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Exponential stability of uncertain Takagi-Sugeno

fuzzy Hopfield neural networks with time delays
Meng Hu and Lili Wang

Abstract—In this paper, based on linear matrix inequality (LMI),
by using Lyapunov functional theory, the exponential stability crite-
rion is obtained for a class of uncertain Takagi-Sugeno fuzzy Hopfield
neural networks (TSFHNNs) with time delays. Here we choose a gen-
eralized Lyapunov functional and introduce a parameterized model
transformation with free weighting matrices to it, these techniques
lead to generalized and less conservative stability condition that
guarantee the wide stability region. Finally, an example is given to
illustrate our results by using MATLAB LMI toolbox.
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Exponential stability; Time delay; T-S fuzzy model.

I. INTRODUCTION

IN past few years, the well-known Hopfield neural network

has been extensively studied, and successfully applied in

many areas such as combinatorial optimization, signal process-

ing and pattern recognition, see e.g.[1,2]. Recently, it has been

realized that significant time delays as a source of instability

and bad performance may occur in neural processing and

signal transmission. Thus, the stability problem of Hopfield

neural networks has became interesting and many sufficient

conditions have been proposed to guarantee the asymptotic or

exponential stability for the neural networks with various type

of time delays, see for examples [3]-[6]. In practical systems,

analysis of a mathematical model is usually an important work

for a control engineer as to control a system. However, the

mathematical model always contains some uncertain elements,

these uncertainties may be due to additive unknown internal or

external noise, environmental influence, poor plant knowledge,

reduced-order models, uncertain or slowly varying parameters.

Therefore, under such imperfect knowledge of the mathemat-

ical model, seeking to design a robust control such that the

system responses can meet desired properties is an important

topic in system theory. Hence, robust stability analysis for

uncertain time-delay systems have been the focus of much

research in recent years [6]-[10]. Fuzzy systems in the form

of the Takagi-Sugeno (T-S) model [11] have attracted rapidly

growing interest in recent years [12,13]. TS fuzzy systems

are nonlinear systems described by a set of IF-THEN rules.

It has shown that the T-S model can give an effective way

to represent complex nonlinear systems by some simple local

linear dynamic systems with their linguistic description. Some

nonlinear dynamic systems can be approximated by the overall

fuzzy linear T-S models for the purpose of stability analysis

[12,13]. Originally, Tanaka and his colleagues have provided a
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sufficient condition for the quadratic stability of the T-S fuzzy

systems in the sense of Lyapunov in a series of papers [14,15]

by considering a Lyapunov function of the sub-fuzzy systems

of the T-S fuzzy systems.

Based on the above discussions, we shall generalize the

ordinary T-S fuzzy models to express a class of Hopfield neural

network with time delays. The main purpose of this paper is

to study the exponential stability results of TSFHNNs in terms

of LMIs. The main advantage of the LMI based approaches is

that the LMI stability conditions can be solved numerically

using MATLAB LMI toolbox [16] which implements the

state of art interior-point algorithms [17]. We also provide

a numerical example to demonstrate the effectiveness of the

proposed stability results.

II. PRELIMINARIES

Consider the following uncertain Hopfield neural networks

with time delays






u̇i(t) = −(ai + ∆ai)ui(t) +
n∑

j=1

(wij + ∆wij)

×Fj(uj(t − τ)) + Ii,
ui(t) = φi(t), i = 1, 2, · · · , n.

(1)

where ui(t) is the activations of the ith neurons, positive

constants ai denote the rates with which the cell i reset its

potential to the resting state when isolated from the other cells

and inputs, φi(s) is the initial condition, and φi(s) is bounded

and continuously differential on [−τ, 0]. wij is the connection

weights at the time t, Ii denote the external inputs, τ is the

unknown time delay, Fj(·) is the neuron activation functions

of jth neurons.

Throughout this paper, we make the following assumption:

(A) There exist positive numbers Lq such that

0 ≤
f(x) − f(y)

x − y
≤ Lq, q = 1, 2, · · · , n,

for all x, y ∈ R, x 6= y and denote L = diag{L1, L2, · · · , Ln}.

Suppose (A) holds, then it is clear the conditions of Lemma

2 in [18] hold for the functions f(·), therefore, similarly to the

proof of Theorem 1 in [18], we can obtain that the equilibrium

point of the system (1) is exist and unique.

Assume that u∗ = (u∗

1, u
∗

2, · · · , u
∗

n)T is the equilibrium

point of system (1), then we will shift the equilibrium point to

the origin by the transformation xi(t) = ui(t)−u∗

i , fj(xj(t))
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= Fj(uj(t)) − Fj(u
∗

j ). Then system (1) is transformed as

ẋi(t) = −(ai + ∆ai)xi(t) +
n∑

j=1

(wij + ∆wji)

×fj(uj(t − τ)), i = 1, 2, · · · , n.

For convenience, we can write it in the form

ẋ(t) = −(A + ∆A)x(t) + (W + ∆W )f(x(t − τ)), (2)

where x(t) = [x1(t), x2(t), · · · , xn(t)]T ∈ Rn;A = diag{a1,
a2, · · · , an}, ai > 0, i = 1, 2, · · · , n;W ∈ Rn×n; f(x(t)) =
[f1(x1(·)), f2(x2(·)), · · · , fn(xn(·))] ∈ Rn, f(0) = 0; ∆A
and ∆W represent the parameter uncertainties.

In this section, we will consider a Hopfield neural network

with time delays, which is represented by a T-S fuzzy model

composed of a set of fuzzy implications and each implications

is expressed as a linear system model.

The continuous fuzzy system was proposed to represent a

nonlinear system [11]. The system dynamics can be captured

by a set of fuzzy rules which characterize local correlation in

the state space. Each local dynamic described by the fuzzy

IF-THEN rule has the property of linear input-output relation.

Based on the T-S fuzzy model concept, a general class of T-S

fuzzy Hopfield neural networks with time delays is considered

here. The model of Takagi-Sugeno fuzzy Hopfield neural

networks with time delays is described as follows.

Plant Rule k:

IF {θ1(t) is Mk1} and· · ·and {θr(t) is Mkr},

THEN

ẋ(t) = −(Ak + ∆Ak)x(t) + (Wk + ∆Wk)f(x(t − τ)), (3)

where θi(t), (i = 1, 2, · · · , r) are known variables. Mkl(k ∈
1, 2, · · · ,m, l ∈ 1, 2, · · · , r) is the fuzzy set and m is the num-

ber of model rules. The parameter uncertainties ∆Ak,∆Wk

are time varying matrices with appropriate dimensions, which

are defined as follows:

[∆Ak ∆Wk] = MkF (t)[E1k E2k],

where E1k, E2k,Mk are known constant matrices of appro-

priate dimensions and F (t) is an known time varying matrix

with Lebegue measurable elements bounded by

FT (t)F (t) ≤ I,

where I is the identity matrix with appropriate dimension.

By inferring from the fuzzy models, the final output of

TSFHNNs is obtained by

ẋ(t) =
m∑

k=1

{ωk(θ(t))/
m∑

k=1

ωk(θ(t))}{−(Ak + ∆Ak)x(t)

+(Wk + ∆Wk)f(x(t − τ))}

=
m∑

k=1

ηk(θ(t)){−(Ak + ∆Ak)x(t)

+(Wk + ∆Wk)f(x(t − τ))}. (4)

The weight and averaged weight of each fuzzy rule are

denoted by

ωk(θ(t)) =
t∏

l=1

Mkl(θ(t)),

ηk(θ(t)) = ωk(θ(t))/
m∑

k=1

ωk(θ(t)),

respectively. Then term Mkl(θ(t)) is grade membership of

θl(t) in Mkl. We assume that

ωk(θ(t)) ≥ 0, k ∈ {1, 2, · · · ,m},
m∑

k=1

ηk(θ(t)) = 1,∀ t > 0.

Definition 2.1 For system (1) and every φi ∈ C([−τ, 0];Rn),
the trivial solution is globally exponentially stable in the mean

square with convergence rate γ for all admissible uncertainties,

If there exist γ > 0 and χ(γ) > 0 such that

‖ x(t) ‖2≤ χ(γ)e−2γt, ∀ t > 0.

Lemma 2.1 (Schur complement [17]).The LMI
[

Q(y) S(y)
ST (y) R(y)

]
< 0

is equivalent to

R(y) < 0, Q(y) − S(y)R−1(y)ST (y) < 0,

where Q(y) = QT (y), R(y) = RT (y), and S(y) depend

affinely on y.

Lemma 2.2([19]) Given matrices Q = QT ,H,E and R = RT

of appropriate dimensions, then

Q + HFE + ET FT HT < 0

for all F satisfying FT F ≤ R, if and only if there exist an

ε > 0 such that

Q + εHHT + ε−1ET RET < 0.

Lemma 2.3 For matrices P ∈ Rn×n,M ∈ Rn×k, N ∈ Rl×n

and F ∈ Rk×l with P > 0, ‖F‖ ≤ 1, and scalar ε > 0, one

has the following

(i) (MFN)T P + P (MFN) ≤ εPMMT P + ε−1NT N.
(ii) if P − εMMT > 0, then(A + MFN)T P−1(A +

MFN) ≤ AT (P − εMMT )−1A + ε−1NT N.

III. MAIN RESULT

In this section, we shall obtain a exponential stability

criterion for uncertain fuzzy Hopfield neural networks with

time varying delays.

Theorem 3.1 Under the assumption (A), the equilibrium point

of system (4) is exponential stability if there exist symmetric

positive definite matrices P > 0, Q > 0, R > 0, S > 0, X >
0, Y > 0, symmetric matrices Ni, Sij , (i = 1, · · · , 4, i < j <
4) and a scalar ε such that the following conditions hold for

k = 1, 2, · · · ,m,

Ω =





S11 S12 S13 S14 N1

∗ S22 S23 S24 N2

∗ ∗ S33 S34 N3

∗ ∗ ∗ S44 N4

∗ ∗ ∗ ∗ e−2ατR




≥ 0, (5)
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Σk =





Σ11 Σ12 Σ13 Σ14 Σ15 Σ16

∗ Σ22 Σ23 Σ24 Σ25 0
∗ ∗ Σ33 Σ34 Σ35 0
∗ ∗ ∗ Σ44 Σ45 0
∗ ∗ ∗ ∗ Σ55 0
∗ ∗ ∗ ∗ ∗ Σ66




< 0, (6)

where

Σ11 =2αP − PAk − AT
k P + LT XL + 2Y L + N1

+NT
1 + τS11 + εET

1kE1k,

Σ12 =−N1 + N2 + τS12,Σ13 = −Y + N3 + τS13,

Σ14 =PWk + N4 + τS14 + εET
1kE2k,

Σ15 =0,Σ16 = PMk,Σ22 =,Σ23 = −N3 + τS23,

Σ24 =−N4 + τS24,Σ25 = 0,Σ33 = Q − X + τS33,

Σ34 =τS34, Σ35 = 0,Σ44 = −e−2ατQ + τS44 + εET
2kE2k,

Σ45 =0, Σ55 = S, Σ66 = εI.

Proof: Consider the following Lyapunov functional

V (t) = V1(t) + V2(t) + V3(t),

where

V1(t) = e2αtxT (t)Px(t),

V2(t) =

∫ t

t−τ

e2αsfT (x(s))Qf(x(s)ds,

V3(t) = τ

∫ 0

−τ

∫ t

t+θ

e2αsẋT (s)Rẋ(s)dsdθθ.

Calculate derivative of V (t) along the trajectories of the

system (4), then

V̇1(t) = 2αe2αtxT (t)Px(t) + e2αtẋT (t)Px(t)

+e2αtxT (t)Pẋ(t)

= e2αtxT (t)2αPx(t) + 2e2αt

m∑

k=1

ηk(θ(t))xT (t)

×P{[−(Ak + ∆Ak)x(t)

+(Wk + ∆Wk)f(x(t − τ))]}

= e2αt{xT (t)2αPx(t) +
m∑

k=1

ηk(θ(t)){xT (t)2P

×[−(Ak + ∆Ak)x(t)

+xT (t)2(Wk + ∆Wk)f(x(t − τ))]}}

≤ e2αt

m∑

k=1

ηk(θ(t)){xT (t)2αPx(t)

+xT (t)2P [−(Ak + ∆Ak)x(t)

+xT (t)2P (Wk + ∆Wk)f(x(t − τ))]},

V̇2(t) = e2αtfT (x(t))Qf(x(t) − e2α(t−τ)fT (x((t − τ)))

×Qf(x((t − τ))

= e2αt{fT (x(t))Qf(x(t) − fT (x((t − τ)))e−2ατ

×Qf(x((t − τ))},

V̇3(t) = τ2e2αtẋT (t)Rẋ(t) − τ

∫ t

t−τ

e2αtẋT (t)Rẋ(t)ds.

By using Jensen’s inequality [20], we have

−τ

∫ t

t−τ

e2αtẋT (s)Rẋ(s)ds

≤ −e2α(t−τ)

[ ∫ t

t−τ

ẋ(s)ds

]T

R

[ ∫ t

t−τ

ẋ(s)ds

]

= −e2αt

[ ∫ t

t−τ

ẋ(s)ds

]T

(e−2ατR)

[ ∫ t

t−τ

ẋ(s)ds

]
.

So

V̇3(t) ≤ τ2e2αtẋT (t)Rẋ(t) − e2αt

[ ∫ t

t−τ

ẋ(s)ds

]T

×(e−2ατR)

[ ∫ t

t−τ

ẋ(s)ds

]

≤ e2αt

{
ẋT (t)τ2Rẋ(t) −

[ ∫ t

t−τ

ẋ(s)ds

]T

×(e−2ατR)

[ ∫ t

t−τ

ẋ(s)ds

]}
.

Finally, let S = τ2R, then

V̇ (t) ≤ e2αt

m∑

k=1

ηk(θ(t))

{
xT (t)2αPx(t)

+xT (t)2P [−(Ak + ∆Ak)x(t)

+xT (t)(Wk + ∆Wk)f(x(t − τ))]

+fT (x(t))Qf(x(t)) − fT (x((t − τ)))e−2ατ

×Qf(x((t − τ))) + ẋT (t)τ2Rẋ(t)

−

[ ∫ t

t−τ

ẋ(s)ds

]T

(e−2ατR)

[ ∫ t

t−τ

ẋ(s)ds

]

−fT (x(t))Xf(x(t)) − 2xT (t)Y f(x(t))

+fT (x(t))Xf(x(t)) + 2xT (t)Y f(x(t))

}
.

Noting that X and Y are positive definite matrices and using

Assumption (A), we can get

xT (t)Y f(x(t)) ≤ xT (t)Y Lx(t), (7)

fT (x(t))Xf(x(t)) ≤ xT (t)LT XLx(t). (8)

According to Leibniz-Nowton formula, for any matrices

Ni, (i = 1, · · · , 4), the following equations hold

2[xT (t)N1 + xT (t − τ)N2 + fT (x(t))N3

+fT (x(t − τ))N4] × [x(t) − x(t − τ)

−

∫ t

t−τ

ẋ(s)ds] = 0. (9)

On the other hand, for any appropriately dimensional ma-

trices Sij , (i = 1, · · · , 4, i ≤ j ≤ 4) the following equation

also hold:




x(t)
x(t − τ)
f(x(t))

f(x(t − τ))





T 



Υ11 Υ12 Υ13 Υ14

ΥT
12 Υ22 Υ23 Υ24

ΥT
13 ΥT

23 Υ33 Υ34

ΥT
14 ΥT

24 ΥT
34 Υ44




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×





x(t)
x(t − τ)
f(x(t))

f(x(t − τ))



 = 0, (10)

where Υij = τ(Sij − Sji), i = 1, · · · , 4; i ≤ j ≤ 4.

Then we add the terms on the left sides of equations (9)-

(10) to V̇ (x(t)), consider (7)-(8) and by the fact that for any

r ≥ 0 and any function f(t), then

∫ t

t−r

f(t)ds = rf(t).

Therefore, V̇ (x(t)) can be expressed as follows:

V̇ (x(t)) ≤ ξT
1 (t)Πkξ1(t) − τ

∫ t

t−r

ξT
2 (t)Ωξ2(t)ds,

where

ξ1 = [xT (t) xT (t − τ) fT (x(t)) fT (x(t − τ)) ẋT (t)]T ,

ξ2 = [xT (t) xT (t − τ) fT (x(t)) fT (x(t − τ)) ẋT (s)]T ,

and

Πk =





Π11 Π12 Π13 Π14 Π15

∗ Π22 Π23 Π24 Π25

∗ ∗ Π33 Π34 Π35

∗ ∗ ∗ Π44 Π45

∗ ∗ ∗ ∗ Π55




, (11)

where

Π11 = 2αP − PAk − AT
k P + P∆Ak + ∆AT

k P

+LT XL + 2Y L + N1 + NT
1 + τS11,

Π12 = −N1 + N2 + τS12, Π13 = −Y + N3 + τS13,

Π14 = PWk + P∆Wk + N4 + τS14,Π15 = 0,

Π22 = −NT
2 − N2 + τS22,Π23 = −N3 + τS23,

Π24 = −N4 + τS24,Π25 = 0,Π33 = Q − X + τS33,

Π34 = τS34,Π35 = 0,Π44 = −e−2ατQ + τS44,

Π45 = 0,Π55 = S.

Define

Γk =





Γ11 Π12 Π13 Γ14 Π15

∗ Π22 Π23 Π24 Π25

∗ ∗ Π33 Π34 Π35

∗ ∗ ∗ Π44 Π45

∗ ∗ ∗ ∗ Π55




,

ΘT
k =

[
MT

k P 0 0 0 0
]
,

Λk =
[

E1k 0 0 E2k 0
]
,

where Γ11 = 2αP − PAk − AT
k P + LT XL + 2Y L + N1 +

NT
1 + τS11,Γ14 = PWk + N4 + τS14,

then

Πk = Γk + ΘkF (t)Λk + ΛT
k FT (t)ΘT

k .

By Lemma 2.3, we have

ΘkF (t)Λk + ΛT
k FT (t)ΘT

k ≤ ε−1ΘkΘT
k + εΛT

k Λk.

So

Πk ≤ Γk + ε−1ΘkΘT
k + εΛT

k Λk.

By Lemma 2.1, if
∑

k and Ω are defined in (5)-(6), then

V̇ (x(t)) < 0, which indicates form the Lyapunov stability

theory, that the dynamics of the fuzzy Hopfield neural network

(4) is exponential stability, which completes the proof.

In the previous part, we developed a exponential stability

analysis approach for uncertaintain fuzzy Hopfield neural net-

work with time varying delays based on LMI. From Theorem

3.1, we can obtain a stability criterion for the fuzzy Hopfield

neural network with time varying delays without uncertains.

Theorem 3.2 Under the assumption (A), the equilibrium

point of system (4) with ∆Ak = ∆Wk = 0 is exponential

stability if there exist symmetric positive definite matrices

P > 0, Q > 0, R > 0, S > 0, X > 0, Y > 0, symmetric

matrices Ni, Sij , (i = 1, · · · , 4, i < j < 4) such that the

following conditions hold for k = 1, 2, · · · ,m,

Ω =





S11 S12 S13 S14 N1

∗ S22 S23 S24 N2

∗ ∗ S33 S34 N3

∗ ∗ ∗ S44 N4

∗ ∗ ∗ ∗ e−2ατR




≥ 0, (12)

Σk =





Ξ11 Σ12 Σ13 Ξ14 Σ15

∗ Σ22 Σ23 Σ24 Σ25

∗ ∗ Σ33 Σ34 Σ35

∗ ∗ ∗ Ξ44 Σ45

∗ ∗ ∗ ∗ Σ55




< 0, (13)

where

Ξ11 = 2αP − PAk − AT
k P + LT XL + 2Y L + N1

+NT
1 + τS11,

Ξ14 = PWk + N4 + τS14,

Ξ44 = −e−2ατQ + τS44.

Proof: If ∆Ak = ∆Wk = 0, its proof is similar to

Theorem 3.1, we omit it here.

Remark When r = 1, system (4) is simplified to the general

Hopfield neural networks with time delays and uncertainties.

Recently , some papers have been studied the Hopfield neural

networks with time delays . Thus our results make more

general case of those result in the literature.

IV. AN EXAMPLE

Consider the Plant rule 2 with m = 2. The T-S fuzzy model

of fuzzy Hopfield neural network with uncertainties is of the

following form:

Plant Rules:

Rule 1: IF {θ1(t) are Mk1} THEN

ẋ(t) = −(A1 + ∆A1(t))x(t) + (W1 + ∆W1(t))f(x(t − τ)),

Rule 2: IF {θ2(t) are Mk2} THEN

ẋ(t) = −(A2 + ∆A2(t))x(t) + (W2 + ∆W2(t))f(x(t − τ)),
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with f(x) = tanh(x). The membership functions for rule 1

and rule 2 are Mk1 = 1
e−2θ1(t) ,Mk2 = 1 − Mk1,

A1 =

[
1.5 0
0 1.7

]
,W1 =

[
−1 0.4
0 −0.1

]
,

A2 =

[
1.6 0
0 1.8

]
,W1 =

[
1 −0.8

0.4 0.5

]
.

E1k =
[

0.2 0.2
]
, E2k =

[
0.2 0.2

]
,

Fk =

[
sin(t) − cos(t)

− cos(t) − sin(t)

]
,Mk =

[
0.2 0.2

]
,

Obviously assumption (A) is satisfied, L = diag(1, 1). By

using MATLAB LMI toolbox, we solve the LMIs (5)-(6) for

ε > 0 and τ = 2 the feasible solutions are

P =

[
−0.1500 −0.0376
−0.0376 0.0197

]
, Q =

[
−4.2931 −0.0644
−0.0644 −5.3808

]
,

R =

[
−3.7689 0.0014
−0.0014 −2.5709

]
, S =

[
−1.7461 −0.6834
−0.6834 −1.7461

]
.

If ∆Ak = ∆Wk = 0, by using MATLAB LMI toolbox, we

solve the LMIs (12)-(13) for ε > 0 and τ = 2 the feasible

solutions are

P =

[
−0.6869 2.5702
2.5702 114.1880

]
, Q =

[
61.4404 3.2001
3.2001 54.8536

]
,

R =

[
49.2576 0.3889
0.3889 50.3812

]
, S =

[
30.9177 0.8834
0.8834 33.0755

]
.

Therefore, the concerned neural networks with time delays is

exponentially stable.
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