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TABLE I 
ON-BODY PATH LOSS

Scenarios Locations Lognormal Normal Nakagami Weibull Rayleigh 
 μ             σ μ             σ μ             σ μ             σ μ             σ 
 Right chest 43.59     0.40 43.59    0.40 43.59    0.36 43.56     0.59 38.64     407.88 
 Right waist 41.98     0.33 41.98    0.33 41.98    0.29 42.00     0.24 37.20     378.19 

Standing Still Right thigh 48.80     0.71 48.80    0.71 48.80    0.64 48.80     0.69 43.25     511.16 
 Left ankle 56.74    0.36 56.74    0.36 56.74    0.32 56.73     0.41 50.28     690.87 
 Back 48.50    0.48 48.50    0.48 48.50    0.43 48.47     0.69 42.99    504.89 

Sitting Left chest 60.52    0.05 60.52    0.05 60.52    0.04 60.50     0.08 53.63    786.03 
Arm Movement Left chest 64.32    1.00 64.32    1.01 64.32    0.90 64.27    1.51 57.01    887.99 

 
These coaxial cables were covered with microwave 

absorbing material to reduce the radiation of the cables. A 
sweep time of 4.25 s with a sampling time of 4.25 ms was 
configured, resulting a total number of sampled points per 
acquisition of N=1001. Six human subjects (three males and 
three females) were involved in this measurement in order to 
consider the variability of different physical bodies and 
genders on the channel fading characteristics. The transmitting 
antenna (Tx) was mounted on a fixed on-body location at right 
upper arm of the subject body. The receiving antenna (Rx) 
was mounted on the different on-body locations for standing 
still, sitting and arm movement: 
• Five on-body locations, i.e., right chest (Rx1), right waist 

(Rx2), right thigh (Rx3), left ankle (Rx4) and on the 
centre of back (Rx5) while standing still; 

• One on-body location, left chest (Rx6) while sitting on the 
chair; 

• One on-body location, (Rx6) while performing random 
arm movement on sitting posture. 

10mm of air-gap separation between antenna and the body 
was set. The average height and weight of all subjects were 
161.1cm and 62.7kg, respectively. To exclude the cable losses, 
the VNA was consistently calibrated during the 
measurements. The input power of Tx was set at 0 dBm. Ten 
sweep durations were captured for each body posture and 
movement. Elastic bands were used to hold the coaxial cables, 
attaching to the body, from moving and bending throughout 
the measurement campaign. This measurement setup follows 
the standard procedure reported in [1], [10]-[13]. 

III. ON-BODY RADIO CHANNEL ANALYSIS 

A.  Statistical Parameters 
The measured data is statistically analyzed by fitting the 

data to several well-known distribution functions namely: log-
normal, normal, Nakagami, Weibull and Rayleigh. These 
statistical distributions were chosen as these distribution 
functions are extensively being applied to statistically model 
the on-body channel [10]. The estimated parameters are 
computed using maximum likelihood estimation for all 
distributions. 

B.  Akaike Information Criteria 
To select the best model among several models of fading, 

Akaike Information Criterion (AIC) is used [8], [11]. In [14], 
it reported a detailed description of the usage of AIC’s and its 
drawback in determining the fading models for body-centric 

channels. The second order AIC, normally expressed as AICc, 
written as 

 

 
1
)1(22)(log2

−−
+

++−=
Kn
KKKLAIC ec  (1) 

 
where L is the maximized log likelihood, model K is the 
number approximation parameters in the selected model and n 
is the sample size. The log likelihood is available in the 
Maximum Likelihood (ML) estimator and thus (1) can be 
directly computed. Meanwhile, the second part of (1) restricts 
additional parameters so as to guarantee that best fits the data 
with the least of parameters. In determining the models rank 
from the best to worst and to show strong proof that one 
model is better than another, the relative values of AICc is 
utilized. The expression for relative values of AICc is 
 
                            )min(, cic AICAICi −=Δ  (2) 

 
where, AICc is the AIC value for model index i. From (2), the 
best model among the set of models is determined when Δi = 
0. In general, Δi<2 refers to significant evidence for model and 
if values are between 3-7, it implies that the model has less 
satisfactory level. However, if values are greater than 10, it 
suggests that the model is impossible to happen. 

IV. RESULTS AND DISCUSSION 

A. On-Body Path Loss Statistics 
In anechoic chamber where the effect of multipath fading is 
minimized, the path loss of on-body radio channel is mainly 
due to the lossy human tissues, leading to high attenuation, 
and the movement of the human body. In this work, two 
scenarios are considered: stationary and body movement. As 
known, a larger signal variation occurs when the transmitter 
moves with respect to the receiver than when the transmitter is 
in stationary position. Table I presented the average value (μ) 
and standard deviation, (σ) of path loss statistical models. 
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Fig. 2 Cumulative distribution of the path loss fitted to the best 

statistical model for standing still in right chest, right waist and back 
positions 

 
For standing still posture, as expected, the highest average 

path loss occurred on the upper-arm-to-left-ankle link as the 
communication distance between Tx and Rx4 is the furthest. 
The smallest value of average path loss was obtained by fitting 
the measured data to Weibull distribution. Meanwhile, the 
lowest average path loss was observed by the upper-arm-to-
right-waist link that obtained high similarity in statistical fit to 
all distributions, except Rayleigh. The least spread of data, 
indicating by the smallest value of σ in upper-arm-to-right-
waist link case for most distributions showed a high accuracy 
of statistical fit. The results also showed that the average path 
loss of moving arm varied higher than the path loss in sitting 
position, up to 3.5 dB. This confirms that upper-arm-to-left-
chest was more affected by the movement of arm. Higher 
value of σ for Rayleigh distribution in all on-body links of all 
cases showed the worst statistical model compared to other 
distributions. 

B.  Statistical Analysis 
The measured data was statistically analyzed by applying 

the second-order AIC to determine the best fit model for all 
cases. The estimated parameters were computed based on 95% 
confidence interval utilizing dfit tool in the Matlab statistical 
toolbox. In stationary case, the on-body receivers were located 
at different elevations and positions, from upper-arm-to-left 
chest to upper-arm-to-left-ankle link. 

For standing still scenario, it was found that Nakagami 
provided the best fit in most on-body links including right 
chest, left ankle and back positions with the remaining on-
body link fitted to Weibull distribution. Fig. 2 shows the 
measured data with its best fit for standing still case in right 
chest, right waist and back positions. Furthermore, Nakagami 
also provided the best fit for sitting case in left chest position, 
as shown in Fig. 3. 

 

 
 Fig. 3 Cumulative distribution of the path loss fitted to the best 
statistical model for sitting and arm movement in the left chest 

 
When the user was in stationary regardless the body 

positions, it was observed that no dominant component was 
present as small multipath fading was experienced in this case, 
both for line-of-sight (LOS) and non-line-of-sight (NLOS). 

On the other hand, for the arm movement case, the result 
showed that the lognormal distribution provided the best fit (μ 
= 4.14, σ = 0.004). This explains that the moving arm 
contributed to the reflections and shadowing effects when the 
electromagnetic (EM) propagated across the human body 
surface. As the dominant of the received signals were the 
reflection and diffraction waves, this led to a lognormal 
distribution, as agreed in [10]. Meanwhile, the worst fit was 
given by Rayleigh distribution in both cases, stationary and 
mobile. 

V. CONCLUSION 
The experimental investigation and statistical analysis of 

on-body channel fading at 2.45 GHz has been performed in 
this work. The measurement was carried out in the anechoic 
chamber where two user state conditions were considered; 
stationary and mobile. For standing still case, various on-body 
links were performed. However, for sitting (static) and arm 
movement cases, only one on-body link was performed. In the 
future work, more on-body links with various body 
movements will be carried out in both anechoic and indoor 
environments to study the effects of human body movements 
on the on-body radio channel propagation. The results showed 
that the average path loss of moving arm varied higher than 
the path loss in sitting position for upper-arm-to-left-chest 
link, up to 3.5 dB. The analysis also concluded that the 
Nakagami distribution provided the best fit for most of on-
body static link path loss in standing still and sitting positions 
(4 on-body links). The log-normal distribution provided the 
best fit for only one case, the arm movement, due to the 
effects of reflections, diffraction etc. 
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