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Exponential stability of numerical solutions to
stochastic age-dependent population equations with
Poisson jumps
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Abstract—The main aim of this paper is to investigate the expo-
nential stability of the Euler method for a stochastic age-dependent
population equations with Poisson random measures. It is proved that
the Euler scheme is exponentially stable in mean square sense. An
example is given for illustration.
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[. INTRODUCTION

STOCHASTIC partial functional differential equations

are very important in stochastic models of biological,
physical and economical systems, and the study of stochastic
age-dependent population equations(SADPEs) has received a
lot of attention. Pollard [1] studied the effects of adding
stochastic terms to discrete-time age-dependent models that
employ Leslie matrices. Zhang [2] investigated the existence,
uniqueness and exponential stability for SADPEs. Li[3] and
Pang[4]discussed the convergence and exponential stability of
numerical solutions to SADPEs.

On the other hand, in the stochastic age-dependent popula-
tion system, due to brusque variations from some rare events,
the size of the population systems increases or decreases
drastically, so Poisson jumps is embedded into the SADPEs.
Recently, Li [5] and Wang [6] studied SADPEs with Poisson
jump process and given some results about the numerical
analysis. However, to the best of our knowledge, there is
little work on the exponential stability of numerical solutions
to SADPEs with Poisson random measures. Motivated by
Pang [4], we will study the exponential stability of numerical
solutions for the above systems. Although the way of analysis
follows the ideas in [4,7,8,9], we need to develop several new
techniques to deal with the Poisson random measure. Some
known results in [4] are generalized and improved.

The paper is organized as follows. In Section 2, we present
some basic preliminaries and define an Euler approximate
solution to SADPEs with Poisson random measures. In section
3, we show that the Euler method applied to SADPEs with
Poisson random measures is exponentially stable in mean
square sense. In section 4, an example is provided to illustrate
our theory.
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II. PRELIMINARIES AND THE EULER APPROXIMATION

Let V. = HY[0,4]) = {¢lp € LP([0,4]),22 e €
L?([0, A]), where a“’ is generahzed partial derivatives. } 14
is a Sobolev space. H = LP([0,A]),(P > 2) such that
Ve H=H V. V’ is the dual space of V. We denote
by ||-|l,|-], and || - ||« the norm in V| H and V’, respectively;
by (-,-) the duality product between V,V’, and by (-,-) the
scalar product in H.

Let (2, F,P) be a complete probability space with a
filtration (F);>o satisfying the usual conditions.Let W; be
a Wiener process defined on (£, F, P) and taking its values
in the separable Hilbert space K, with increment covariance
W. For an operator B € L(K,H) be the space of all
bounded linear operators from K into H, we denote by
[|B]|2 the Hilbert-Schmidt norm, i.e. ||B||z = tr(BWBT).
Let C = C([0,T]; H) be the space of all right-continuous
functions with left-hand limits from [0,77] into H. The space
C = C(]0,T];H) is assumed to be equipped with sup-
norm |[¢||c = sup |¢(s)|. LY, = LP([0,T); V) and Lf, =

0<t<T

Lr([0,T7; H).

Let (U, B(U)) be a measurable space and 7(du) a o- finite
measure on it. Let p = p(t),t € D, be a stationary F;-Poisson
point process on R™ with characteristic measure 7. Denote
by N(dt,du) the Poisson counting measure associated with
p, ie, N(t,A) = ZseDmsgt I4(p(s)). Let N(dt,du) :=
N(dt,du) — w(du)dt be the compensated Poisson random
measure that is independent of W,;. We refer to Ikeda [10]
for the details on Poisson point process.

We are concerned with stochastic age-dependent population
equations driven by Poisson random measures:

deP = [-22 —u(t,a)P + f(t, P)dt + g(t, P)dW,

—|—fU P)N(dt,du), in Q= (0,T) x (0, A),
P(O Po a) in [0, A],

t,a /Bta (t,a)da

where T' > 0, A > 0. P(t,a) denotes the population density
of age a at time ¢, 3(t, a) denotes the fertility rate of females
of age a at time ¢, u(t,a) denotes the mortality rate of age a
at time t. f(¢, P) denotes effects of external environment for
population system, g(t, P) is a diffusion coefficient, h(u, P) is
a jump coefficient. Let f(t,.) : [0, T|x L%, — H be a family of
nonlinear operator, F;-measurable almost surely in ¢; g(¢,.) :
[0,T] x L% — L(K, H) is the family of nonlinear operator,

in [0,T7],
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Fi-measurable almost surely in ¢; h(u,.) : U X L%[ — H is
the family of nonlinear operator, F;-measurable almost surely
in t.

Now,we define the Euler approximate solution. For sys-
tem (1), the discrete implicit Euler approximation on ¢t €

{0, h,2h,---} is given by the iterative scheme
it = Q- 8Qn+l —ult,a)Qih + f(t,QF)h
+g<t,Q::>AWn+ [ @), @)
with initial value QY = P(0,a), Q"(t,0) fo B(t,a)QPda,

n > 1. Here,@Q7} is the approximation to P(tn, a), fort = nh,
the time increment is h = T'/N, for some large integer N
such that h << 1. Brownian motion increment is AW,, =
W (tns1)—W(t,) and N (h, du) = N(t,i1,du)— N (t,,du).
We define the step functions:

N
Zy = Z Q?I['rz}z,(n,+1)}z)(t)a

n=0

where I is the indicator function for the set G. Then we
define the continuous Euler approximate solution

Q: = Qo—/ [8Q5 +u(s,a)Zs — f(s, Zs)|ds

/ (s, Zs)dWs + // (u, Zs) dsdu) 3)

with Qo = P(0, a) = [ B(t,)Qida, Q; = Q(t, a).
To state our main theorem we shall impose the following
conditions on the coefficients f, g and h.
(Hl) f(t,O) =0, _(](t,O) =0, h(t7 0) =0

(H3) u(t,a), B(t,a) are continuous in @ such that
0 <up <uft,a) <a< oo,

0<B(ta)<B<oo. (4

(H3) There exists a positive constant K such that z,y € C
and u € U,

() < )\2v||g<t ) — gt 9)|13
/ Ih(z g ) Pr(du) < KJz — y[2. 5)

(Hy4) (Coercivity condition) there exists constants o > 0,
¢ > 0, A € R, and a nonnegative continuous function v(t), t €
R*, such that

2 < f(t,0)0 > Hlglt, )3 + / V(s v) P ()
U
< —al|v)? + A +(1)e S, veV, (6)

where, for arbitrary § > 0, y(t) satisfies v(t) = o(e%), as
t — 00, i.e., lims_0y(t) /e = 0.

Definition 2.1 For a given step size h > 0, a numerical method
is said to be exponentially stable in mean square on Eq.(1) if
for any a € [0, A] there is a pair of positive constants ~ and

M such that

B|Q:* < Me™ ™, vt >0. (7

III. THE MAIN RESULTS

In this section, we shall provide some lemmas which are
necessary for the proof of our result. Because (); interpolates
the discrete numerical solution, we first study properties of
Qr.

Lemma 3.1 Under conditions (H;) - (Hs), we get

E( sup |Q:*) < Cn, (8)
0<t<T

where C) = 2E|QO|2€[2(A2[§2+u0+2)+2(3+2K1+C)K]T'

Proof: Applying Ito formula to |Q;|?
from (3) that

yields, it is easy to see

1Q¢|?
t
= |Q0|2+2/ < —88?15 —u(s,a)Zs, Qs > ds
0

t t
2 / (F(5, Z2), Qu)ds + / llg(s. Z2)3ds

/t(Qs,g(sZ dWs) //\huz |7 (du)ds

// (Qu, b, Z5)) + [h(u, Zo)|?] N (ds, du)

t
< |Qo|212/0 < BQS,QS >d872u0/0 (Zs,Qs)ds
2 [(f65.2.Qs + / lg(s, Z,)|3ds
+2/t(Qs,g(s,Z dw. +/t/ |h(u, Zs) |*m(du)ds
// (Quh(u, Z,)) + |h(u, Z,) 21N (ds, du).
Note
g

/ Quda(Q

<3 B0 / Q2da < SAFIQ.%. 9)

/ B(s,)Quda)’

Therefore, we get that

1Q¢|?
t t
|Q0|2+A252/ \QS|2ds+2u0/ 12,11 ds
0 0

IN

+2 [ 1165, Z01Qulds + [ lo(e,Z2) s
+2/0 (Qs,9(s,Z Jr/o /U‘h(uvzs”zﬂ'(du)ds
+/0‘ /U[Q(Qs,h(u, 7)) + |h(u, Zs)|2]]\7(ds,du),
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Applying the inequality 2ab < a? + b2, it follows that for any
te0,T],

E( sup [Qs*)
0<s<t
t
< E\Q0\2+(A252+u0+2)/ E sup |Q.|%ds
0<u<s

+E/0t|f(s7ZS)|2ds+E/ /|h(u,ZS)|27r(du)ds
+ 28 sw [ (Qugluz)aw, %E/ llg(s, Z.)13ds

0<s<t

+ Eossggt/ / (Qu, b, Zo) e |, Z0) 2N (do, da).
(10

Applying Burkholder-Davis-Gundy inequality, we have

E sup /()S(Qu,g(u,Zu)dW(u))

0<s<t

t
< 3B swp [Qul([ llg(s. Z0)|ds) !
0<s<t 0
1 t
< 6E sup |Qs|2+K1E/ llg(s, Zs)||3ds, (11)
0<s< 0
and
B sup /(/[Z(Qv,h(u,Zv))+|h(u,Zv)\2]N(dv,du)
0<s<tJo JU
< CE[(M, M)}), (12)
where M; =[5 [/ [2(Qs, h(u, Zs)) + |h(u, Z) ] N (ds, du).
By the definition of quadratic variation,
M, M)?
1
= { Y @Quh(u,Z)) + Ih(u, Z,)?)}
SEL) ,s<t
< 0 Y 1QuPlh(u, z,))3
s€Dy,s<t
+C( Y h(u, Z)|Y)?
seD,,s<t
< Cosup QA YD Ih(u, Z,)]?)3
0<t<t s€EDy,s<t
+C( > |h(u, Z)P)
s€Dy,s<ty
1
< 5 sup. \Qsl2+0( S h(u Z)P).  (13)
0=s seD,,s<t
So we have
E sup / /[Q(Qv,h(u,Zv))+|h(u,Zv)|2]N(dv,du)
0<s<tJo JU
1
< oE sw QP +CE( Y |h(u, Z,)[?)
0<s<t s€Dy,s<t
t
< g sp |QS\2+OE/ / \h(u, Z)|Pm(du)dt. (14)
6 o<s<t o Ju

Inserting (11) and (14) into (10) gives

E( sup Q)
0<s<t
< 2E\Qo|2+2(14252+u0+2) E sup |Qu[*ds
0<u<s

t
128 / |f<s,zs>|2ds+2<1+zK1>E / llg(s, Z)|2ds
0 0

2(1+C)E/()I/U|h(u, Z,)|*r(du)ds. (15)

we then compute, by (H;) and (Hs), that

E( sup Q%)
0<s<t
< 2E|Qo|* + 2(A%B? +up + 2) E sup |Q.|%ds
0<u<s
t
+2(3 4+ 2K + C)KE/ ||ZS||§ds
0
< 2E|Qo)* + [2(A%5% 4+ up + 2)

t
+2(3+ 2K, + O)K] | E sup |Q.|*ds. (16)
0

0<u<s
The well-known Gronwall inequality implies

232
E(Os<uIi |Qs‘2) < 2E|Q0‘26[2(A B +1L0+2)+2(3+2K1+C)K]T.
<s<t

Lemma3.2 Under conditions (H;)-(H3) and E|%%:[2ds <
YE|Qs|?, for each t € [0, 77,

sup E|Q, —
0<t<T

Zi* < Coh( sup E|Qu]*), an
0<t<T

where Co = 5(y +ud)T + 5(T + 2)K.

Proof: For any ¢ € [0, 7], choose a n such that ¢t € [nh, (n+

1)h). Then

Qi — Zy
ot t t
= — aQst_/ u(s,a)sts—i—/ f(s,Zs)ds
nh da nh nh
t ¢
+ [ gt zaaw. s [ bt z)Nds,dw.
nh nh JU

Using the basic inequality and (Hs), we have

Q¢ — Zt|2
|8Qs\ ds +5hu0/ |Zs2ds

IN

+5h/ (s, 7Z)] ds+5|/ (s, Z5)dW,|?

+5|/ / u, Zs)N (ds, du)|*.
nh
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By (H3) and martingale isometries, it follows

sup E|Q; — Zy|?
0<t<
T
S 5hE/ | QS|2d8+5hugE/ ‘ZS|2d8
0
+5hE/ (s, Z)|ds
+5 sup F max |/ (s, Zs)dW,|?
o<t<T n=0,1,2,-,N—
+5 sup F ma; |/ / u, Zs) ds ,du)|?
o<t<T n=0,1,2, N 1
T
< 5h’}’/ E|Qs‘2ds+5hugT sup E|Qs‘2
0 0<s<T
T
+5hE/ |f(57Zs)|2d8
0
(n+1)h ,
+5n:0’1117123:?’(N71E/nh |g(S7Z5)| ds
(n+1)h
o e E/ /|h(u7Zs)‘27T(d’U/)dS
n=0,1,2,,N-1 " [, v
T
< 5(y+ug)hT sup E\Qsl2+5hKE/ 112, |2.ds
0<s<T 0
(n+1)h
+10K max E/ HZsH%dS
n=0,12,,N-1" J ,
< 5(y+ud)hT sup E|Q,|*
0<s<T
+5(T +2)Kh sup E|Q[*
0<s<T
< Cyh sup E|Q[%

0<s<T

The proof is completed.

Lemma 3.3 Under conditions (H;)-(H3), then the Euler
approximate solution (3) will converge to the exact solution
of Eq.(1), i.e.,

sup E|P, —
0<t<T

Qt|2 < CBh sup E|Qt|27 v T> 07
0<t<T

where P; = P(t a) and C3 = [4(3 + C + 2K3)Co KT +
41 Ch ] (A /32+3110+1)+4(3+C+2K2)K

Proof: Combing (1) with (3) has

Qt

oD R A,
/0 ga ¢ /0(’)(1% Q.)d
+/0 [f (s, Py) = f(s, Z,)lds
[9(s, Ps) — g(

Jr/O: g
+ /0 /U [h(u, P,) — hlu, Z,)|N

9(s, Z,)]dW

(ds, du). (18)

Then applying Ito formula to |P; — Q;|?, we have
[P — Qi
t
Ps - s
= —2/ <u,PS—QS>ds
0 aa

—9 /t(u(s,a)(Ps —Zs), Ps — Qs)ds

0
+2/ (Ps — Qs, f(s,Ps) — f(s,Zs))ds
—9(s, Z,)||3ds

/ (P — Qun (9(u, Pa) — g(u, Z,))dW,)

v/ t [ bt 2~ b 2Pt
// (P. — Qs (s, P.) — h(s, Zy))

+|h(s, Ps) — h(s, Zs)|?] N (ds, du). (19)
Hence, for any ¢ € [0, 7],

E sup |Ps — Qs|?
0<s<t

t
E / AR |P, - Q.ds
0

IN

t
+u0E/ BIP — Q2 +2/Qs — Z,)ds
0

t ot
‘B / P, — Qu2ds + E / (s, P) — f(s. Z,)|ds

t
B / llg(s. P.)
0

+2F sup /S(P = Qu, (9(u, P,) — g(u, Z,))dWy,)

+E//\huP

+E0s;2t/0 /U[2(Pv — Qu,h(v, Py) — h(v, Z0))
+‘h(U7P'U) -

By (H3) and Lemma 3.2, it follows that

/\fsP

9(s. Zs)|3ds

W(u, Zs) |2 (du)ds

h(v, Zy)PIN (dv, du). (20)

f(s, Z,)|ds

< K/ E||P, — Z,||%ds
0
t t
< 2 [ BlIP. - Qulpds 4 2K [ E|Q. - Zu|j2ds
0 0
t
< 2K/ E|[Ps — Q,|[2ds + 2KTCoh( sup E|Q:]).
0 0<t<T

(2D

Similarly, we have

E/HgsP

(s, 2,)|3ds
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t
< 2K/E||PS — Q||2ds+2KTCyh( sup E|Qq|*)(22)
0 0<t<T
and
t
B [ [ 1t P = hu, 2)P(du)ds
0o JU
t
< 2K/E||Ps — Q,||2ds+2KTCyh( sup E|Qq|*)(23)
0 0<t<T

Applying the Burkholder-Davis-Gundy inequality, (H3) and
lemma 3.2, we have

E sup /0 (P = Qu. (g P) — glu, Z,))d W)

0<s<t

t
< CE[sup [P~ Qul(| llats. P.) — g(s. Z2)|ds)
0<s< 0
1
< ZE sup [Py — Q4
8 o<s<t
t
HE [ gt P2) ~ o(s. 22) s
0
1 t
< i1E sup \PS—QS|2+2K2K/ E||P, — Qu[2.ds
8  o<s<t 0
+2K, KTCoh( sup E|Qq¢|?). (24)
0<t<T
and
S
B s [ 207 - Quubto. ) - h(w. 2,)
0<s<tJo JU
+|h(v, P,) — h(v, ZU)|2]N(dv, du)
< 1B swp [P - Qi
4 g<s<t
+CE( > |h(u,Py) = h(u, Z,)|?)
s€EDy,s<t
1
< ZE sup |Ps_Qs‘2
0<s<t
t
+CE/ / |R(u, Ps) — h(u, Zs)|>m(du)dt
0 U
<

1 t
—E sup |PS—QS\2+20K/ E||P, — Q,||%ds
4 o<s<t 0

+2CKTCyh( sup E|Q¢|?). (25)
0<t<T

Substituting (21)-(25) into (20), we obtain that
E[ sup |P9 - Qs|2]
0<s<t
< [2(A%B% 4 3ug 4+ 1) + 4(3 4+ C + 2K5) K]

t
E sup |P, — Qu|*ds + [4(3 + C + 2K3)Co KT
0 0<u<s

+4ugCoTIh( sup E|Qq[?). (26)
0<t<T
By the Gronwall inequality, we have
E[ sup |Ps — Q)% < Myh( sup E|Q.*)eMT. (27)
0<s<t 0<t<T

Whereﬁ M, = 4(3 + C + 2K2)CQKT + 4ugCoT, My =
2(A2B% + 3ug + 1) + 4(3 + C + 2K K.

Lemma 3.4 Under condition (H4), the exact solutions of
Eq.(1) is exponentially stable in mean square. That is, there
exist two positive constants C, 7 such that

t
E|P? < C(E|Pof* + / A(s)e0)e ™ 28)
0

Proof: we can choose § > 0 small enough such that {—¢ > 0.
Then Ito formula implies

6(5—5)t|Pt|2 _ |P0|2
t
— (-0 [ IR
0

ot
+2/ el6=9)s < _9% _ u(s,a)Ps, Ps > ds
0 da

t t
2 / €5 f(s, P,), P)ds + / €009 |g(s, P,)|3ds
0 0

t
+2/ e(f_é)S(Ps’g(&Ps)de)
0
t
+/ /6(575)"‘|h(u,Zs)l27f(dU)dS
0 JU

+/t/ €=D%12(Qy, h(u, Z0)) + |(u, Zs) 21N (ds, du).
0 Ju 29,

Since [ e€=95(Py, g(s, P)dWy)

and [y [, €€0%(2(Qu, h(u, Z4)) + |h(u, Z.)|?|N (ds, du)
are martingale, they follow that

E [y e€9%(Py, g(s, P)dW,) = 0 and

t

E/ /e(5’5)s[2(Qs,h(u,Zs))+|h(u,ZS)\2}N(ds,du):O.
0 U

Therefore

B P, ?

IN

t
IR + (£ 6) / (€95 | P, ds
0
t
P,
—QE/ 6(5_6)5 < —87‘,Ps > ds
0 8(1
t
quOE/ e&=03( Py, P,)ds
0
t
+2E/ e&=93(f(s, Py), Py)ds
0
t
+E [0 s, P s
0

t
+E/ /e<5_5)s|h(u,Zs)|27r(du)ds
0o Ju

IN

t
EIR + (€ 9) [ €Pop|p.as
0

t A
+E/ 6(57&5(/ B(s,a)Pyda)?ds
0 0
¢
72u0/ 6(576)3E|Ps‘2d5
0

t
+2E/ e&=93(f(s, Py), Py)ds
0
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t
VE / €03 |g(s, P,)||3ds
0
t
+E / / €% h(u, Z,) [P (du)ds
0 U
t
< EIRP+(e-0) [ e OEIR s
0
t A A
+/ 6(5’5)3(/ BQ(S,a)PSdaE/ P2Zda)ds
0 0 0
t
_QUO/ eEs B P, 2ds
0
t
Yy / €05 (f(s, P,), Py)ds
0
t
VE / €03 |g(s, P,)||3ds
0

t
+E/ / &% h(u, Z,)|*m(du)ds. (30)
0 Ju
By condition (H4), we have

et P2

t
< E|P0\2+(§—6+/\)/ =D F|Py|?ds
J0
t
—aE/ =I5 B|| P, 2ds
0
t
(A — 2u0) / €|, Pds
. 0
+/ v(s)e~%%ds
0
t
< E[PP+(—5—v) / e E|P,Pds
0

t
+/ v(s)e % ds. 31
0

where v = a/m? — X\ — AB? + 2uy.

Following the proof of [2], we have that the exact solutions
of Eq.(1) is exponentially stable in mean square. The proof is
completed.

Now we can state our main result of this paper.
Theorem 3.1 Under conditions (H1)-(H4) and a/m? — X\ —
AB? 4 2up > 0 hold, then the Euler method applied to Eq.(1)
is exponentially stable in mean square.
Proof: The proof is basically similar to those of Theorem 2.2
in Pang [4], we thus omit it here.
Remark 3.1 When h = 0, the Eq.(1) becomes the usual
SADPEs which was studied by Zhang[2] and Pang[4]. Hence,
Theorem 3.1 in this paper is a generalization of Theorem 2.2
of [4].

IV. AN EXAMPLE

Consider a stochastic age-dependent population equations
with jumps of the form

dP=[-22 — L P —tPldt

+ fuj<a wPN(dt,du), in Q= (0,T) x (0,1),
P(0,a) =1—a, in [0,1], (32)
1
Pt,a) = / L pta)da,  in [0,T],
0o 1—a
Where N (dt,du) is a compensated Poisson random measure
on [0,00) x [~1,1]. Let H = L?([0,1]), and V = W}([0,1])
(a Sobolov space with elements satisfying the boundary
conditions above), M = R, u(t,a) = B(t,a) = -,
f(t,P)=—tP, h(u,P) =uP, P(0,a) =1—a.
Clearly, u(t,a) and [3(t,a) satisfy condition (Hsz), the

coefficients f and h satisfy conditions (H1) and (H3). on the
other hand, it is easy to deduce for arbitrary x € V' that

2< f(t,x), x> —|—/ |h(u, z)*r(du) < —el|z]? + Az|?,
U

where ¢ = 2t > 0 is small enough and A = fil u?m(du).
Therefore, it follows that condition (H4) is satisfied. Conse-
quently, the approximate solution to Eq.(32) will be exponen-
tially stable for any (¢,a) € (0,7) x (0,1) in the sense of
Theorem 3.1, provided E|%%: [?ds < vE|Q,|>.
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