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Expected Present Value of Losses in the Computation
of Optimum Seismic Design Parameters
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Abstract—An approach to compute optimum seismic design
parameters is presented. It is based on the optimization of the
expected present value of the total cost, which includes the initial cost
of structures as well as the cost due to earthquakes. Different types of
seismicity models are considered, including one for characteristic
earthquakes. Uncertainties are included in some variables to observe
the influence on optimum values. Optimum seismic design
coefficients are computed for three different structural types
representing high, medium and low rise buildings, located near and
far from the seismic sources. Ordinary and important structures are
considered in the analysis. The results of optimum values show an
important influence of seismicity models as well as of uncertainties
on the variables.

Keywords—Importance factors, optimum parameters, seismic
losses, seismic risk, total cost.

I. INTRODUCTION

HE optimum decision process for structural systems to be

built on seismic sites can be made by selecting a
combination of seismic design criteria, quality control, and
repair and maintenance strategies leading to the minimum
present value of the sum of the initial costs and those that may
occur during the life cycle of the system. In the latter, those
costs due to possible damage and failure as well as actions of
repair and maintenance are included. If the relationship
between utility for society and expected present value of its
assets is taken as linear, a design will be approximately
optimum when it minimizes the objective function given by
initial cost and expected present value of the losses due to
earthquakes [1], [2]. This approach does not take into account
higher order statistical moments of monetary values, risk
attitudes, and cognitive limitation of decision-makers.
Furthermore, the economic model does not include the design
cost as well as all studies required by this design. It is
advisable to use a decision tree, which shows alternatively
through branches, all the decisions that the designer can make
and all the events that can occur [23]. This diagram allows for
analyzing as a whole all possible solutions because
probabilities and utilities can be set in the appropriate places
[3]. Other decision rules can be used to identify the optimum
seismic design such as the stochastic dominance, which
includes the use of restrictions in the quality of social life, the
socially tolerable risk, and attitudes toward risk of the
decision-maker. The cumulative prospect theory developed by
[4] includes several aspects of human cognitive process and
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risk perception in decision making. As long as these
formulations are still at the research stage, the life cycle
optimization described at the beginning of the paragraph is
used here in order to find the optimum parameters.

This paper starts by describing three different seismicity
models, including one for characteristic earthquakes, which
are usually used to represent the occurrence of earthquakes.
Because of the roles played by costs in the decision process,
we then discuss initial costs as well as losses due to
earthquakes. Then the effect on optimum values due to
uncertainties in the parameters is examined. Different cases
for optimum design coefficients are analyzed, and importance
factors are computed for near-source sites as well as for those
far from the seismic source.

II. SEISMICITY

A. Local
Parameters

Seismic activity is usually well represented by curves like
those shown in Fig. 1 where the exceedance rate, A, is the
number of earthquakes per unit volume and per unit time
having magnitudes greater than M. Up to a few years ago, it
was assumed that the magnitude-recurrence curve for a local
seismic source had the shape of a straight line like curve A in
Fig. 1, as a result of the analysis of observed data in the whole
earth’s crust or in large zones. Gutenberg and Richter [5]
obtained expressions which results can be written as:

Seismicity, Poisson Process with Known

A = age M €))

where a; and [ are constants. On the other hand, according to
Cornell and Vanmarcke [6] the exceedance rate of magnitudes
of the earthquakes originated in a tectonic province can be
taken as Ay = Aq (e FM — e=BMm) /(e=FMo — ¢=BMm) where Ao,
B, and M, are unknown parameters, and M, is the magnitude
above which the seismic catalogue is complete. This function
can be conveniently expressed by:

1 :{ ay(e=PM — e=FMm) if M<M, @)

Y7o if M>M,

This curve is a straight line for small earthquakes, and as M
increases, it turns concave downwards taking a value of zero
for M > M,,,, and accepts the fact that M,,, is the maximum
magnitude that can be generated in the corresponding seismic
source (curve B in Fig. 1).

In the process of occurrence of earthquakes discussed
above, a hypothesis is made that the probabilistic distribution
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of waiting times between seismic events, with magnitudes in a
given interval, is of the exponential type. Thus, the number of
events with magnitudes in this interval has a Poisson
distribution, that is, the hazard does not change with the time
elapsed without the occurrence of large earthquakes. However,
certain discrepancies with this model have been recognized
because statistical data show that in some regions, the
relationship between frequency and magnitude of earthquake
occurrence presents anomalies consisting of the lack of
earthquakes of certain magnitudes compared to the worldwide
average. That is, earthquake magnitudes are sometimes
grouped within a narrow band of values, giving rise to the so-
called characteristic earthquake [7], [8]. This is why it has
been concluded that seismicity models should represent
seismic activity as the superposition of two subprocesses
(curve C in Fig. 1). In the first subprocess, events occur
completely in a random manner, without it being possible to
make some prediction either deterministic or semi-
deterministic. In our case, this subprocess will be given by (2).
The second subprocess consisting entirely of characteristic
earthquakes, with large magnitude whose intervals between
occurrences are less uncertain than those associated to the first
subprocess, can be put in the form

(e if M<M,
’10_{0 if M>M, @)

where s, is a constant. Thus, the total local seismicity is given
by adding (2) and (3).

ay(e™PM — e PMn) s, if M <M,
AM) ={s, if My <M<M, C))
0 if M>M,
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Fig. 1 Seismicity models

B. Attenuation

Attenuation laws are relations among magnitude, distance
and intensity in firm ground, the majority of expressions
provide peak ground acceleration, velocity, or displacement,
as well as response spectral ordinates for a given period and
critical damping. Under linear conditions and for the far field,
peak ground acceleration can be represented by [9]

z=HefM 5)

where H is a function of the coordinates of the focus or

rupture area and of the site of interest, as well as of the
properties of the material beneath the site, and " is a
constant.

C.Regional Seismicity

The exceedance rate of z can be calculated by combining
the exceedance rates of magnitudes and the attenuation law.
This can be done for the different seismicity models; Here we
show the one corresponding to the two subprocesses. Thus, by
combining (4) and (5), we obtain the exceedance rate of z as:

ay(z7% — Zn_1a5) +s. if z<z,
AMz) =15, if zm<z<z (6)
0 if z> 2z,

which is valid when the material of earth’s crust behaves
linearly between the source and site of interest. Furthermore,
the site-source distance is large compared to the dimensions of
the rupture area. z, and z. correspond to M,, and M,
respectively, and @, and as are constants. For convenience,
we will write 1 = A(z). Fig. 2 shows the exceedance rates of

intensities for the three different cases considered here.
Now, let k = —d1/dz denote the density of occurrence of
earthquakes with intensity z. Thus, we could write:
_ {a4a52‘“5‘1 if z<z, 7
s:6(z—z.) if z>zy

where §(.) is Dirac’s delta. Here s, represents the occurrence
rate of characteristic earthquakes.

Equation (5) still works for small M near a source, but there
is a saturation phenomenon for large M. Thus, for large
earthquakes near a source, z does not increase in the same
proportion with M as it does for large distances [10].
Something similar occurs at sites distant from the source,
when the nonlinear behavior of the soil reduces the response
spectral ordinates for large magnitudes [11]. We assume in
this case that at a given exceedance rate, all values of z
duplicate except z,,, which is the maximum intensity that can
occur at the site of interest.

w(2)

Fig. 2 Exceedance rates of intensities
D.Magnitudes and Occurrence Times of Characteristic
Earthquakes

Based on the analysis of self-organizing systems [12] and
on data from real earthquakes [13], it can be assumed that the
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magnitudes of characteristic earthquakes conforms to a slip-
predictable model [14], [15]. If t denotes the time of the last
characteristic earthquake, we can write

M, if t<t,
=M+ Fin(S) ift >t ®)

M, t
tr

For Mexican subduction earthquakes, the threshold
magnitude of the characteristic earthquake, the corresponding
recurrence time, and the constant F are [13]: M, =74,
t, = 26.7,and F = 1.43, respectively.

The assumption that arrival times of all earthquakes at the
site of interest constitute a Poisson process is adequate when
nothing is known about arrival times other than the magnitude
exceedance rates, or when significant earthquakes can arrive
from a number of independent sources. However, when
significant earthquakes originate in a single source and there is
an idea of the recurrence period of the characteristic
earthquake, one should take into account the non-Poisson
nature of their arrival times. Jara and Rosenblueth [13], based
on a study of Mexican characteristic subduction earthquakes,
find that the best probability density function to describe the
occurrence of large earthquakes is the lognormal distribution.

III. CosTts

A. Initial Construction Cost

Let u be the initial cost of a structure designed with
coefficient c. Based on work by [16]-[20], it is reasonable to
adopt

C if c<cg
u= ©)
[1+ay(c—cp)®]C if c>c

where, if the structure is not designed to resist earthquakes, C
would be its corresponding cost and ¢, would be its lateral
resistance, and takes values of 0.05 to 0.13 for high-rise and
low-rise buildings, a, and a5 are constants with values of 0.5,
and 1.1 to 1.4 for low-rise and high-rise buildings,
respectively.

B. Losses Due to Earthquakes

Direct Material Loss

Let D, be the direct material loss due to damage to the
building itself when subjected to an intensity z. According to
data and studies done by [21], [22], given an earthquake of
intensity z, the expected loss due to material damage to the
building itself at the instant of the earthquake is proportional
to the power 1.6 of the quotient { = z/c when 1 <{ <7. We
will take D, = u&(¢), where the function &({)must increase
with z, thereby decreasing as ¢ increases so that lim,_,, & =0
and lim,_, & = 1. Furthermore, it must tend very fast to zero
when z tends to zero because we know that earthquakes of low
intensity do not cause any damage. Thus according to
empirical data and all considerations made, the following
expressions are used for &(z,c) =&(0). &() = 0.025(° —

0.015¢° if (<1, and &({) = (0.188 + ¢{*®)/(117.8 + {1®) if
¢ > 1 (see Fig. 3).

1

0.9

0.8

0.7 +

0.6
§(6)05
0.4 -

0.3

0.2

0.1

0.1 1 10 100
C=z/c

Fig. 3 Loss rate of structures in terms of intensity and seismic design
coefficient

Indirect Economic and Non-Economic Loss

This loss represents all damages that earthquakes cause to
society. It must be insignificant when £(¢) is small, because
there is practically no damage done to the contents of the
buildings. Furthermore, it should exceed ué({) when &({) is
close to one, because it corresponds to buildings under
collapse, causing usually nearly the total loss of its content,
the loss of many human lives and the economic chaos in the
affected area.

In computing all possible losses, intangibles such as human
lives must be taken into account. In this case, it is not a trivial
matter to establish monetary equivalents, and this kind of
purely economic approach deserves further study, because just
considering this loss as an additive term in the formation of an
objective function may lead to absurd results.

Different approaches have been developed to deal with the
problem, namely, human capital, consumption and its
variations, consideration of legacies or bequests, willingness
to pay, and quality of life. A review of these methods is done
by Garcia-Pérez [23], and a lower limit is obtained for this
intangible by making it equal to the expected present value of
the person’s contribution to the gross domestic product. By
using data for Mexico, this limit results in 45 000 US dollars.
The main objection to this human-capital approach is that it
looks only at the economic side of the problem. Mishan [24]
suggested that in resource allocation, in order to achieve an
improvement in the sense of Pareto, it is required to take into
account each person’s willingness to reduce his/her risk of
dying. A Pareto improvement is said to exist when individuals,
who gain from a social change, are able to compensate those
who stand to lose from the change and still leave a net gain.
Also, Usher [25] published a formal treatment to the problem
of establishing the amount that a rational person must be
willing to invest, in order to reduce such a risk, taking into
account his/her utility curve. We should, therefore, look at the
amount that a person is willing to invest in order to reduce the
probability of losing her/his life. Garcia-Pérez [23] discusses
the willingness-to-pay approach and computes a factor, using
an individual utility curve, whereby one has to multiply the
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value assigned to life by the human-capital approach and
obtain the value that the person would assign to her/his life.
This factor is always greater than one and could be much
greater. Research is needed especially regarding the choice of
utility curves in both individual and social problems.

Expected Present Value of Seismic Losses

The loss caused by an earthquake of intensity z at the
instant that it occurs,L,, must include all seismic losses given
by the direct material loss and the indirect economic and
noneconomic loss as discussed above. Thus L, = ué({)[1 +
b&({)], where b is a factor considerably greater than 1.

If the earthquake arrival times constitute a multiple Poisson
process, and we assume that the original condition is restored
to the structure after each earthquake, and the discount rate y
is independent of time and the expected cost of damage and
failure per unit time is d, = fom K L, dz, [26], then the expected
present value of all seismic losses becomes v = fooo doe~rtde,

and after substituting all variables, the following expression is
obtained:

v =4[ 0 2/ ) [1+ bE(2/)dz + 5e8 2/ 1+ bE (7 /)]}
(10)

It is convenient to write {,, = z,/c in (10) and integrate
with respect to { rather than with respect to z. Thus, we get:

= b foue i EOLREOL 40 + 5@l +bEGT} (11)

Similar expressions can be derived considering A;and 4, by
using the corresponding numerical value of a,, the maximum
values of the intensity, and excluding characteristic
earthquakes. This will be illustrated through some examples
below.

C.Expected Present Value of the Total Cost

The expression to be minimized is the expected present
value of the total cost including the initial cost (9), as well as
the losses due to earthquakes (11), given by:

w =Ly 4 e I EOUED) gp 4 s pc)[1+ bEET} (12)

IV. UNCERTAINTIES

So far, we have treated all parameters as deterministic.
However, uncertainties in each one of them become very high.
Thus, we now take into account the effect on spectral
ordinates of uncertainties in some parameters. We treat a,, as,
B'and the initial cost of a structure u as deterministic, since c,
the base shear coefficient, is chosen by the designer or fixed
by a code. Since most parameters are obtained from linear
regression between their logarithms and known quantities, we
assign lognormal distributions to random variables with
standard deviations and modes or deterministic values in (11).
Uncertainties in the structural capacity are considered by
assigning a standard deviation of 0.4 to the design coefficient,
which is reasonable for reinforced concrete frames. The

expected value of a linear function of a power of a random
function, for example, zP, where p is any real number, is
computed as the function’s median times exp(p? o7,,/2). In the
case of nonlinear functions, the two-point estimates method
developed by Rosenblueth [27] is used. We also take b = 12,
Omp = 1, S¢ = 0.02, 05, = 0.2, ¢ the mode of c,and {5t =
zh/ct, {nt =zy/ct and so on. Thus, the expected present
value of the total cost with uncertainties is:

w=ul+h+1) (13)

where, I; = 222 [3.32(1f* + 7 7) + 0.3( " + [77) + A;]. And

for i= 1,2 we have that: I}t = f(f"‘ [E(0)/{%*1d], etc.;
I}t =19.78 foz’%)r[{z(()/(“sﬂ]d{, etc., and the wvalues of:
A; = 0.01[¢(¢) + E(¢)], and 4, = 0.1978[¢2({F) + E2(3)].

V.DISCOUNT AND CONSTRUCTION RATES

The present values of the losses have been obtained by
considering a discount function, exp(—yt), where y is a
constant discount rate, often taken as 0.05/yr, because this is
the value used in major financial transactions carried out in
recent decades. However, surveys in the US of the discount
rate [28], which must be applied to the social value of a human
life, lead to the conclusion that y(t) decreases rapidly with
time. Any discount function can be approximated as closely as
wished by replacing it with ); p;exp(—y;t) where Y;p; = 1 and
y; > 0 for all i. Whatever the parameters p; and y; may be, if
the process under study is Poisson, there is always an
equivalent discount rate independent of time that leads us
exactly to the same results for the total expected present value
[29]. By using an expression of the form
e YOt = 0567045 4 0.44¢70033t Rosenblueth [29] finds an
equivalent discount rate of y = 0.0686.

In this study, we have been dealing with a single building
that we assume will be designed and built immediately. Codes
are intended to be applied to buildings that will be erected at
different times and over several years, for example t;. In this
case, it is convenient to minimize the expected present value
of all costs of the structures that will be built in the zone where
the codes apply. Let ¥ = ¢(t) denote the expected number of
structures to be built per unit area and per unit time. The
expected present value of the number of buildings that will be
built is then ¢ = fotf Pe Y®tde, The expected present value of
the initial costs is u¢. Thus if a building is constructed at time
t < t; after the code is enacted, and if the discount rate is
constant, then the expected seismic loss for this building
actualized to time t is given by (11). Now the number of
buildings constructed between t and t + dt is Ydt.Therefore,
the expected present value of the losses is vg [30]. The
problem of finding optimum seismic design parameters, when
different structural types are built in a region, has been solved
by using both genetic algorithms [31] and artificial neural
networks [32].

If we are interested in a single structure built at t = 0, we
find v affected by the factor 1/y which, in the case of the
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equivalent discount rate gives a value of 14.6. Now, if we are
concerned with a building code that will be in use for ten years
before it is updated, and if Y is constant over this period, we
find that by using e ¥®, u must be multiplied by 51 and that
the factor in v is 116y. Therefore, v has a weight relative to
u, which is 1.6 times greater than that in the single structure
when we consider that buildings will be constructed over the
ten year period.

VI. TIME DEPENDENT NON-POISSON CHARACTERISTIC
EARTHQUAKES

Based on a study by Jara and Rosenblueth [13], we can
assume for illustrative purposes that characteristic earthquakes
belong to either of two populations. In the first population,
twenty per cent of the events have an exponential distribution
for the time t with expected value of 1.5 yr between events,
and the second population has a lognormal distribution with
median 40.6 yr and standard deviation of natural logarithm of
t equal to 0.4. The expected value of t in the second
population is then 40.6 exp(0.42/2) = 43.7 yr and that which is
for all characteristic events is m, = 36.7 yr. In the case of a
single structure to be designed and built immediately, if the
slip-predictable process is ignored, by numerical integration it
is found that the expected loss at the time that a characteristic
earthquake strikes must be multiplied by a factor that varies
between 0.18 and 0.41 corresponding to 5 and 75 yr after the
last earthquake, rather than be multiplied by 1/ym; = 0.4 ,as
in a Poisson process to obtain the expected present value of all
such earthquakes.

We use the data from subduction earthquakes from the coast
of Mexico given by (5), and we will take the maximum value
of M_.equal to 8. Then it is found that the increase in M, with
time increases the lower limit by a small factor while the
upper stays below 0.41 exp[e'(8 — 7.4)]that turns to be 0.84
when using ¢’ = 1.2 [9]. If we are concerned with a building
code that will be in use for ten years before it is updated, and
if we assume that i is time independent, it is found that the
lower limit exceeds 1.6(5)0.18 = 1.4y while the upper limit is
less than 1.6(5)84 = 6.7y, regardless of when the last
characteristic earthquake occurred.

VII. EXAMPLES
A. Optimum Seismic Design Coefficients

Far-Field Site

Three different types of structures will be under study
representing high- medium- and low-rise buildings. The
corresponding parameters used in (9) are shown in Table I.
The following values are used in the calculations: a, =
3.75x107%, a5 =33, y = 0.05, z, = 0.4 and z. = 0.8, both
with ¢ = 0.5. Optimum values of ¢ are obtained by minimizing
the expected present value of all costs. This minimization
process requires that dw/dc = 0. Thus, we obtain optimum
values for the three different types of structures under study
for both deterministic parameters and with uncertainties and
for three local seismicity curves as shown in Table II. This

table displays results in column A considering the Gutenberg
and Richter curve, those corresponding to Cornell and
Vanmarcke in column B, including characteristic earthquakes
(12) in column C. The results considering uncertainties with
(13) are presented in the last column of this table.

TABLEI
PARAMETERS FOR THREE DIFFERENT TYPES OF STRUCTURES

Type of structure

Parameters - -
High Medium Low
Co 0.05 0.1 0.13
a, 0.5 0.5 0.5
as 1.4 1.2 1.1
TABLEII

OPTIMUM SEISMIC DESIGN COEFFICIENTS FOR FAR-FIELD-SITE

Using (12) (W)

Structural type Using (13) (W)

A B C
High 0.166 0.174 0.341 0.525
Medium 0.151 0.155 0.316 0.489
Low 0.140 0.147 0.296 0.335

Near-Field Site

Consider now a site in the near-field. Equation (5) still
works for small M, but is no longer valid for large magnitude
earthquakes due to a saturation phenomenon. Thus, for large
earthquakes near a source, z does not increase in the same
proportion with M as it does for large distances [10]. The
following intensities are used in order to calculate the
optimum coefficients, given by the ordinates of the pseudo-
acceleration spectrum expressed in terms of the gravity
acceleration, z,, = 0.5, z, = 0.9 and a,as = 20 x 1073, Results
for the three different types of structures are displayed in
Table III.

Importance factors at a near-field can be computed
following a methodology developed by Garcia-Pérez et al
[33]. Usually building codes require that very important
structures (those whose failure or collapse might cause a large
loss of lives, an extraordinary economic loss, and public
buildings that are essential during emergencies) be designed
for a seismic coefficient equal to that used for ordinary
structures multiplied by the importance factor. Therefore, we
find the value of ¢ first, which at the far-field minimizes the
total cost. This c applies to ordinary structures taken from
Table II column C, because we will consider the two
seismicity subprocesses. After this, we compute the factor by
which we must multiply b to increase the computed optimum
to 1.5¢ (important structures), so that the importance factor is
equal to 1.5 at the far-field site. Now we go to the near-field
site and compute the optimum design coefficients, assuming
that the values of b for both ordinary and important structures
are the same as at the far-field site. These values are given in
Table III. The ratio between these values gives us the
importance factor corresponding to the near-field site as
displayed in Table III. This factor decreases for the near field
site as was previously pointed out in [33].
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TABLE Il
OPTIMUM SEISMIC DESIGN COEFFICIENTS FOR NEAR-FIELD-SITE

Structural type Ordinary Important Importance factor
High 0.425 0.570 1.34
Medium 0.401 0.536 1.34
Low 0.377 0.508 1.35

VIII.CONCLUDING REMARKS

The expected present value of total cost is used to compute
optimum seismic design parameters for sites far and near a
seismic source, respectively. High, medium and low structural
types have been considered in the analysis. Different
seismicity models are used and uncertainties are included in
some variables to study their influence in the computation of
optimum values. Concepts such as discount factor,
construction rate, and indirect economic and non-economic
loss are reviewed. The results show that taking into account
the concepts studied here modify the optimum values, and that
importance factors are lower in the near-field site assuming
that the importance factor at a far-field site is optimum.
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