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 
Abstract—This study proposes the transformation of nonlinear 

Magnetic Levitation System into linear one, via state and feedback 
transformations using explicit algorithm. This algorithm allows 
computing explicitly the linearizing state coordinates and feedback 
for any nonlinear control system, which is feedback linearizable, 
without solving the Partial Differential Equations. The algorithm is 
performed using a maximum of N-1 steps where N being the 
dimension of the system.  
 

Keywords—Explicit Algorithm, Feedback Linearization, 
Nonlinear control, Magnetic Levitation System. 

I. INTRODUCTION 

N the field of control system, a lot of research effort has 
been focused on the control of a Magnetic Levitation 

System (MLS). It is widely used in various fields such as 
frictionless bearings, levitation of wind tunnel models and 
high-speed Maglev passenger trains etc. But the challenge is 
the inherent nonlinearities and unstable aspect of MLS. 
Several dynamic models of Magnetic Levitation System have 
been proposed over the past years and various control 
strategies with these models have been used to compare their 
performance. Both the linear and nonlinear techniques have 
been used. Linear system model only works well over a small 
region of operating point. Valer and Lia build a nonlinear 
model for magnetic levitation system and propose systems 
linearization principle based on the expansion in Fourier series 
and the preservation of the first order terms, in order to 
linearize the acquired nonlinear model [1]. Ying-Shing Shiao, 
employed system linearization and phase-lead compensation 
with virtual pole cancellation to design the controller of 
unstable nonlinear system to maintain better stability in a 
levitated ball [2]. Reference [3] presented a nonlinear model 
for the magnetic force of magnetic levitation device and a 
control technique for position control of a magnetically 
levitated permanent magnet was proposed. A Lyapunov based 
stability analysis was performed to prove the stability of the 
control technique. In [4] the author carried out a comparative 
study of linear and nonlinear controllers for Maglev system 
and stated that, feedback linearization controller has provided 
significantly better trajectory tracking.  

This paper is devoted to design a nonlinear controller for a 
Magnetic Levitation System (MLS), by using the concept of 
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the explicit feedback linearization [5]. Firstly, the dynamic 
model of Magnetic Levitation System (MLS) is described. 
Then the Feedback Linearization and summary of explicit 
algorithm is discussed. Finally, the implementation of 
algorithm to the Magnetic Levitation System (MLS) is 
explained in detail and the simulation is done using 
SIMULINK/MATLAB. 

II. MAGNETIC LEVITATION SYSTEM 

Magnetic levitation system considered in the current 
analysis is consisting of a ferromagnetic ball suspended in a 
voltage-controlled magnetic field. Fig. 1 shows the schematic 
diagram of magnetic levitation system.  

 

 

Fig. 1 Schematic diagram of magnetic levitation system 
 

Coil acts as electromagnetic actuator, while an 
optoelectronic sensor determines the position of the 
ferromagnetic ball. By regulating the electric current in the 
circuit through a controller, the electromagnetic force can be 
adjusted to be equal to the weight of the steel ball, thus the 
ball will levitate in an equilibrium state. But it is a nonlinear, 
open loop and unstable system that demands a good dynamic 
model and a stabilized controller. 

Dynamic behavior of magnetic levitation system can be 
modeled by the study of electromagnetic and mechanical sub 
systems. 

A. Electromagnetic Dynamics Modeling 

Electromagnetic force produced by current is given by the 
Kirchhoff’s voltage law; 
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where u: applied voltage, i: current in the coil of 
electromagnet, R: coil’s resistance and L: coil’s inductance. 

B. Non Linear Model 

On the basis of electro-mechanical modeling nonlinear 
model of magnetic levitation system can be described in terms 
of following set of differential equations 
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Equation (2) indicates that )(xL is a nonlinear function of 

balls position x . If we take the approximation that inductance 
varies with the inverse of ball’s position, that is 
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where L is the constant inductance of the coil in the absence of 
ball, Lo is the additional inductance that is contributed by the 

presence of the ball, ox  is the equilibrium position. 

Substituting (3) into (2) results in 
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By substituting 
CxL oo 2 , 

 
We get 
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Taking ,,, 321 xixvxx 
 

(1) (2) and (4) can be 

expressed in vector format where position of ball is taken as 
output as under: 
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III. NON LINEAR SYSTEMS AND FEEDBACK LINEARIZATION 
Consider a smooth control affine system: 
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 Let us consider another smooth control affine system: 
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The systems  and 
~

are said to be feedback equivalent 
[5]-[7], if there exists a transformation  
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that maps into ,
~
  that is such that the following Partial 

Differential Equations hold: 
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The following two problems were considered by Krener [8] 

and Brockett [9]. 
Problem 1: If there exists a local diffeomorphism )(xw   

defining new coordinates  nwwww ,,........., 21  in which 

the transformed system takes the linear form:
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 Then 

the system  is said to be S- linearizable (state linearizable). 
Problem 2: If there exists a local feedback transformation 

  ,,  that takes  into a linear system 
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Then the system  is said to be F-linearizable (feedback 
linearizable). 

Theorem 1: A control system  
 

uxgxfx )()(: 


 
 

1

1

1
1

1

( 1)
( ) ( )( )

!

( 1)
( ) ( )( )

!

k

k

s s
sk

j j k j
s

s s
sk

k k
s

x
x x L x

s

x
x L x

s

 

 

  

 












 







  (8) 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:10, 2014

1872

 

 

is locally equivalent to a linear controllable system 
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For all .1t  
An algorithm proposed by Issa Amadou Tall [5]-[7] gives a 

complete solution to problem 2 without solving the Partial                                                             
Differential Equations. This algorithm allows constructing 
explicitly feedback linearizing coordinates. Consider 
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Theorem 2: Consider a linearly controllable system 
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Assume it is Feedback Linearizable; there exists a sequence 
of explicit coordinates changes 
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That gives rise to a sequence of  qFB forms 
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moreover, in the coordinates )( 22 xz   the system  takes 

the feedback form (FB). 
The proof of this theorem is based on the following theorem 

no. 3: 
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For any, kjnj  ,1   is the inverse of ),(xz    

such that )).((
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A. Summary of Algorithm 

Start with the system 
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Step 0: Normalize the vector field 

 Tgg 1,0,.........0,0  and apply a linear feedback to put 

the linearization in Brunovsky form. 
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fails, then the system is not feedback linearizable and 
algorithm stops. 

If the above condition is satisfied, then first k components  
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can be decomposed as follows:        
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to construct a change of coordinates )(xz  , theorem in [6]  

is applied to rectify the non-singular vector field. 
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That is such that,
 

.))(( zkz  
 

Repeat step kn   for .2,.....,1 nk  End if the 

algorithm fail or the system is in FB form. 
 

IV. DESIGN EXAMPLE 
Consider the Magnetic Levitation System modeled by (6): 
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   Denote )()( xgx  and apply Theorem 2 with 3n  

and 100/1)(3 x , thus 
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We apply the change of coordinates: 
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 To transform the original system into 
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The system is in  FB form and can be put into the linear                  

Brunovsky form [6] via 
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The composition of the two-step changes of coordinates and 

feedback gives linearizing coordinates for the original system 
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Brings system   into Brunovsky form [10] 
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Fig. 2 Unit step response of x1(Position of ball) 
 
On simulating the above linear system (10) with nonlinear 

feedback (11) using Nelinsys/SIMULINK/MATLAB, unit 
step response of x1 is shown in the Fig. 2. 
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