kink
solution

u(x7 y) Z7 t) =

—6 ag\/@sinh(fl — 9) — 34y sin (fg) az + 30 sinh (63) as
2/33 cosh(&; — 0) + 61 cos (&) + 62 cosh (£3)

for ) 1

T2

If 635 < 0, then we obtain the exact breather cross-kink
solution

1]?1(63).

u(@,y,2,1) =

—6 agy/—03 cosh(&; — 6) — 3idy sin (§2) ag + 302 sinh (€3) as
2y/—03sinh(& — 6) + 01 cos (&) + 2 cosh (&3)

for 1
0= 5 In(—d3).

IV. CONCLUSION

In this paper, using the three-wave solution method we
obtained some explicit formulas of solutions for the (3+1)-
dimensional Soliton equation. Three-wave solution method
with the aid of a symbolic computation software like Maple
or Mathematica is an easy and straightforward method which
can be apply to other nonlinear partial differential equations.
It must be noted that, all obtained solutions have checked in
the (3+1)-dimensional Soliton equation. All solutions satisfy
in the equations.
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