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Abstract—The present study is concerned with the problem of 

determining the shape of the free surface flow in a hydraulic channel 

which has an uneven bottom. For the mathematical formulation of the 

problem, the fluid of the two-dimensional irrotational steady flow in 

water is assumed inviscid and incompressible. The solutions of the 

nonlinear problem are obtained by using the usual conformal 

mapping theory and Hilbert’s technique. An experimental study, for 

comparing the obtained results, has been conducted in a hydraulic 

channel (subcritical regime and supercritical regime). 

 

Keywords—Free-surface flow, experiments, numerical method, 

uneven bottom, supercritical regime, subcritical regime. 

I. INTRODUCTION 

HE hydraulics in pipes which are completely filled with 

fluid, differs from that of open channels by the existence 

of a free-surface. In the case of a free surface flow, there is an 

air-fluid interface on which is exerted the atmospheric 

pressure. The difficulty of the mathematical resolution of this 

type of flow is the fact that the free surface is generally 

unknown on which, in addition, boundary conditions should 

be satisfied. 

Analytical and numerical methods are used to obtain the 

basic mechanism of such flow situations. The work of 

Thomson [22] in 1886 is considered as a basis for research in 

this area. Linear solutions for flows over obstacles have been 

studied by [1]-[5], [7], [9]-[11], [13]-[15], [23], to name only a 

few. In addition, the equivalent nonlinear problem has also 

been studied by several authors, and references to a part of 

their work can be found in [16]. 

In this study, we determine the free surface location in a 

hydraulic channel for a flow of an inviscid fluid over an 

irregular bottom. To do this, we use the nonlinear theory and 

the solution is based on conformal transformations, 

specifically the transformation of Schwartz-Christoffel and the 

Hilbert’s method for a mixed problem [1]. For the 

mathematical problem, reference may be made to the research 

works of [12], [17]-[21], [24]. 

II. MATHEMATICAL FORMULATION 

A. Position of the Problem 

We resume below most of the formulation described in [8]. 

The fluid is assumed inviscid and incompressible. The flow is 

steady, 2D and irrotational. The streamfunction ψ(x,y) and the 
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velocity potential φ(x,y) are therefore harmonic functions of 

the (x-y) coordinates in the physical plane defined by the 

Cauchy-Riemann relations: 
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where u and v are the velocity components. Thus, φ and ψ are, 

respectively, the real and imaginary parts of the complex 

potential w. 

The uneven bottom consists of a horizontal plane AB, a 

plane BC inclined at an angle α with a length L and a 

horizontal semi-infinite plane CD. The point A is at the 

abscissa - ∞, while the point D is at the abscissa + ∞ (see Fig. 

1). The flow is from left to right. For convenience, we choose 

the origin of axes at B. In the plane, the horizontal axis is in 

the flow direction and the y-axis directed upwards. (U1, h1) 

and (U2, h2) are the velocity and the water depth at A and D 

respectively. 

  

 

Fig. 1 Schematic of the flow 

 

 

Fig. 2 Subcritical regime 
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B. Numerical Results 

Fig. 2 shows the obtained free-surfaces, corresponding to 

the inclination α = π/6, for three Froude numbers which are, 

from top to bottom F = 0.4, F = 0.7 and F = 0.8. 

Fig. 3 is relative to an inclination α = π/4 for a supercritical 

regime configuration. 

 

 

Fig. 3 Supercritical regime 

 

The different values of the Froude number are F = 10, F = 

7, F = 6, F = 5, F = 4, F = 3 and F = 2 (top to bottom 

respectively). 
 

 

Fig. 4 Supercritical flow over a step (from [10]) 
 

 
 

Fig. 5 Evolution of the free-surface over a step (from [10]) 

 

In a previous work using the finite volume method, [10] 

examined the supercritical flow over a step and obtained the 

configuration showed, as an example, in Fig. 4. Fig. 5 gives, 

for the same height of the step, the decreasing evolution of the 

free-surface jump with the Froude number.  

In Fig. 5 is shown the theoretical evolution of the free-

surface with the Froude number. The values of the Froude 

number are F = 1.5, F = 2.0 and F = 3.0 respectively from top 

to bottom. 

III. EXPERIMENTATION 

A. Description  

 

Fig. 6 View of the hydraulic channel 

 

Our experiments were conducted in a horizontal rectangular 

Plexiglas channel of width b = 75mm and length l = 6m. This 

channel is connected by means of a special assembly which 

ensures parallel walls with a height of 160mm. The perfect 

rigidity of the channel is provided by a box girder made of 

Plexiglas. At its upstream end, it is based on a manual jack 

screw with an adjustable slope by means of a wheel provided 

with graduations. It is fed from a PVC supply tank which is 

fixed on a frame of tubular steel. The flow is supplied by a 

pump (flow rate: 1.6 m
3
/h - 16 m

3
/h), fixed to the frame. The 

flow control is done by a manual valve (Fig. 6). 

To determine the Froude number, we use the upstream 

average velocity U which is given by the discharge Q = UbH. 

We have previously calibrated the flow meter and the 

relationship between the real flow rate and the indicated one is 

given by:  
 

Q = 1.0522Qr – 0.0001 
 

Qr (m
3
/s) is the value read on the flow meter and Q the 

effective discharge. 

We give in Table I the main characteristics of the flow for 

two inclination angles. 

B. Subcritical Regime 

For low velocities corresponding to a waveless subcritical 

regime, the free surface aspect is given hereafter (Fig. 7). 

We must recall that the upstream water depth H is equal to 

the length of the inclined plane (H = 2.62 cm). 
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TABLE I 

CHARACTERISTICS OF THE FLOW 

α Q(l/s) U(m/s) Fr 

π/4 
0.37 0.19 0.37 

0.48 0.25 0.49 

π/6 

0.37 0.12 0.19 

0.48 0.16 0.25 

1.07 0.34 0.50 

π/4 

3.12 1.59 3.13 

3.41 1.74 3.43 

3.70 1.89 3.72 

4.14 2.11 4.16 

π/6 
3.70 1.19 1.87 

4.14 1.33 2.09 

 

 

Fig. 7 Aspect of the free-surface for F = 0.19 and α = π/6 

 

To determine the free surface profiles, we use a camera and 

we treat the obtained photographs by using the Auto-Cad 

software. We did not use the level meter for the determination 

of the free surface profiles because the rod itself disturbs the 

flow and distorts the free-surface. 

The evolution of the free surface, with the Froude number, 

is represented in Fig. 8 for an inclination angle α = π/6 and 

Froude numbers respectively F = 0.19, F = 0.25 and F = 0.5, 

respectively from top to the bottom. 

 

 

Fig. 8 Measured free-surface for various Froude numbers (α = π/6) 

C. Supercritical Regime 

The upstream supercritical regime is generated by the 

addition of a convergent (nozzle). It consists on a flexible 

PVC sheet which thickness is 3 mm and 80 cm length; it is 

placed so as it gradually directs the flow towards a narrowed 

exit (Fig. 9). The distance between the entry of the channel and 

the end of the convergent is selected so as to reach a fully 

supercritical regime slightly disturbed. Indeed, we reduce the 

cross section of the flow to a narrowed exit opening H = 2.5 

cm to allow great velocities. 
 

 

Fig. 9 The upstream convergent 

 

 

Fig. 10 Free-surfaces for F = 1.87 and F = 2.09 (α = π/6) 

 

 

Fig. 11 Free-surfaces for F = 3.43, F = 3.72 and F = 4.16 (α = π/4) 

 

The experimental free surface profiles, obtained for an 

inclined angle of α = π/6, are given at Fig. 10 for Froude 

numbers F = 1.87 and F = 2.09. For another inclination angle 

(1) 
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α = π/4, the experimental free-surfaces are shown in Fig. 11 

for Froude numbers F = 3.43, F = 3.72 and F = 4.16. 

The same equivalent results have been obtained by [11] for 

the step as shown on the photos and figures hereafter. 
 

 

Fig. 12 Free-surface for F = 2.77 with different heights of the step 

 

  

Fig. 13 Free-surface for F = 2.77 and B=0 .2 

 

  

Fig. 14 Free-surface for F = 2.77 and B = 0 .28 

 

Fig. 15 Free-surface for F = 2.77 and B = 0 .28 

 

 

Fig. 16 Free-surface for F = 2.3 and B = 0 .2 

 

 

Fig. 17 Free-surface for F = 3.19 and B = 0 .2 

IV. THEORY - EXPERIMENTS 

Before proceeding to a comparison between the numerical 

results with those relating to the experiments, we must 

remember that the main hypothesis of the mathematical 

formulation is that the fluid is inviscid. As the velocity at the 

bottom is therefore nonzero, the Froude number is easy to 

calculate for a uniform velocity profile. In the real case, the 

fluid velocity at the wall is zero and the profile is sheared. 

Should we then consider the Froude number calculated using 

the average fluid velocity or the velocity at the free surface? 

(see [6]). We recall that, in our case, we used the average 

velocity since we read directly the volumetric flow rate. We 

can notice that the calculated free surface is in a relatively 

good agreement with that which has been measured 

experimentally (Fig. 18). Let us remember, however, that the 

theoretical model is based on the assumption of an inviscid 

fluid which means that all the effects of turbulence are 

omitted. 

 

 

Fig. 18 Calculated and measured free-surface for F = 0.19 (α = π/6) 

 

We give in Fig. 19, another example with a step and a 

supercritical regime. 

V. CONCLUSION 

As it was already mentioned [8], we think that to get a good 

agreement, between the numerical results and those obtained 

experimentally, requires a match between the experimentation 

and the mathematical assumptions with the adequate boundary 

conditions. To do this, if you want to stay in the case of an 

inviscid fluid, we suggest that experiments should be done in 

water at rest with a moving bottom. Indeed, the relative 

movement of the water will be at a constant velocity, from the 

bottom to the free surface. 
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Fig. 19 Calculated (+) and measured (∆) free-surface for a step  
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