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Abstract—Decentralized Tuple Space (DTS) implements tuple 

space model among a series of decentralized hosts and provides the 

logical global shared tuple repository. Replication has been introduced 

to promote performance problem incurred by remote tuple access. In 

this paper, we propose a replication approach of DTS allowing 

replication policies self-adapting. The accesses from users or other 

nodes are monitored and collected to contribute the decision making. 

The replication policy may be changed if the better performance is 

expected. The experiments show that this approach suitably adjusts the 

replication policies, which brings negligible overhead. 

 
Keywords—Decentralization, Replication Management, Self 

Adaption, Tuple Space.  

I. INTRODUCTION 

UPLE Space model, which was first introduced by 
coordination language Linda[1], is a classic paradigm for 

communications of multiple processes. Tuple space provides a 
multiagent like architecture, where agents can collaborate 
through writing, reading or removing tuples in the space.  Tuple 
space’s generative features, the referential and temporal 
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decoupling between processes, provide promising foundations 
for collaboration in the high dynamic, unstable environments. 
Initially, tuple space systems are implemented in the 
centralized style, as the original model implied. The typical 
cases are Sun JavaSpaces[2] and IBM TSpaces[3]. 

LIME[4, 5] is a representative implementation of 
Decentralized Tuple Space (DTS). In LIME, Local Tuple 
Spaces (LTS) distributed on different nodes are transient shared 
as the abstract global one, whose contents change over time, 
depending on the connectivity of participating local tuple 
spaces. LIME allows both location specified and unspecified 
tuple access. Tuple accesses with specified destination location 
avoid unnecessary transversal of nodes if the upper applications 
know where to access the tuple.   

However, in spite of the benefits brought by the DTS, 
applications also require low access latency, which is  difficult 
for DTS because the execution latency of remote operations 
takes approximately two or three orders of magnitude more 
than the local ones. This defect may pay off the advantages of 
decentralization.  

We have developed a replication management approach[6] 
to solve this problem, where differentiating replication policies 
were employed to meet the needs of different tuple access 
patterns. And we observed that it was difficult to manually 
configure the suitable replication policy. On the one hand, it is 
hard to estimate the runtime status of DTS; on the other hand, 
the tuple access pattern may change over time. Therefore, it is 
necessary to exploit the self-adaptive approach to make DTS 
can switch the policy automatically. 

This paper concentrates on the self-adaptive replication 
management of DTS for the collaborative applications among a 
small scale of decentralized nodes. This paper is outlined as 
follows: Section II briefly describes the model of DTS; Section 
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III presents the detailed replication management protocols; 
Section IV describes the criterion values, rules and actions used 
in the adaption; Section V describes the setup of experiments 
and analyze the results; Section VI briefly introduces the 
proposed related work to our proposal; And Section VII 
concludes this paper and gives the future research directions. 

II. DECENTRALIZED TUPLE SPACE 

A. Tuple Space 

A tuple space can be defined as an unordered collection of 
tuples. A tuple is a structure consisting of one or more typed 

field, such as 1ۃ, "abc",  The field with the concrete value .ۄ2.3
is called actual. A tuple template is a tuple that is used for 
matching tuple. A tuple template often contains one or more 
typed wildcard field, called formal. For example, the template 
,?string ,1ۃ  matches any tuple whose first field is 1, third ۄ2.3
field is 2.3, and second field is any string value. A template can 
contain no formals at all, which means the matched tuple must 
be exactly the same as the template. 

There are four primitives defined in the original tuple space 

model: out, in, rd, and eval. out is to write a tuple into the 
space. in and rd both specify a template and indeterminately 
get a matched tuple. If no matched tuple can be found, these 
two primitives (and thus the processes which invoke them) will 

block until some matched ones are out into the space. The 
difference between in and rd is that in will delete the gotten 
tuple from the space whereas rd not. eval is similar to out. But 
eval writes an active tuple, which will start a new process after 
the tuple writing. eval was omitted by many literatures since it 
introduces executable data. And this paper also omits it. In the 
extended tuple space models, some variants of original 

primitives are introduced. Such as inp and rdp, the probing 
version of in and rd, return null immediately if no matched 
tuple is found rather than block.  

B. Decentralized Tuple Space 

Decentralized tuple space expands traditional tuple space 
into the decentralized environment.  In a typical scenario of 
decentralization, there are a set of nodes participating in the 
tuple space, denoted as ࣛ ൌ ሼܣଵ, … ,  ሽ, none of which is|ࣛ|ܣ

responsible of coordinating others. The network is denoted by 
࣡ ൌ ሼ ௜݃௝ሽ, whose element indicates whether node ܣ௜ and ݆ are 

able to connect ( ݃௜௝ ൌ 1ሻ  or not ( ௜݃௝ ൌ 0 ). And ௜ࣨ  , the 
neighbor node set for node ܣ௜ , can be defined as ஺ࣨ೔ ൌ
ሼܣ௝| ௜݃௝ ൌ ,݇׌ሺڀ1 ௞ܣ א ஺ࣨ೔ܣٿ௞ א ஺ࣨೕሻሽ . We use ௜ࣨ  to 

represent ஺ࣨ೔  in the rest of this paper. Therefore, the tuple 

space seen by the node ܣ௜ at one moment is the transient union 
of LTSes hold by ܣ௜ and ௜ࣨ.  

When node ܣ௜ initiates primitives, it should explicitly 
specify the destinations. For example, ܜܝܗ௝

௜ሺ݁) means the tuple 
݁ is initiated by node ܣ௜ and written into the LTS of node ܣ௝ . 

஽்ௌ܌ܚ
௜ ሺݐሻ retrieves a certain tuple which matches template ݐ in 

the entire tuple space area. And ܑࣨܖ೔
௜ ሺݐሻ  deletes the tuple 

matching ݐ in node ܣ௜’s neighbor. Because of the restrictions of 
connectivity, the first two cases above may be temporally 
unable to execute, but the model guarantees that these 
primitives are sent to the destination once the connections 
between source and destination nodes are available. 

III. REPLICATION MANAGEMENT 

A. Replication and Consistency 

Any tuple can have one or more replicas located at different 
nodes. To mark the replication relationship, the master tuple 
and all its replicas share the identical ID. A tuple’s master and 
replica will not exist at the same node simultaneously. All 
tuples are versioned, and the version number is monotone 

increasing along the update done by the extended up primitive. 
Considering the decoupling of time and space, the global 

consistency model is not adopted in DTS; otherwise mutual 
exclusive access is inevitable and distributed transactions are 
bound to be involved. This betrays purely decentralized 
semantics because that no node should play the special role of 
transaction manager; and no guarantee could be made that 
unannounced disconnection would not happen during a 
transaction. Moreover, it hurts performance in that the 
transaction will block all other primitives’ processing among 
the entire DTS.  

Therefore, a node-level consistency model is employed. 
When a replica is created in node ܣ௝ from the source tuple at 

node ܣ௜ (the source tuple may be the master or another replica), 
a consistency link is generated and tracked both in ݅ and ݆ for 
this tuple. When up is initiated and sent to the specified 
destination, if a matched tuple is found, master or replica, it gets 
updated and propagates the update through consistency links to 
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other nodes. During update process, no global atomicity is 
involved. And the update is realized in a “best effort” style. To 
achieve this consistency model, a protocol has been designed 
and implemented in [6]. 

B. Replication Policies Management 

To control the replicas’ distribution and overhead incurred 
by consistency, we introduce Replication Policies. A 
replication policy is the rule that decides how a replica should 
be created. In the current system, three replication policies are 
defined. 

 SO (Store Originally) means that no replicas are made 
at all. All the primitives are executed where the 
destination indicated. 

 RC (Read and Cache) means that when remote rd 
series primitives are initiated, it first check whether 
some matched local replica exists. If not, the primitive 
is executed as normal, but create a replica automatically 
when the retrieve returns. The new replica is cached for 
the following reads. 

 FR (Full Replication) means all the tuples are 
replicated in all the nodes in DTS. Therefore, no remote 
reads are necessary. Meanwhile, all the tuples written 
anywhere and all updates must be pushed to all other 
nodes if connection is available. 

 
Fig. 1 The schematics of replication policies’ adaption 

The application of replication policies is denoted as ஺ܲ
஼ , 

where ܣ is the node on which the policy is applied; ܥ is a tuple 
category, which consists of a group of tuples which share the 
similar access pattern. Each tuple belongs to one and only one 
category. This triple defines exactly when and where the 

replicas are created. For example, ௜ܲ
஼భ ൌ  means that the ܀۴

tuples in DTS belonging to the category ܥଵ should make the 
full replication to the node ܣ௜. This application also implies that 
differentiating policies can be configured to the same tuple 
category for different nodes. 

 

IV. SELF ADAPTION OF REPLICATION POLICIES 

A. Overview of Self Adaption 

 We separate the adaption system into three parts, as shown 
in Fig. 1. The local tuple space is responsible of handling access 
requests from users or upper applications, and also sending or 
processing the replication-related commands initiated in other 
nodes. All these requests essentially can be considered as reads 
or writes to the tuples. These data are the collected by the 
monitor as the basis for the policy switch. After collection, 
some criterion values are calculated. These data’ symbols are 
listed in TABLE I, and their usage and calculation is illustrated 
in the following equations. Periodically, according to these data, 
the policy switcher makes the decision and thus executes the 
switch process. 

TABLE I 

SYMBOLS USED IN THE ADAPTION RULES 

Symbol Meaning 

஺݋
஼ሺ݅ሻ 

The total write number of tuples of category ܥ in 
node ܣ until the ݅-th period. 

஺ݎ
஼ሺ݅ሻ 

The total read number of tuples of category ܥ in 
node ܣ until the ݅-th period. 

஺ݑ
஼ሺ݅ሻ 

The total update number of tuples of category ܥ 
in node ܣ until the ݅-th period. 

݀஺
஼ሺ݅ሻ 

The total deletion number of tuples of category ܥ 
in node ܣ until the ݅-th period. 

஺ݎ̃
஼ሺ݅ሻ 

The total read number of replicas of category ܥ 
in node ܣ until the ݅-th period. 

݊஺
஼ሺ݅ሻ 

Estimation of the total number of tuples of 
category ܥ in node ܣ in the ݅-th period. 

ො݊஺
஼ሺ݅ሻ 

The total number of used replicas of category ܥ 
in node ܣ in the ݅-th period. 

஺ߛ
஼ሺ݅ሻ 

The number of replicas of category ܥ in node ܣ 
converts from unused to used in the ݅-th period. 

஺ߤ
஼ሺ݅ሻ 

The total number of unused replicas of category 
 .in the ݅-th period ܣ in node ܥ

߮஺
஼ሺ݅ሻ 

The total number of used replicas of category ܥ 
in node ܣ in the ݅-th period. 

஺ܲ
஼ሺ݅ሻ 

The replication policy applied in the node ܣ for 
 in the ݅-th period ܥ
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We divide the adaption into two phases, no replication (SO) 

and how to replicate (RC or FR), as shown in Fig. 2. The 
switch decision maker first decides whether the replication 
should be enabled. Then if it is true, gives the further decision 
to figure out which replication policy is better. The following 
two sub sections give the more detailed description of how the 
decision is made. Notably the direct SO to FR switch is not 
allowed according to the above two-phase decision making. 
After the final 
decision is made and 
the replication policy 
must be changed, the 
switch action is then 
executed as TABLE 
II shown. 

 
 

B. Decide Whether Enable or Disable Replication 

Whether to enable or disable replication is decided by the 
proportion of reads and writes to the tuples of a certain category. 

In the ݅-th period, the monitor of node ܣ௞ collects ݎ௞
஼ሺ݅ሻ, ො݊௞

஼ሺ݅ሻ , 
and fetches ݋஺

஼ሺ݅ሻ  and ݀஺
஼ሺ݅ሻ  from all neighbors, ܣ׊ א ௞ࣨ . 

Then all the proportion of tuple reads and writes ݌௞
஼for each 

category ܥ are calculated as (1). 

௞݌
஼ሺ݅ሻ ൌ

ߙ · ௞ݎ
஼ሺ݅ሻ

ො݊௞
஼ሺ݅ሻ

ߙ · ௞ݎ
஼ሺ݅ሻ

ො݊௞
஼ሺ݅ሻ ൅ ߚ ·

∑ ஺ݑ
஼ሺ݅ሻ׊஺ࣨאೖ

∑ ݊஺
஼ሺ݅ሻ׊஺ࣨאೖ

 (1) 

As (1) shown, we care about the average read and write counts 
per replica instead of the total ones. ߙ and ߚ are the weights 
which are subject to ߙ ൅ ߚ ൌ 1. 

 ݊஺
஼ሺ݅ሻ is not directly collected but estimated by (2). This is to 

avoid the mess of read and write counting during data 
collection. 

݊஺
஼ሺ݅ሻ ൌ ݊஺

஼ሺ݅ െ 1ሻ െ ൫݀஺
஼ሺ݅ െ 1ሻ െ ݀஺

஼ሺ݅ െ 2ሻ൯ ൅
൫݋஺

஼ሺ݅ሻ െ ஺݋
஼ሺ݅ െ 1ሻ൯  

(2) 

To prevent the jitter which may incur oscillating switch, we 

employ ݌’s mobile average ݌ҧ and square deviation σሺ݌ሻ as the 
criterion values for decision making. The mobile average ݌ҧ is 
the unweighted mean of ݌ in pervious ܦ periods, as (3). 

ҧ௞஼ሺ݅ሻ݌ ൌ ቌ ෍ ௞݌
஼ሺ݉ሻ

௜

௠ୀ௜ି஽

ቍ  (3) ܦ/

௞݌ሺߪ
஼ሺ݅ሻሻ ൌ ඩቌ ෍ ሺ݌ҧ௞஼ሺ݅ሻ െ ௞݌

஼ሺ݉ሻሻଶ

௜

௠ୀ௜ି஽

ቍ  (4) ܦ/

Predefine three thresholds ߠௌை, ߠோா௉ (ߠௌை ൏  .ெௌாߠ ோா௉ሻ andߠ

If (5) is satisfied, ௞ܲ
஼ሺ݅ ൅ 1ሻ ൌ  .۽܁

௞ܲ
஼ሺ݅ሻ א ሼ۱܀, ҧ௞஼ሺ݅ሻ݌ٿሽ܀۴ ൏ ௞݌ሺߪٿௌைߠ

஼ሺ݅ሻሻ ൑  ெௌா (5)ߠ
Otherwise, if (6) is satisfied, the decision maker will further 

decide whether to choose RC or FR, illustrated in the next 
subsection. 

௞ܲ
஼ሺ݅ሻ ൌ ҧ௞஼ሺ݅ሻ݌ٿ۽܁ ൐ ௞݌ሺߪٿோா௉ߠ

஼ሺ݅ሻሻ ൑  ெௌா (6)ߠ

C. Decide whether to Apply RC or FR 

The reason for automatically creating replicas for all the 

tuples of a tuple category and pushing their updates (FR) is that 
most of these actions are useful. In other words, if the replicas 

are actually used, we tend to keep using FR. In this observation, 
we separate the created replicas as two kinds, used or unused. 

For the node ܣ௞, the used replicas are the ones who are read 
after creation by the primitives with the destination ܣ௞ , 
whereas the other replicas are the unused ones. To make the 
decision, we care about the proportion of becoming used 

replicas and the total replicas in one period, ݍ௞
஼ . 

௞ݍ
஼ሺ݅ሻ ൌ

௞ߛ
஼ሺ݅ሻ

௞ߛ
஼ሺ݅ሻ ൅ ௞ߤ

஼ሺ݅ሻ
 (7) 

In (7), ߤ௞
஼ሺ݅ሻ  cannot be directly monitored. Instead, it is 

calculated by (8). 

௞ߤ
஼ሺ݅ሻ ൌ ቌ ෍ ݊஺

஼ሺ݅ሻ
ೖࣨא஺׊

ቍ െ ߮௞
஼ሺ݅ሻ (8) 

Also for oscillating avoidance, ݍ௞
஼ሺ݅ሻ’s mobile average ݍത௞

஼ሺ݅ሻ 
and square deviation σሺݍ௞

஼ሺ݅ሻሻ for the previous ܦ periods are 
generated, similar as (3) and (4).  

We then predefine another two thresholds ߠோ஼ and ߠோ஼ 

TABLE II 

ACTIONS TAKEN IN POLICY SWITCH OF TUPLE CATEGORY ܥ IN NODE ܣ 

From To Action 

FR SO Remove all the replicas of ܥ in ܣ. 

FR RC Remove all the unused replicas of ܥ in ܣ. 

RC SO Remove all the replicas of ܥ in ܣ. 

RC FR Create replica links for all tuples of ܥ  in ܣ 
which hasn’t yet made replication. 

SO RC Do nothing. The replicas will be created when 
they are first read. 

 
Fig. 2 Switch of replication policies 
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ோ஼ߠ) ൏ ிோሻ. If (9) is satisfied, ௞ܲߠ
஼ሺ݅ ൅ 1ሻ ൌ  ,if (10) is hold ;܀۴

௞ܲ
஼ሺ݅ ൅ 1ሻ ൌ ۱܀ ; otherwise, the replication policy remains 

unchanged. 

௞ܲ
஼ሺ݅ሻ ൌ ത௞ݍٿ۱܀

஼ሺ݅ሻ ൐ ௞ݍሺߪٿிோߠ
஼ሺ݅ሻሻ ൑  ெௌா (9)ߠ

௞ܲ
஼ሺ݅ሻ ൌ ത௞ݍٿ܀۴

஼ሺ݅ሻ ൏ ௞ݍሺߪٿோ஼ߠ
஼ሺ݅ሻሻ ൑  ெௌா (10)ߠ

V. EXPERIMENT AND ANALYSIS 

A. System Implementation and Experiment Setup  

We have implemented the adaption modules upon LIME2[7], 
a simplified and reengineered edition of LIME, and LighTS[8], 
a light weight tuple space for single host. The architecture is 
shown in Fig. 3. We created the Replication Manager (RM) 
between the tuple space interface and LIME2, in which the 
Adaption Controller (AC) worked as the daemon along the 
tuple space. AC consisted of Monitor, Decision Maker and 
Policy Switcher, which worked together to adapt the replication 
policies managed by Replication Policy Manager. Tuples in the 
single host were stored in the Local Tuple Space, which were 
actually separated into two LighTS instances. The separation 
made convenient the monitoring the access patterns on replicas 
and masters respectively. 

 

Fig. 3 Architecture of DTS with self-adaptive replication policy switch 

 
The experiment was running a series of simulation with 

changing tuple access patterns upon several nodes. We 
deployed our adaptive DTS on 10 nodes, each of which run one 
or two agents, responsible of reading or writing (including out 
and update), as Fig. 4 shown. Each node was equipped with 
3.06GHz dual core Pentium D, 1G memory, and JDK 6 update 
10. These nodes were connected via 100Mbit LAN.  

 
Fig. 4 Experiment deployment diagram 

B. Self Adaption  

In this experiment, we showed the effect of self adaption by 
simulating the changing tuple access pattern. This was achieved 
by adjust agents’ parameters, which is listed in TABLE III. 
These settings were inspired by the log output of a collaborative 
application using our DTS. The Read Agent had two 
parameters, interval and prob. interval defined the interval 
between two reads operations’ start. And prob indicated the 
expected proportion to read the tuple that is not replicated 
locally. Out Agent and Update Agent also had interval, same as 

Read Agent. Besides, they had parameters ߤ and ߪ to control 
the tuple size they generate, which follows normal distribution. 
In the experiment described here, the tuple size parameters 

were set as ߤ ൌ 5000bytes and ߪ ൌ 200bytes. There were 
parameters about adaption, which were set as that ܦ ൌ 4 and 
period length is 30 seconds. Each experiment length was 30 
minutes, and thus contained total 60 periods. We started to 
record the data from the fourth period. 

 
The experiment results are shown in Fig. 6 and Fig. 7. In these 

two figures we give the average operation executing time 
(optime) in each period. For comparison, we also give the data 

TABLE III 

PARAMETER SETTING TO SIMULATE THE CHANGING ACCESS PATTERN 

Read Agent Out  Agent Update Agent 

Period: 1~15 
interval=500ms 
prob=0.2 
Period: 15~30 
interval=125ms 
prob=0.8 
Period: 30~45 
interval=250ms 
prob=0.2 
Period: 45~60 
interval=1500ms 
prob=0.2 

Period: 1~3 
interval=500ms 
Period: 3~12 
interval=1000ms 
Period: 12~18 
interval=1500ms 
Period: 18~36 
interval=500ms 
Period: 36~60 
interval=2000ms 

Period: 1~12 
interval=1000ms 
Period: 12~18 
interval=2500ms 
Period: 18~36 
interval=1000ms 
Period: 36~60 
interval=250ms 
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with adaption turned off and applied SO and FR constantly. 
The dash line indicates the point where replication policy 
switches occurred. The results show that the self-adaption will 
switch after 3~10 periods when access patterns were changed.  

For example, in the 3rd period, Out Agent slowed down to 
write new tuples, whose interval was changed from 500ms to 
1000ms, while Read Agent kept reading each 500ms and only 
approximate 20% the tuples it read were the new ones. 
Therefore, in the 8th period, when this change was steady, the 

Decision Maker decided to use RC to decrease the time spent 
by remote read. 

In the 15th period, the Read Agent changed to read tuples 
more frequently (interval=125ms), while the Out Agent and 
Update Agent performed writes in slower rate than before (out 
interval=1000ms and update interval=2500ms).  In this 

observation, in the 20th period, FR is applied. The other switch 
cases can be explained similarly and meet the expectation of 
adaption design. 

 
Fig. 5 Read operation executing time along periods 

 
Fig. 6 Write operation executing time along periods 

C. Overhead  

The adaption needs to take extra resource, time and 
bandwidth. Since our design is to monitor the data for each 
tuple category, we took the experiment to show the relationship 
between category number and overhead incurred by 
self-adaption. 

Fig. 7 shows the operation executing time when adaption was 
turned on. Considering 20 categories are beyond the 
requirement of most applications using DTS we have 
experienced, we use 20 as the upper bound of this experiment. 
The figure illustrates that when the category number is growing, 
no affects to the conventional operation executing can be 
observed. 

 
Fig. 7 Write operation executing time along periods 

 
And we also measured the bandwidth taken by the exchange 

information to facilitate the adaption. Each 30 seconds, a 
package of size 200bytes were exchanged for each tuple 
category between two nodes. In the worst case, 10 
interconnected nodes are running the DTS and each of them 
contains all 20 categories of tuple. Therefore, total 180KB data 
needs to be transmitted each 30 seconds, which can be accepted 
in conventional LAN or WAN. However, the current design is 
not suitable for the large scale of nodes. 

VI. RELATED WORK 

The initial effort on replicable tuple space can be traced to 
the early [9] and [10]. 

Murphy et al. proposed Replicable LIME in [11] to support 
the location-aware collaborative application TULING[5]. 
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Replicable LIME adopts profile-based manner to setup 
replication, deciding where to get replicated and updated. Our 
work, however, pay more attention to how frequent the replicas 
get updated and how to decrease the footprint brought by 
update. 

GSpace [12, 13] was proposed to promote performance and 
availability by replication, sharing the similar goals as what is 
presented here. But GSpace actually uses centralized 
management. One Adaption Module on a node controls the 
replication policy of a single category of tuples distributed 
among all other nodes. 

PeerSpaces[14] was designed for the P2P resource sharing, 
in which all the published data are immutable. Therefore, no 
consistency was concerned in its replication management. 

VII. CONCLUSION 

In this paper we proposed an approach of self-adaptive 
replication management for DTS. The adaption effectively 
avoids the problem that it is difficult for users to predefine the 
replication policies for tuple categories. The policies now can 
be automatically adjusted according to the reads and writes of 
tuples to achieve better performance. And the overhead that 
spend on time and bandwidth is negligible if the group is small.  

In the future research, we tend to take other factors into the 
decision of replication policy self-adaption besides tuple read 
and writes, such as memory taken, bandwidth taken and 
availability. We also need a better switch execution 
implementation to avoid the negative effects brought by the 
burst of replicas’ creation because of the policy switch. We 
hope to release the developers of applications built upon DTS 
from thinking over the issues of tuple storing and transmission 
and make them concentrate on the collaboration itself. 
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