
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

850

Abstract—Decentralized Tuple Space (DTS) implements tuple

space model among a series of decentralized hosts and provides the

logical global shared tuple repository. Replication has been introduced

to promote performance problem incurred by remote tuple access. In

this paper, we propose a replication approach of DTS allowing

replication policies self-adapting. The accesses from users or other

nodes are monitored and collected to contribute the decision making.

The replication policy may be changed if the better performance is

expected. The experiments show that this approach suitably adjusts the

replication policies, which brings negligible overhead.

Keywords—Decentralization, Replication Management, Self

Adaption, Tuple Space.

I. INTRODUCTION

UPLE Space model, which was first introduced by
coordination language Linda[1], is a classic paradigm for

communications of multiple processes. Tuple space provides a
multiagent like architecture, where agents can collaborate
through writing, reading or removing tuples in the space. Tuple
space’s generative features, the referential and temporal

This paper is supported by National Defense Pre-Research Plan of China

(402040202).

Xing Jiankuan is with the Department of Computer Science and Technology,

Tsinghua University, Beijing, China P. R. (corresponding author to provide

phone: 86-13581568806; fax: 86-010-62795399; e-mail: xjk05@mails.thu.edu.

cn).

Qin Zheng is with the Department of Computer Science and Technology,

Tsinghua University, Beijing, China P. R. (e-mail: qingzh@mail.tsinghua.edu.

cn).

Zhang Jinxue is with the School of Software, Tsinghua University, Beijing,

China P. R. (e-mail: zhang-jx08@mails.tsinghua.edu.cn).

decoupling between processes, provide promising foundations
for collaboration in the high dynamic, unstable environments.
Initially, tuple space systems are implemented in the
centralized style, as the original model implied. The typical
cases are Sun JavaSpaces[2] and IBM TSpaces[3].

LIME[4, 5] is a representative implementation of
Decentralized Tuple Space (DTS). In LIME, Local Tuple
Spaces (LTS) distributed on different nodes are transient shared
as the abstract global one, whose contents change over time,
depending on the connectivity of participating local tuple
spaces. LIME allows both location specified and unspecified
tuple access. Tuple accesses with specified destination location
avoid unnecessary transversal of nodes if the upper applications
know where to access the tuple.

However, in spite of the benefits brought by the DTS,
applications also require low access latency, which is difficult
for DTS because the execution latency of remote operations
takes approximately two or three orders of magnitude more
than the local ones. This defect may pay off the advantages of
decentralization.

We have developed a replication management approach[6]
to solve this problem, where differentiating replication policies
were employed to meet the needs of different tuple access
patterns. And we observed that it was difficult to manually
configure the suitable replication policy. On the one hand, it is
hard to estimate the runtime status of DTS; on the other hand,
the tuple access pattern may change over time. Therefore, it is
necessary to exploit the self-adaptive approach to make DTS
can switch the policy automatically.

This paper concentrates on the self-adaptive replication
management of DTS for the collaborative applications among a
small scale of decentralized nodes. This paper is outlined as
follows: Section II briefly describes the model of DTS; Section

Exploiting Self-Adaptive Replication
Management on Decentralized Tuple Space

Xing Jiankuan, Qin Zheng, and Zhang Jinxue

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

851

III presents the detailed replication management protocols;
Section IV describes the criterion values, rules and actions used
in the adaption; Section V describes the setup of experiments
and analyze the results; Section VI briefly introduces the
proposed related work to our proposal; And Section VII
concludes this paper and gives the future research directions.

II. DECENTRALIZED TUPLE SPACE

A. Tuple Space

A tuple space can be defined as an unordered collection of
tuples. A tuple is a structure consisting of one or more typed

field, such as 1ۃ, "abc", The field with the concrete value .ۄ2.3
is called actual. A tuple template is a tuple that is used for
matching tuple. A tuple template often contains one or more
typed wildcard field, called formal. For example, the template
,?string ,1ۃ matches any tuple whose first field is 1, third ۄ2.3
field is 2.3, and second field is any string value. A template can
contain no formals at all, which means the matched tuple must
be exactly the same as the template.

There are four primitives defined in the original tuple space

model: out, in, rd, and eval. out is to write a tuple into the
space. in and rd both specify a template and indeterminately
get a matched tuple. If no matched tuple can be found, these
two primitives (and thus the processes which invoke them) will

block until some matched ones are out into the space. The
difference between in and rd is that in will delete the gotten
tuple from the space whereas rd not. eval is similar to out. But
eval writes an active tuple, which will start a new process after
the tuple writing. eval was omitted by many literatures since it
introduces executable data. And this paper also omits it. In the
extended tuple space models, some variants of original

primitives are introduced. Such as inp and rdp, the probing
version of in and rd, return null immediately if no matched
tuple is found rather than block.

B. Decentralized Tuple Space

Decentralized tuple space expands traditional tuple space
into the decentralized environment. In a typical scenario of
decentralization, there are a set of nodes participating in the
tuple space, denoted as ࣛ ൌ ሼܣଵ, … , ሽ, none of which is|ࣛ|ܣ

responsible of coordinating others. The network is denoted by
࣡ ൌ ሼ ௜݃௝ሽ, whose element indicates whether node ܣ௜ and ݆ are

able to connect (݃௜௝ ൌ 1ሻ or not (௜݃௝ ൌ 0). And ௜ࣨ , the
neighbor node set for node ܣ௜ , can be defined as ஺ࣨ೔ ൌ
ሼܣ௝| ௜݃௝ ൌ ,݇׌ሺڀ1 ௞ܣ א ஺ࣨ೔ܣٿ௞ א ஺ࣨೕሻሽ . We use ௜ࣨ to

represent ஺ࣨ೔ in the rest of this paper. Therefore, the tuple

space seen by the node ܣ௜ at one moment is the transient union
of LTSes hold by ܣ௜ and ௜ࣨ.

When node ܣ௜ initiates primitives, it should explicitly
specify the destinations. For example, ܜܝܗ௝

௜ሺ݁) means the tuple
݁ is initiated by node ܣ௜ and written into the LTS of node ܣ௝ .

஽்ௌ܌ܚ
௜ ሺݐሻ retrieves a certain tuple which matches template ݐ in

the entire tuple space area. And ܑࣨܖ೔
௜ ሺݐሻ deletes the tuple

matching ݐ in node ܣ௜’s neighbor. Because of the restrictions of
connectivity, the first two cases above may be temporally
unable to execute, but the model guarantees that these
primitives are sent to the destination once the connections
between source and destination nodes are available.

III. REPLICATION MANAGEMENT

A. Replication and Consistency

Any tuple can have one or more replicas located at different
nodes. To mark the replication relationship, the master tuple
and all its replicas share the identical ID. A tuple’s master and
replica will not exist at the same node simultaneously. All
tuples are versioned, and the version number is monotone

increasing along the update done by the extended up primitive.
Considering the decoupling of time and space, the global

consistency model is not adopted in DTS; otherwise mutual
exclusive access is inevitable and distributed transactions are
bound to be involved. This betrays purely decentralized
semantics because that no node should play the special role of
transaction manager; and no guarantee could be made that
unannounced disconnection would not happen during a
transaction. Moreover, it hurts performance in that the
transaction will block all other primitives’ processing among
the entire DTS.

Therefore, a node-level consistency model is employed.
When a replica is created in node ܣ௝ from the source tuple at

node ܣ௜ (the source tuple may be the master or another replica),
a consistency link is generated and tracked both in ݅ and ݆ for
this tuple. When up is initiated and sent to the specified
destination, if a matched tuple is found, master or replica, it gets
updated and propagates the update through consistency links to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

852

other nodes. During update process, no global atomicity is
involved. And the update is realized in a “best effort” style. To
achieve this consistency model, a protocol has been designed
and implemented in [6].

B. Replication Policies Management

To control the replicas’ distribution and overhead incurred
by consistency, we introduce Replication Policies. A
replication policy is the rule that decides how a replica should
be created. In the current system, three replication policies are
defined.

 SO (Store Originally) means that no replicas are made
at all. All the primitives are executed where the
destination indicated.

 RC (Read and Cache) means that when remote rd
series primitives are initiated, it first check whether
some matched local replica exists. If not, the primitive
is executed as normal, but create a replica automatically
when the retrieve returns. The new replica is cached for
the following reads.

 FR (Full Replication) means all the tuples are
replicated in all the nodes in DTS. Therefore, no remote
reads are necessary. Meanwhile, all the tuples written
anywhere and all updates must be pushed to all other
nodes if connection is available.

Fig. 1 The schematics of replication policies’ adaption

The application of replication policies is denoted as ஺ܲ
஼ ,

where ܣ is the node on which the policy is applied; ܥ is a tuple
category, which consists of a group of tuples which share the
similar access pattern. Each tuple belongs to one and only one
category. This triple defines exactly when and where the

replicas are created. For example, ௜ܲ
஼భ ൌ means that the ܀۴

tuples in DTS belonging to the category ܥଵ should make the
full replication to the node ܣ௜. This application also implies that
differentiating policies can be configured to the same tuple
category for different nodes.

IV. SELF ADAPTION OF REPLICATION POLICIES

A. Overview of Self Adaption

 We separate the adaption system into three parts, as shown
in Fig. 1. The local tuple space is responsible of handling access
requests from users or upper applications, and also sending or
processing the replication-related commands initiated in other
nodes. All these requests essentially can be considered as reads
or writes to the tuples. These data are the collected by the
monitor as the basis for the policy switch. After collection,
some criterion values are calculated. These data’ symbols are
listed in TABLE I, and their usage and calculation is illustrated
in the following equations. Periodically, according to these data,
the policy switcher makes the decision and thus executes the
switch process.

TABLE I

SYMBOLS USED IN THE ADAPTION RULES

Symbol Meaning

஺݋
஼ሺ݅ሻ

The total write number of tuples of category ܥ in
node ܣ until the ݅-th period.

஺ݎ
஼ሺ݅ሻ

The total read number of tuples of category ܥ in
node ܣ until the ݅-th period.

஺ݑ
஼ሺ݅ሻ

The total update number of tuples of category ܥ
in node ܣ until the ݅-th period.

݀஺
஼ሺ݅ሻ

The total deletion number of tuples of category ܥ
in node ܣ until the ݅-th period.

஺ݎ̃
஼ሺ݅ሻ

The total read number of replicas of category ܥ
in node ܣ until the ݅-th period.

݊஺
஼ሺ݅ሻ

Estimation of the total number of tuples of
category ܥ in node ܣ in the ݅-th period.

ො݊஺
஼ሺ݅ሻ

The total number of used replicas of category ܥ
in node ܣ in the ݅-th period.

஺ߛ
஼ሺ݅ሻ

The number of replicas of category ܥ in node ܣ
converts from unused to used in the ݅-th period.

஺ߤ
஼ሺ݅ሻ

The total number of unused replicas of category
 .in the ݅-th period ܣ in node ܥ

߮஺
஼ሺ݅ሻ

The total number of used replicas of category ܥ
in node ܣ in the ݅-th period.

஺ܲ
஼ሺ݅ሻ

The replication policy applied in the node ܣ for
 in the ݅-th period ܥ

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

853

We divide the adaption into two phases, no replication (SO)

and how to replicate (RC or FR), as shown in Fig. 2. The
switch decision maker first decides whether the replication
should be enabled. Then if it is true, gives the further decision
to figure out which replication policy is better. The following
two sub sections give the more detailed description of how the
decision is made. Notably the direct SO to FR switch is not
allowed according to the above two-phase decision making.
After the final
decision is made and
the replication policy
must be changed, the
switch action is then
executed as TABLE
II shown.

B. Decide Whether Enable or Disable Replication

Whether to enable or disable replication is decided by the
proportion of reads and writes to the tuples of a certain category.

In the ݅-th period, the monitor of node ܣ௞ collects ݎ௞
஼ሺ݅ሻ, ො݊௞

஼ሺ݅ሻ ,
and fetches ݋஺

஼ሺ݅ሻ and ݀஺
஼ሺ݅ሻ from all neighbors, ܣ׊ א ௞ࣨ .

Then all the proportion of tuple reads and writes ݌௞
஼for each

category ܥ are calculated as (1).

௞݌
஼ሺ݅ሻ ൌ

ߙ · ௞ݎ
஼ሺ݅ሻ

ො݊௞
஼ሺ݅ሻ

ߙ · ௞ݎ
஼ሺ݅ሻ

ො݊௞
஼ሺ݅ሻ ൅ ߚ ·

∑ ஺ݑ
஼ሺ݅ሻ׊஺ࣨאೖ

∑ ݊஺
஼ሺ݅ሻ׊஺ࣨאೖ

 (1)

As (1) shown, we care about the average read and write counts
per replica instead of the total ones. ߙ and ߚ are the weights
which are subject to ߙ ൅ ߚ ൌ 1.

 ݊஺
஼ሺ݅ሻ is not directly collected but estimated by (2). This is to

avoid the mess of read and write counting during data
collection.

݊஺
஼ሺ݅ሻ ൌ ݊஺

஼ሺ݅ െ 1ሻ െ ൫݀஺
஼ሺ݅ െ 1ሻ െ ݀஺

஼ሺ݅ െ 2ሻ൯ ൅
൫݋஺

஼ሺ݅ሻ െ ஺݋
஼ሺ݅ െ 1ሻ൯

(2)

To prevent the jitter which may incur oscillating switch, we

employ ݌’s mobile average ݌ҧ and square deviation σሺ݌ሻ as the
criterion values for decision making. The mobile average ݌ҧ is
the unweighted mean of ݌ in pervious ܦ periods, as (3).

ҧ௞஼ሺ݅ሻ݌ ൌ ቌ ෍ ௞݌
஼ሺ݉ሻ

௜

௠ୀ௜ି஽

ቍ (3) ܦ/

௞݌ሺߪ
஼ሺ݅ሻሻ ൌ ඩቌ ෍ ሺ݌ҧ௞஼ሺ݅ሻ െ ௞݌

஼ሺ݉ሻሻଶ

௜

௠ୀ௜ି஽

ቍ (4) ܦ/

Predefine three thresholds ߠௌை, ߠோா௉ (ߠௌை ൏ .ெௌாߠ ோா௉ሻ andߠ

If (5) is satisfied, ௞ܲ
஼ሺ݅ ൅ 1ሻ ൌ .۽܁

௞ܲ
஼ሺ݅ሻ א ሼ۱܀, ҧ௞஼ሺ݅ሻ݌ٿሽ܀۴ ൏ ௞݌ሺߪٿௌைߠ

஼ሺ݅ሻሻ ൑ ெௌா (5)ߠ
Otherwise, if (6) is satisfied, the decision maker will further

decide whether to choose RC or FR, illustrated in the next
subsection.

௞ܲ
஼ሺ݅ሻ ൌ ҧ௞஼ሺ݅ሻ݌ٿ۽܁ ൐ ௞݌ሺߪٿோா௉ߠ

஼ሺ݅ሻሻ ൑ ெௌா (6)ߠ

C. Decide whether to Apply RC or FR

The reason for automatically creating replicas for all the

tuples of a tuple category and pushing their updates (FR) is that
most of these actions are useful. In other words, if the replicas

are actually used, we tend to keep using FR. In this observation,
we separate the created replicas as two kinds, used or unused.

For the node ܣ௞, the used replicas are the ones who are read
after creation by the primitives with the destination ܣ௞ ,
whereas the other replicas are the unused ones. To make the
decision, we care about the proportion of becoming used

replicas and the total replicas in one period, ݍ௞
஼ .

௞ݍ
஼ሺ݅ሻ ൌ

௞ߛ
஼ሺ݅ሻ

௞ߛ
஼ሺ݅ሻ ൅ ௞ߤ

஼ሺ݅ሻ
 (7)

In (7), ߤ௞
஼ሺ݅ሻ cannot be directly monitored. Instead, it is

calculated by (8).

௞ߤ
஼ሺ݅ሻ ൌ ቌ ෍ ݊஺

஼ሺ݅ሻ
ೖࣨא஺׊

ቍ െ ߮௞
஼ሺ݅ሻ (8)

Also for oscillating avoidance, ݍ௞
஼ሺ݅ሻ’s mobile average ݍത௞

஼ሺ݅ሻ
and square deviation σሺݍ௞

஼ሺ݅ሻሻ for the previous ܦ periods are
generated, similar as (3) and (4).

We then predefine another two thresholds ߠோ஼ and ߠோ஼

TABLE II

ACTIONS TAKEN IN POLICY SWITCH OF TUPLE CATEGORY ܥ IN NODE ܣ

From To Action

FR SO Remove all the replicas of ܥ in ܣ.

FR RC Remove all the unused replicas of ܥ in ܣ.

RC SO Remove all the replicas of ܥ in ܣ.

RC FR Create replica links for all tuples of ܥ in ܣ
which hasn’t yet made replication.

SO RC Do nothing. The replicas will be created when
they are first read.

Fig. 2 Switch of replication policies

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

854

ோ஼ߠ) ൏ ிோሻ. If (9) is satisfied, ௞ܲߠ
஼ሺ݅ ൅ 1ሻ ൌ ,if (10) is hold ;܀۴

௞ܲ
஼ሺ݅ ൅ 1ሻ ൌ ۱܀ ; otherwise, the replication policy remains

unchanged.

௞ܲ
஼ሺ݅ሻ ൌ ത௞ݍٿ۱܀

஼ሺ݅ሻ ൐ ௞ݍሺߪٿிோߠ
஼ሺ݅ሻሻ ൑ ெௌா (9)ߠ

௞ܲ
஼ሺ݅ሻ ൌ ത௞ݍٿ܀۴

஼ሺ݅ሻ ൏ ௞ݍሺߪٿோ஼ߠ
஼ሺ݅ሻሻ ൑ ெௌா (10)ߠ

V. EXPERIMENT AND ANALYSIS

A. System Implementation and Experiment Setup

We have implemented the adaption modules upon LIME2[7],
a simplified and reengineered edition of LIME, and LighTS[8],
a light weight tuple space for single host. The architecture is
shown in Fig. 3. We created the Replication Manager (RM)
between the tuple space interface and LIME2, in which the
Adaption Controller (AC) worked as the daemon along the
tuple space. AC consisted of Monitor, Decision Maker and
Policy Switcher, which worked together to adapt the replication
policies managed by Replication Policy Manager. Tuples in the
single host were stored in the Local Tuple Space, which were
actually separated into two LighTS instances. The separation
made convenient the monitoring the access patterns on replicas
and masters respectively.

Fig. 3 Architecture of DTS with self-adaptive replication policy switch

The experiment was running a series of simulation with

changing tuple access patterns upon several nodes. We
deployed our adaptive DTS on 10 nodes, each of which run one
or two agents, responsible of reading or writing (including out
and update), as Fig. 4 shown. Each node was equipped with
3.06GHz dual core Pentium D, 1G memory, and JDK 6 update
10. These nodes were connected via 100Mbit LAN.

Fig. 4 Experiment deployment diagram

B. Self Adaption

In this experiment, we showed the effect of self adaption by
simulating the changing tuple access pattern. This was achieved
by adjust agents’ parameters, which is listed in TABLE III.
These settings were inspired by the log output of a collaborative
application using our DTS. The Read Agent had two
parameters, interval and prob. interval defined the interval
between two reads operations’ start. And prob indicated the
expected proportion to read the tuple that is not replicated
locally. Out Agent and Update Agent also had interval, same as

Read Agent. Besides, they had parameters ߤ and ߪ to control
the tuple size they generate, which follows normal distribution.
In the experiment described here, the tuple size parameters

were set as ߤ ൌ 5000bytes and ߪ ൌ 200bytes. There were
parameters about adaption, which were set as that ܦ ൌ 4 and
period length is 30 seconds. Each experiment length was 30
minutes, and thus contained total 60 periods. We started to
record the data from the fourth period.

The experiment results are shown in Fig. 6 and Fig. 7. In these

two figures we give the average operation executing time
(optime) in each period. For comparison, we also give the data

TABLE III

PARAMETER SETTING TO SIMULATE THE CHANGING ACCESS PATTERN

Read Agent Out Agent Update Agent

Period: 1~15
interval=500ms
prob=0.2
Period: 15~30
interval=125ms
prob=0.8
Period: 30~45
interval=250ms
prob=0.2
Period: 45~60
interval=1500ms
prob=0.2

Period: 1~3
interval=500ms
Period: 3~12
interval=1000ms
Period: 12~18
interval=1500ms
Period: 18~36
interval=500ms
Period: 36~60
interval=2000ms

Period: 1~12
interval=1000ms
Period: 12~18
interval=2500ms
Period: 18~36
interval=1000ms
Period: 36~60
interval=250ms

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

855

with adaption turned off and applied SO and FR constantly.
The dash line indicates the point where replication policy
switches occurred. The results show that the self-adaption will
switch after 3~10 periods when access patterns were changed.

For example, in the 3rd period, Out Agent slowed down to
write new tuples, whose interval was changed from 500ms to
1000ms, while Read Agent kept reading each 500ms and only
approximate 20% the tuples it read were the new ones.
Therefore, in the 8th period, when this change was steady, the

Decision Maker decided to use RC to decrease the time spent
by remote read.

In the 15th period, the Read Agent changed to read tuples
more frequently (interval=125ms), while the Out Agent and
Update Agent performed writes in slower rate than before (out
interval=1000ms and update interval=2500ms). In this

observation, in the 20th period, FR is applied. The other switch
cases can be explained similarly and meet the expectation of
adaption design.

Fig. 5 Read operation executing time along periods

Fig. 6 Write operation executing time along periods

C. Overhead

The adaption needs to take extra resource, time and
bandwidth. Since our design is to monitor the data for each
tuple category, we took the experiment to show the relationship
between category number and overhead incurred by
self-adaption.

Fig. 7 shows the operation executing time when adaption was
turned on. Considering 20 categories are beyond the
requirement of most applications using DTS we have
experienced, we use 20 as the upper bound of this experiment.
The figure illustrates that when the category number is growing,
no affects to the conventional operation executing can be
observed.

Fig. 7 Write operation executing time along periods

And we also measured the bandwidth taken by the exchange

information to facilitate the adaption. Each 30 seconds, a
package of size 200bytes were exchanged for each tuple
category between two nodes. In the worst case, 10
interconnected nodes are running the DTS and each of them
contains all 20 categories of tuple. Therefore, total 180KB data
needs to be transmitted each 30 seconds, which can be accepted
in conventional LAN or WAN. However, the current design is
not suitable for the large scale of nodes.

VI. RELATED WORK

The initial effort on replicable tuple space can be traced to
the early [9] and [10].

Murphy et al. proposed Replicable LIME in [11] to support
the location-aware collaborative application TULING[5].

10 20 30 40 50 60
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

SORCFRRC

av
er

ag
e

op
tim

e
in

 e
ac

h
pe

rio
d(

s)

period

 adaption
 SO
 FR

SO

10 20 30 40 50 60
0.00

0.05

0.10

0.15

0.20

0.25

0.30

SORCFRRC

av
er

ag
e

op
tim

e
in

 e
ac

h
pe

rio
d(

s)

period

 adaption
 SO
 FR

SO

1 5 15 20
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

av
er

ag
e

op
tim

e
(s

)

category number

 remote read
 local write

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

856

Replicable LIME adopts profile-based manner to setup
replication, deciding where to get replicated and updated. Our
work, however, pay more attention to how frequent the replicas
get updated and how to decrease the footprint brought by
update.

GSpace [12, 13] was proposed to promote performance and
availability by replication, sharing the similar goals as what is
presented here. But GSpace actually uses centralized
management. One Adaption Module on a node controls the
replication policy of a single category of tuples distributed
among all other nodes.

PeerSpaces[14] was designed for the P2P resource sharing,
in which all the published data are immutable. Therefore, no
consistency was concerned in its replication management.

VII. CONCLUSION

In this paper we proposed an approach of self-adaptive
replication management for DTS. The adaption effectively
avoids the problem that it is difficult for users to predefine the
replication policies for tuple categories. The policies now can
be automatically adjusted according to the reads and writes of
tuples to achieve better performance. And the overhead that
spend on time and bandwidth is negligible if the group is small.

In the future research, we tend to take other factors into the
decision of replication policy self-adaption besides tuple read
and writes, such as memory taken, bandwidth taken and
availability. We also need a better switch execution
implementation to avoid the negative effects brought by the
burst of replicas’ creation because of the policy switch. We
hope to release the developers of applications built upon DTS
from thinking over the issues of tuple storing and transmission
and make them concentrate on the collaboration itself.

REFERENCES

[1] Gelernter, D., “Generative communication in Linda”, ACM T Progr Lang

Sys, 1985, 7(1), pp. 80-112.

[2] Freeman, E., Hupfer, S., and Arnold, K., JavaSpaces Principles, Patterns,

and Practice (Pearson Education, 1999).

[3] Wyckoff, P., McLaughry, S.W., Lehman, T.J., and Ford, D.A., “T spaces”,

Ibm Syst J, 1998, 37(3), pp. 454-474.

[4] Murphy, A.L., Picco, G.P., and Roman, G.C., “LIME: A coordination

model and middleware supporting mobility of hosts and agents”, ACM

Transactions on Software Engineering and Methodology 2006, 15(3), pp.

279-328.

[5] Murphy, A.L., and Picco, G.P., ‘Using coordination middleware for

location-aware computing: A LIME case study’: Coordination Models and

Languages, Proceedings (Springer Berlin, 2004), pp. 263-278.

[6] Jiankuan, X., Zheng, Q., and Jinxue, Z., “A Decentralized Tuple Space

Model with Policy Management for Collaboration”, Chiese Journal of

Electronics, 2010 (Accepted, estimated published in 2010.4).

[7] Bellini, L., “Lime II: Reengineering a mobile middleware”, Master Thesis,

Politecnico di Milano, Italy, 2004.

[8] Balzarotti, D., Costa, P., and Picco, G.P., “The LighTS tuple space

framework and its customization for context-aware applications”, Web

Intell. Agent Syst., 2007, 5(2), pp. 215-231.

[9] Xu, A., and Liskov, B., “A design for a fault-tolerant, distributed

implementation of Linda”, in The Nineteenth International Symposium on

Fault-Tolerant Computing, pp. 199-206.

[10] Bakken, D.E., and Schlichting, R.D., “Supporting Fault-Tolerant Parallel

Programming in Linda”, IEEE T Parall Distr, 1995, 6(3), pp. 287-302.

[11] Murphy, A.L., and Picco, G.P., “Using LIME to support replication for

availability in mobile ad hoc networks”, in Coordination Models and

Languages, Proceedings (Springer-Verlag Berlin, 2006), pp. 194-211.

[12] Russello, G., Chaudron, M., and van Steen, M., “Dynamically adapting

tuple replication for managing availability in a shared data space”,

Coordination Models and Languages, Proceedings (Springer-Verlag

Berlin, 2005), pp. 109-124.

[13] Russello, G., Chaudron, M.R.V., van Steen, M., and Bokharouss, I., “An

experimental evaluation of self-managing availability in shared data

spaces”, Sci. Comput. Program., 2007, 64(2), pp. 246-262.

[14] Busi, N., Montresor, A., and Zavattaro, G., “Data-driven coordination in

peer-to-peer information systems”, Int J Coop Inf Syst, 2004, 13(1), pp.

63-89.

