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Abstract—In this paper a special kind of buffer management 

policy is studied where the packet are preempted even when 
sufficient space is available in the buffer for incoming packets. This 
is done to congestion for future incoming packets to improve QoS for 
certain type of packets. This type of study has been done in past for 
ATM type of scenario. We extend the same for heterogeneous traffic 
where data rate and size of the packets are very versatile in nature. 
Typical example of this scenario is the buffer management in 
Differentiated Service Router. There are two aspects that are of 
interest. First is the packet size: whether all packets have same or 
different sizes. Second aspect is the value or space priority of the 
packets, do all packets have the same space priority or different 
packets have different space priorities. We present two types of 
policies to achieve QoS goals for packets with different priorities: the 
push out scheme and the expelling scheme. For this work the 
scenario of packets of variable length is considered with two space 
priorities and main goal is to minimize the total weighted packet loss. 
Simulation and analytical studies show that, expelling policies can 
outperform the push out policies when it comes to offering variable 
QoS for packets of two different priorities and expelling policies also 
help improve the amount of admissible load. Some other 
comparisons of push out and expelling policies are also presented 
using simulations. 

 
Keywords—Buffer Management Policy, Diffserv, ATM, Pushout 

Policy, Expeling Policy.  

I. INTRODUCTION 
IFFERENTIATED Services (Diffserv) is a computer 
networking architecture that specifies a simple, scalable 
and coarse grained mechanism for classifying, managing 

network traffic and providing quality of service (QoS) 
guarantees on modern IP networks. DiffServ can, for example, 
be used to provide low-latency, guaranteed service (GS) to 
critical network traffic such as voice or video while providing 
simple best-effort traffic guarantees to non-critical services 
such as web traffic or file transfers. Since modern data 
networks carry many different types of services, including 
voice, video, streaming music, web pages and email, many of 
the proposed QoS mechanisms that allowed these services to 
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co-exist were both complex and failed to scale to meet the 
demands of the public Internet.  

A. Differentiated Services: The current state of art 

The traditional internet offers best effort service and Diffserv 
is a Class of Service (CoS) model that enhances the best effort 
services of the Internet. It differentiates traffic by user, service 
requirements, and other criteria; then, it marks packets so that 
network nodes can provide different levels of service via 
priority queuing or bandwidth allocation, or by choosing 
dedicated routes for specific traffic flows. A policy 
management system controls service allocation.  

Various quality of service techniques have been proposed or 
developed that attempt to provide predictable service on the 
Internet. One technique is Integrated Services (IntServ) and its 
associated RSVP protocol, it will be discussed later on in this 
section. Some of the concepts in Diffserv grew out of the 
IntServ model only. However, Diffserv is a CoS approaches 
rather than a full QoS approach. 

There is one fundamental limitations of best effort method 
being used in internet. The traditional best effort model of the 
Internet makes no attempt to differentiate between the traffic 
flows that are generated by different hosts. As traffic flow 
varies, the network provides the best service it can; but there 
are no controls to preserve higher levels of service for some 
flows and not others. What DiffServ does is attempt to 
provide better levels of service in a best-effort environment. 
Following is an intuitive analogy of diffserv which is helpful 
in understanding it better. The class of service provided in 
diffserv is similar to classes of service provided in a train. 
Though, the entire train goes from a particular station to 
another one, however, passenger traveling in first class, 
second class and general class get different level of service. A 
part of the analogy we want to stress is that best effort traffic, 
like coach class seats on the train, is still expected to make up 
the bulk of internet traffic. While first class and second class 
carry a small number of passengers, but are quite important to 
the economics of the department of rail. The various economic 
forces and realities combine to dictate the relative allocation 
of the seats and to try to fill the seats of the train. We don't 
expect that differentiated services will comprise all the traffic 
on the internet, but we do expect that new services will lead to 
a healthy economic and service environment. 

The next step of QoS architecture is with regard to QoS in the 
Internet. Intserv is a bandwidth reservation technique that 
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builds virtual circuits across the Internet. Bandwidth requests 
come from applications running in hosts. Once a bandwidth 
reservation is made, the bandwidth cannot be reassigned or 
preempted by another reservation or by other traffic. IntServ 
and RSVP are stateful, meaning that RSVP network nodes 
must coordinate with one another to set up an RSVP path, and 
then remember state information about the flow. This can be a 
daunting task on the Internet, where millions of flows may 
exist across a router. The RSVP approach is now considered 
too unwieldy for the Internet, but appropriate for smaller 
enterprise networks (or when used with DiffServ and other 
techniques, discussed shortly). 

Diffserv takes a stateless approach that minimizes the need for 
nodes in the network to remember anything about flows. It is 
not as good at providing QoS as the stateful approach, but 
more practical to implement across the Internet. Diffserv 
devices at the edge of the network mark packets in a way that 
describes the service level they should receive. Network 
elements simply respond to these markings without the need 
to negotiate paths or remember extensive state information for 
every flow. In addition, applications don't need to request a 
particular service level or provide advance notice about where 
traffic is going.  

In the IntServ/RSVP environment, applications negotiate with 
the network for service. IntServ is said to be application 
aware, which allows hosts to communicate useful information 
to the network about their requirements and the state of their 
flows. In contrast, Diffserv in present form is not application 
aware. Since Diffserv does not listen to applications, it does 
not benefit from feedback that applications could provide. 
Since it doesn't know exactly what an application needs, it 
may fail to provide it with an appropriate service level. In 
addition, Diffserv is not in touch with the receiving host, so it 
doesn't know whether that host can handle the services it will 
allocate. 

One could say that the Internet needs both RSVP (or some 
other full QoS model) and Diffserv. RFC 2990 mentions that 
both Intserv and Diffserv may need to be combined into an 
end-to-end model, with Intserv as the architecture that allows 
applications to interact with the network, and Diffserv as the 
architecture to manage admission and network resources. This 
is covered further in RFC 2998 (A Framework for Integrated 
Services Operation Over Diffserv Networks, November 
2000). One approach is to use Diffserv to carry RSVP 
application messages across the core to another RSVP 
network. 

We are trying to compare diffserv with Inteserv and RSVP. 
Diffserv can be contrasted with MPLS, which implements 
connection-oriented virtual circuits on ATM, frame relay, or 
switched networks. MPLS adds labels (tags) to packets that 
indicate forwarding behavior, but packets travel across 
predefined circuits. MPLS is generally more sophisticated and 
complex than Diffserv, but provides better QoS capabilities.  

1) The diffserv architecture:  

RFC 2638 states that a differentiated services architecture 
should keep the forwarding path simple, push complexity to 
the edges of the network to the extent possible, provide a 
service that avoids assumptions about the type of traffic using 
it, employ an allocation policy that will be compatible with 
both long-term and short-term provisioning, and make it 
possible for the dominant Internet traffic model to remain 
best-effort. 

Per-Hop Behaviors: A PHB (per-hop behavior) is a basic 
hop-by-hop resource allocation mechanism. Think of PHB as 
a particular forwarding behavior that stretches across a 
network and that provides a particular class of service-being 
careful not to call it a path, because a path could imply state in 
the network. 

RFC 2475 describes a PHB as a forwarding behavior applied 
to a particular DS behavior aggregate. A DS behavior 
aggregate is a collection of packets with the same DSCP 
value crossing a link in a particular direction. When a 
behavior aggregate arrives at a node, the node maps the DSCP 
to the appropriate PHB, and this mapping defines how the 
node will allocate resources to the behavior aggregate. Some 
example PHBs are described here: 

• A PHB that guarantees a minimal bandwidth 
allocation across a link to a behavior aggregate. 

• A PHB similar to the preceding with the added 
feature of being able to share any excess link 
capacity with other behavior aggregates. 

• A PHB that has resource (buffers and bandwidth) 
priority over other PHBs. 

• A PHB that has low delay and traffic loss 
characteristics 

RFC 2474 and RFC 2475 include sections that describe 
guidelines for defining PHBs in order to promote consistency 
and standardization. The guidelines recommend that PHBs be 
designed to provide host-to-host, WAN edge-to-WAN edge, 
and/or domain edge-to-domain edge services. 

A PHB is implemented with buffer management and packet -
scheduling mechanisms. Routers examine the DSCP field, 
differentiate according to the markings, and then move 
packets into appropriate queues. An outgoing link typically 
has multiple queues with different priorities. A scheduling 
technique is used to move packets in the queues out to the 
next hop.  

Diffserv Network Elements: The Diffserv network consists 
of a variety of network elements and some specific 
terminology. Some of the elements are illustrated in Figure-1 
and the same is explained next. All of these elements and their 
associated behaviors are designed to decouple traffic 
management and service provisioning functions from the 
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forwarding functions, which are implemented within the core 
network nodes. 

 
Fig. 1 Various elements of differentiated service (a) Differentiated 
Service (DS) Field (b) DS network element and (c) traffic 
conditioner 

The most prominent features of Diffserv networks are the DS 
domains and the DS boundary nodes. The DS domains may be 
private intranets, but are typically autonomous service 
provider networks that have their own service-provisioning 
policies and PHB definitions. DS Interior nodes interpret the 
DSCP value and forward packets. They may perform some 
traffic conditioning functions and may remark packets. DS 
domains interconnect with other domains via boundary links. 
A DS region is a set of contiguous DS domains that offer 
inter-domain differentiated services. 

The DS boundary nodes exist at the edge of the Diffserv 
network as either ingress or egress nodes. The ingress node is 
the most important because it classifies and injects traffic into 
the network. It may also condition traffic to make sure it 
meets policy requirements. The boundary node contains the 
following elements. 

• Standard Classifier    Selects packets based on the 
DS code-point value. Selected packets are then 
forwarded as appropriate or subjected to traffic 
conditioning if necessary. 

• Multi-Field Classifier    This classifier selects 
packets based on the content of some arbitrary 
number of header fields-typically, some combination 
of source address, destination address, DS field, 
protocol ID, source port, and destination port.  

• Marker    An entity that sets the value of the DSCP 
field. 

• Policy Systems/Bandwidth Brokers    Devices that 
are configured with organizational policies. They 
keep track of the current allocation of marked traffic 
and interpret new requests to mark traffic in light of 
the policies and current allocation. RFC 2638 
provides a broad overview of these system 
requirements. 

• Traffic Conditioner    An entity that meters, marks, 
drops, and shapes traffic. A traffic conditioner may 
re-mark a traffic stream, or may discard or shape 
packets to alter the temporal characteristics of the 
stream and bring it into compliance with a traffic 
profile. The subcomponents of the traffic conditioner 
are listed here. See "Traffic Management, Shaping, 
and Engineering" for related details. 

• Meter    Measures the rate of traffic streams selected 
by the classifier. The measurements are used by the 
following elements, or for accounting and 
measurement purposes. 

• Policer    Evaluates the measurements made by the 
meter and uses them to enforce policy-based traffic 
profiles. 

• Dropper    Droppers discard some or all of the 
packets in a traffic stream in order to bring the stream 
into compliance with a traffic profile. This process is 
known as "policing" the stream. 

• Shaper    Delays packets within a traffic stream to 
cause it to conform to some defined traffic profile. A 
shaper may drop packets if there is not sufficient 
buffer space to hold the delayed packets. 

Traffic conditioners are usually located within the DS ingress 
or egress boundary nodes, but may also be located in interior 
nodes within the DS domain. The ingress node of the source 
domain is the first to mark packets. An egress node that leads 
to another DS domain may re-mark packets if necessary. 

Traffic conditioning rules are specified in a TCA (traffic 
conditioning agreement) and enforced by the traffic 
conditioner. TCA rules correspond to SLAs (service-level 
agreements) made between customers and service providers. 
These agreements specify the type of service a customer will 
receive. Note that DS domains within a region include ISPs 
that are peering with one another and have established peering  
SLAs. 
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Diffserv performs traffic conditioning to ensure that the traffic 
entering the DS domain conforms to the rules specified in the 
TCA, in accordance with the domain's service provisioning 
policy. The traffic classifier forwards packets to appropriate 
traffic conditioning elements. 

Traffic conditioners use traffic profiles to determine how to 
condition traffic. A traffic profile defines the rules for 
determining whether packets are in-profile or out-of-profile. 
Out-of-profile packets may be queued until they are in-profile 
(shaped), discarded (policed), marked with a new code-point 
(re-marked), or forwarded unchanged while triggering some 
accounting procedure. Out-of-profile packets may be mapped 
to an "inferior" behavior aggregate. 

As mentioned in the preceding list, traffic conditioners contain 
meters, markers, shapers, and droppers. The meter measures 
traffic streams against the traffic profile, and the state of the 
meter affects whether a packet is marked, dropped, or shaped. 
The following illustration shows packets coming into the 
classifier. The meter measures the stream and passes 
information to other elements that trigger a particular action. 
The marker sets the DSCP value of a packet, effectively 
adding it to a particular behavior aggregate. 

RFC 2597 (Assured Forwarding PHB Group, June 1999) 
defines a method for defining drop precedence. IP packets are 
marked by customers or other ISPs with one of three possible 
drop precedence values. When congestion occurs, the 
congested DS node protects packets with a lower drop 
precedence value by discarding packets with a higher drop 
precedence value. 

RFC 2598 (An Expedited Forwarding PHB, June 1999) 
describes an expedited forwarding (EF) PHB that can be used 
to build a low-loss, low-latency, low-jitter, assured-
bandwidth, end-to-end service through DS domains. Such a 
service appears to the endpoints like a point-to-point 
connection or a "virtual leased line." It is useful for voice over 
IP because it minimizes latency.  

RFC 2697 (A Single Rate Three Color Marker [srTCM], 
September 1999) describes a way to mark packets according 
to three traffic parameters: Committed Information Rate, 
(CIR), Committed Burst Size (CBS), and Excess Burst Size 
(EBS). The srTCM is useful for ingress policing of a service, 
where only the length, not the peak rate, of the burst 
determines service eligibility. 

RFC 2698 (A Two Rate Three Color Marker [trTCM], 
September 1999) describes a way to mark packets based on 
two rates, Peak Information Rate (PIR) and Committed 
Information Rate (CIR). The trTCM is useful for ingress 
policing of a service, where a peak rate needs to be enforced 
separately from a committed rate. 

RFC 2859 (A Time Sliding Window Three Color Marker, 
June 2000) describes a method of marking packets based on 
the measured throughput of the traffic stream, compared to the 
Committed Target Rate (CTR) and the Peak Target Rate 

(PTR). The marker is intended to mark packets that will be 
treated by the Assured Forwarding (AF) PHB in downstream 
routers. 

Thus diffserv is the future technology of internet where 
various class of service can be provided with its inherent 
capabilities. However, the router used in the diffserv based 
traffic will have to deal with severe versatility. The various 
policies designed for a typical IP traffic may not be the right 
candidate to be used for it. The careful designs as well as 
modifications are needed for this scenario’s. Buffer 
management is a typical policy to enhance the qualities of 
service. Let us summarize the relevant points on buffer 
management for diffserv.  

B. Buffer Management Policies:  
In this paper the shared memory switches has been taken into 
consideration. It is proved [1, 2] that complete memory 
sharing with proper buffer management can provide better 
throughput performance than complete partitioning of 
memory among output ports or complete sharing without 
buffer management; however for complete memory sharing, 
careful design of buffer management is essential. The buffer 
management policy has to decide whether to accept or reject 
new incoming packets. The buffer management policy may 
also decide to drop a few packets, which are in the buffer 
waiting to be drained by the output ports and were accepted in 
the buffer in a previous decision epoch. The buffer 
management policy can trigger the dropping action only when 
there is not sufficient space available for the new incoming 
packet or it may even be triggered when the buffer is not full 
and all the new incoming packets are successfully accepted.  

The prime purpose of an ATM switch is to route incoming 
cells (packets more generally) arriving on a particular input 
link to the output link, which is also called the output port, 
associated with the appropriate route [3]. Three basic 
techniques have been proposed to carry out the switching 
(routing) function: space-division, shared-medium, and 
shared-memory [4]. The basic example for a space-division 
switch is a crossbar switch, which has also served circuit-
switched telephony networks for many years. The inputs and 
outputs in a crossbar switch are connected at switching points 
called cross-points, resulting in a matrix type of structure. The 
operation of a shared-medium switch, on the other hand, is 
based on a common high-speed bus. Cells are launched from 
input links onto the bus in round-robin fashion, and each 
output link accepts cells that are destined to it. 

 
1) Shared Memory Switch 

The subject of this article, the shared-memory (SM) switch, 
consists of a single dual-ported memory shared by all input 
and output lines. Packets arriving on all input lines are 
multiplexed into a single stream that is fed to the common 
memory for storage; inside the memory, packets are organized 
into separate output queues, one for each output line. 
Simultaneously, an output stream of packets is formed by 
retrieving packets from the output queues sequentially, one 
per queue; the output stream is then demultiplexed, and 
packets are transmitted on the output lines [4]. The block 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:12, 2008

2853

 

 

diagram of an SM ATM switch is depicted in Fig. 1. 
Examples of early shared-memory ATM switches are CNET's 
Prelude [5] and Hitachi's ATM switch [6]. Packet switches 
have another major functionality besides switching, namely, 
queuing. The need for queuing (also called buffering) arises 
since multiple cells arriving at the same time from different 
input lines may be destined for the same output port [4]. There 
are three possibilities for queuing in a packet switch: buffer 
cells at the input of the switch (input queuing); buffer at the 
output (output queuing); or buffer internally (shared-memory) 
[3]. Shared-memory ATM switches gained popularity among 
switch vendors due to the advantages they bring to both 
switching and queuing. In fact, both functions can be 
implemented together by controlling the memory read and 
write appropriately [7]. As in output buffered switches, SM 
switches do not suffer from the throughput degradation caused 
by head of line (HOL) blocking, a phenomenon inherent in 
input buffered switches [3, 7]. Moreover, modifying the 
memory read/write control circuit makes the SM switch 
flexible enough to perform functions such as priority control 
and multicast [7]. Issues regarding the routing function of the 
SM architecture are outside the scope of this article. Likewise, 
we will not discuss the details of how the memory is 
organized into logical queues, and how the cells are written in 
and read out. Our focus is on the problem of buffer allocation. 
Buffer allocation determines how the total buffer space 
(memory) will be used by individual output ports of the 
switch.  
 

2) Static and Dynamic Threshold Policy 
In the early research on buffer management policy, there were 
two policies broadly evolved, namely static threshold policy 
and dynamic threshold policy. In the static threshold policy, 
the length of a particular queue was not supposed to cross the 
predefined threshold. This policy does not let the inputs with 
higher traffic to consume most of the buffer memory and 
make sure that input with lower data rate have sufficient 
memory available in its corresponding queue. However, if one 
cannot predict the very nature of the traffic of all inputs, this 
policy will introduce un-fairness among the queue allocation. 
At particular moment some of the queue will have plenty of 
memory available in its queue whereas other will be 
overcrowded. Dynamic threshold policy avoids this type of 
fairness problem and length of the queue is variable and 
depends upon the nature of the traffic at particular instance. 
The Irland [8], and Kamoun and Kleinrock [9] and authors in 
[10-12] studied these types of policy.  
The buffer sharing policies explained in the preceding 
sections have a common philosophy. An arriving packet is 
dropped at the instant of arrival, if the switch is at a certain 
predetermined state in order to accept future arrivals from 
some other link which promises better throughput than the 
current arrival. However, there is always a chance that the 
decision to discard a packet to save space for another link may 
be a wrong one, and that the saved free space may not be used 
by other arrivals. In order to eliminate these situations, a 
delayed resolution policy (DRP) is proposed by Thareja and 
Agrawala in [14]. The DRP does not discard an arriving 

packet if there is space in the common buffer. If a packet 
arrives and the common buffer is full, the arriving packet, or 
some other packet that was already accepted, is discarded. The 
decision to drop a packet from a certain port can be made 
based on the state of the system or based on different priority 
classes. If the arriving packet is always dropped, then of 
course the policy is equivalent to CS. Wei et al. propose to 
drop from the longest queue in the switch, when the memory 
is full [18]. They call their algorithm drop-on-demand (DoD). 
This class of policies, in which a previously accepted packet 
can be dropped, is more commonly known as push-out (PO), 
and it has been studied with various different queuing 
systems. For example, push-out schemes have previously been 
used to provide service to multiple classes of traffic through 
one output buffer (and link) in an ATM switch [19]. A 
comparison of schemes in this type of buffer-sharing systems 
has been provided in [20]. In our context, where multiple 
output links compete for buffer space, the PO policy, as 
defined in [18], is appealing for the following reasons: It is 
fair, as it allows smaller queues to increase at the expense of 
longer queues. It is efficient, as no space is ever held idle 
while some queue desires more; thus, overall system 
throughput should be high.  
It is naturally adaptive. When lots of queues are active, their 
rivalry keeps their queue lengths short; when only one queue 
is active, it is allowed to become long [12]. 
 

3) Buffer management in Diffserv based traffic  
If we focus ourselves only at the ATM type scenario we will 
have packets of same size with perhaps two or more space 
priorities. However, in the Diffserv [21] model there are 
versatilities in data packets. The data packets come from 
difference sources, which create two fundamental situations. 
There may be two packets, which have same values (cost), but 
their lengths are different one. Alternatively, there may be two 
packets whose values are different but have the same lengths. 
Thus the packets with variable sizes having different space 
priorities or values will be there. One of the authors of this 
paper had studied the relative merits and demerits of expelling 
policy over push out policies in the context of shared memory 
based ATM switches and demultiplexer before [22, 23]. 
Therefore, in this work focus is on the relative performance 
study of push out and expelling policies for the situation when 
the packets of variable size with two different space priorities 
is there.   

There has been considerable prior work in this area [24]-
[28]. Moreover a VLSI implementation has also been done for 
expelling policy in ATM switches [31]. Our contribution 
differs from previous works in that it focuses on multi port 
devices, packets with priorities, packets with variable sizes 
and considers broad policy classes. The queuing analyses of 
different buffer management schemes were present in [24]. 
One of the early papers in this area is [25], which considered 
optimal memory sharing within the class of blocking based 
policies. In [26] the optimality of push out from the longest 
queue under symmetric traffic situation is discussed. 
Optimality of the push out with threshold policy is discussed 
in [1] and their treatment includes traffic asymmetry while 
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only memory less traffic and service model is considered. In 
[2] authors extend the work of [1] in the context of ATM 
switches. Hung. et al in [27] provided optimal policies within 
discarding, push out and expelling classes for the case of a 
single output port using dynamic programming and sample 
path based techniques. Researchers including one of the co-
authors of this paper have extended the work in [27] in the 
context of shared memory ATM switches already in [22] and 
[23]. This work can be viewed as a further extension of that 
previous work in the context of IP based Diffserv as here 
packets of variable sizes and of two different space priorities 
are considered. In [28] competitive analysis techniques were 
used to evaluate merits of various buffer management policies 
for such a situation, however, policies like expelling class of 
policies is there where the packet drop even when the buffer is 
not full is not considered. 

C. Contribution of this paper:  
With analyses and simulation studies following two points are 
found to be the major contributions:  

i. This is the first paper on buffer management which 
extend the idea of expelling class of buffer 
management policy in the case of in the context of IP 
based Diffserv routers previous expelling policies 
studied only for ATM switch. Thus this paper 
identifies the advantages of expelling policy for a 
traffic that consists of packets of variable lengths and 
multiple priorities.   

ii. This is the first paper that proposes a method to control 
QoS of different class of packets using expelling policy 
in the context for DiffServ routers. 

The organization of this paper is as following: The Push out 
policy is described in section-II.  In section-III the statement 
of expelling policy its analysis is presented. Thereafter, the 
method to control QoS of two priority classes is describes. In 
section-IV simulation studies based on real life data is 
presented.  

II. PUSHOUT POLICY 
In this section, heuristic push out policy is developed for 
packet dropping, which is defined by the following rules: 

(a) If a low priority packet comes and can not find 
sufficient room in the buffer then the longest low priority 
packet from the longest queue is picked as a primary 
candidate for expulsion.  If that is not sufficient for 
accommodation of the new packet then the next longest low 
priority packet from the same queue for expulsion is also 
considered. If such a packet is not available in that queue then 
we go for the longest low priority packet in the next longest 
queue. However, if more than two packets are required to be 
dropped for the insertion of the new packet then instead of 
dropping them the new incoming packet is discarded. A low 
priority packet is never allowed to push out a high priority 
packet.  

(b) If a high priority packet comes and finds that sufficient 
room is not available in the buffer then it targets the longest 
low priority packet from the longest queue for expulsion. If 

sufficient space is still not there, it targets the next longest low 
priority packet from the longest queue and so on. If it exhausts 
all the low priority packets in the longest queue then it goes 
for the longest low priority packet in the next longest queue 
and so on. If after expulsion of all the low priority packets, the 
new high priority packet still needs some more packets to be 
dropped or if only high priority packets are present in the 
system then it targets the longest high priority packet from the 
longest queue for expulsion and then may go for other high 
priority packets in the longest queue or other queues in 
decreasing order of length. However, if more than two high 
priority packets are required to be dropped by this new 
incoming packet then this new packet itself is dropped instead. 

 This heuristic prefers packets of longer length for 
expulsion compared to packets of shorter length, which tends 
to create more space for future incoming packets. This 
heuristic also tries to put a bound on the amount of packet loss 
at the expense of byte loss. 

III. EXPELLING POLICIES 
In this section the heuristic expelling policy is presented. 

Here, following are the two important rules to execute this 
policy.  

 (a) A new incoming packet is treated the same way as it 
would be treated under the push out policy.   

(b) However, while serving a particular output queue if it is 
found that the amount of high priority data in that queue is 
more than some threshold then all low priority packets from 
the head of that queue are dropped till the first available high 
priority packet and that high priority packet is put into service. 
If a high priority packet is at the head of the queue it is 
however always put into service. 

A. QoS Control by expelling policy: 
Let )( iPL  represents the length of the thi packet represented 
by iP . Let us consider that 1C be the cost (value) of a unit 
length of lower priority packet and 2C  be the cost of unit 
length packet of higher priority packet with 1 2C C≤ . Further, 
let us consider that before applying expelling policy,  

1M number of low and 2M number of high priority packets are 
available in the buffer. Let us consider that due to a particular 
value of threshold say, 1Th , 1X number of extra lower priority 
order packets gets lost and 1Y number of higher priority 
packets get into the queue. So the over all cost (value) of the 
all packets present in the buffer before applying the expelling 
policy can be given as

1 2

1 2{ ( )} { ( )}l h
M M

C L P C L P+∑ ∑ . Where as 

after applying the expelling policy the total cost (value) of all 
packets present in the buffer can be given as 

1 1 2 1

1 2{ ( ) ( )} { ( ) ( )}l l h h
M X M Y

C L P L P C L P L P− + +∑ ∑ ∑ ∑ . 

 So the total cost of packet is saved by applying expelling 
policy can be expresses as: 
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1 2

1 2{ ( )} { ( )}{ }l h
M M
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1 1

2 1( ) ( )h L
Y X

C L P C L P= −∑ ∑ . 

Here 1X the extra lower priority order packets lost and 1Y the 
additional higher priority order packets saved. These 
parameters 1X and 1Y  depends upon the expelling 
threshold Th . If decrease expelling threshold is decreased, loss 
of low priority packets will get increased but at the same time 
saving of high priority packet also will increase. Thus 1X  and 

1Y  both are decreasing function of expelling threshold Th . 
Thus due to expelling policy we can achieve the saving of 
total weighted cost given by:  

1 1

2 1h L
Y X

C L P C L PTh = −∑ ∑sC ( ) ( )( )                        (1)   

With this analysis we have following results to claim: 
Claim-1: By applying the expelling class of buffer 

management policy, we could save the extra “total weighted 
cost” given by equation-1.  

Claim-2: QoS of high priority packets can be improved by 
dropping more number of low priority packets. 

Claim-3: Since in this process number of low priority 
packets lost also increases, a trade-off between the numbers of 
high priority packet saved and number of low priority packets 
lost by setting a proper expelling threshold can be done 
depending upon the QoS requirement of the packets of  both 
priority class. 
 
Thus it is claimed that by using expelling policy, one can have 
extra saving of total weighted cost (value). We can satisfy 
improved QoS requirements of high priority packets and a 
trade-off between QoS of high priority packets with the same 
of low priority packet can be done. These show that expelling 
policy can be used to control QoS of different class of 
packets. This point is further explained in the simulation 
studies are presented in next section.  
 

In what follows, it will be also shown that in doing so, loss 
probability of the packet with high priority improves 
dramatically while loss probability of low priority packets 
increases but remains of the same order. 

IV. SIMULATION STUDIES 
For the experimental set up an 8x8 system is simulated with 
each input line connected to a two stage on off source with 
probabilistically distributed ON-OFF period as shown in 
figure-1. The source can generate a packet in ON period and 
from ON period it can go to off period with a probability p1. 
Source does not generate any packet in OFF period. From 
OFF period source can go to ON period with a probability p2. 
The probability distribution of the length of packet generated 

is directly taken from [30]. Distribution of the sizes of the 
packet is as following: 

a) Size of 50% of the packet is 0.02KB,  
b) Sizes of 15% packet are uniformly distributed between 

0.02KB to 0.58 KB,  
c) Size of 20% of the packet is exactly 0.6KB 
d) Size of rest 15% of the packet is uniformly distributed 

between 0.62KB to 1.5KB.  
In the OFF period the source does not generate any packet. 
Packets are marked as packets of high or low space priorities 
probabilistically. Simulation runs were set up so that 95 
percent confidence interval for packet losses is always less 
than 10 percent of the measured value. 

We have considered two cases of loading the queue with 
incoming packet. In the first case; when each packet goes to 
an output queue with equal probability and gets drained by the 
output line at a rate of 0.4KB per time slot. In the second case 
the hotspot scenario is considered where there are chances of 
getting one queue overloaded. The packets generated have 
following chance pattern to enter into the queues:   

 (i) There is 30% chance that a packet will join 1st queue. 
(ii)  There is 20% chance that it will join 2nd queue. 
(iii) There is 10% chance that it will join 3rd queue. 
(iv) There are 8% chances for a packet to join remaining 5 
queues uniformly. 
  We are never allowed to drop the partially delivered packet, 
which is in the process of draining by the output line. FCFS 
order is maintained within each logical queue. We have not 
put any restriction on the length of the queue. Depending upon 
the traffic any queue can grows up to any size depending 
provided the total size of the buffer is within limit.   
In what follows, the simulation results for two distinct cases 
of loading the queue are presented. In first case an incoming 
packet can join any queue out of 8 queues available with equal 
probability. In second case the hotspot scenario is taken into 
consideration where some of queues are suppose to heavily 
loaded, where as other queue don’t have so much loaded. We 
follow the hotspot scenario as it is described earlier in this 
section.  

A. Case-I uniform loading scheme:  
 In figure-2, the variation of packet loss probability of packets 
of various priorities under different buffer management 
policies versus the load on the system is presented. Here, the 
total buffer size is kept at 1200 KB and high priority traffic 
consists of 80 percent of the total load. 
In figure 3, buffer size is kept at 1200 KB and load was fixed 
at 0.83 while the traffic mix was varied. Under the expelling 
policy as the proportion of high priority packet increases, high 
priority packets are less likely to get a low priority packet to 
push out and that causes high priority loss to increase. Low 
priority loss also increases because the expelling action gets 
triggered more often and the lack of low priority cells in the 
system increases the probability that a low priority cell will 
get pushed out. Here in expelling policies total packet loss is 
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slightly greater but it remains of the same order, while high 
priority packet loss decreases dramatically. This improvement 
of the performance of high priority packet loss at a little 
compromise of low priority packet loss gives a special merit 
to expelling policies.  
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Fig. 2 Loss variation with loads, Buffer Size =1200, percentages of 
high mix 80%, for Case-I where packets can join any queue with 
equal probability. 
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Fig. 3 Loss variation with % of high mix. Buffer size=1200, 
Load=0.83, for Case-I where packets can join any queue with equal 
probability 
 

The merit of expelling heuristic policy over heuristic push 
out policy is demonstrated in figure 5. For example, assume a 
required value of probability of high priority packet loss of 10-

5 and that of low priority loss of 10-2 . With a high priority mix 
of 80 percent, it was observed that the maximum admissible 
load is higher in expelling policy than in push out policy. We 
have plotted buffer size vs. maximum admissible load in this 
figure-4.  
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Fig. 4 Maximum Admissible Load Vs Buffer size. Expelling policy 
can bear more load, for Case-I where packets can join any queue 
with equal probability 
 
 

 

Fig. 5 Although low priority loss remains of the same order high 
priority loss reduces drastically in in expelling policy, for Case-I 
where packets can join any queue with equal probability.  
 

However, using expelling policy one can achieve orders of 
magnitude improvement in the high priority performance and 
therefore can eventually satisfy its QoS requirement at the cost 
of moderate low priority performance degradation. The low 
priority loss remains at the same order. We can achieve this by 
varying the expelling threshold. 

 
In figure 5 the demonstration of the relative merits of push 

out and expelling policies regarding this issue is presented. It 
shows that we have one more control parameter i.e. the 
expelling threshold. If threshold is decreased, keeping the load 
at fixed value the high priority packet loss decreases very 
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rapidly, though the low priority loss increases too. It can be 
observed that for a load of 0.7 if decrease the threshold up to 
50% the loss of low priority packet increases but remains in 
the order of 10-2 while loss probability of the high probability 
packet decreases from 10-3 to 10-6.  Thus if one can 
compromise a bit for low priority packet loss, then high 
priority packet loss can be reduced up to a great extent. 
 

B. Case-II: Hotspot scenario: Some of the queue is heavily 
loaded:  
Here the same scenario as described earlier in this section is 

being followed. Here an incoming packet has 25% chance that 
it will join first queue, 15% chance that it will join second 
queue, 10% chance that it will join third queue and 8% chance 
to join remaining 5 queues. Size of the packets and other 
assumptions are as it is given for case-I.  
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Fig. 6 Probability of loss of low priority and high priority packets in 
case-I and in case-II. In hot spot scenario where there is chances of 
losing more packets, expelling policy still lowers the probability of 
loss of high priority packets.   
 

There are two results out of this simulation study. Due to 
hotspot scenario there are more chances of loss of both high 
priority and low priority packets with respect to the same of 
case-I. But still it can be found that in expelling policy 
probability of loss of high priority packet is less in comparison 
of the same of push out policy. Thus in this scenario also, one 
can easily conclude that by applying expelling policy 
probability of loss of high priority packets can be lowered if 
one can bear a little more loss of low priority packets.  

V. CONCLUSION 
In Diffserv router have to deal with heterogeneous traffic with 
multiple priority class of variable packet lengths. The buffer 
management policy designed for ATM switch may or may not 
be relevant here. In this paper, the simulation and analysis 
based studies is presented to explore the relative merit of 

expelling policies over push out policies is studied in a 
situation where multi port shared memory systems getting 
traffic made of variable size packets with two loss priorities is 
there. Sample path based studies show some sort of 
dominance results for the expelling policies over push out 
policies and further exploration of some expelling policy 
using competitive analysis remains topics of future study. 
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