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Existence of solutions for a nonlinear fractional
differential equation with integral boundary

condition
Meng Hu and Lili Wang

Abstract—This paper deals with a nonlinear fractional differential
equation with integral boundary condition of the following form:{

Dα
t x(t) = f(t, x(t), Dβ

t x(t)), t ∈ (0, 1),

x(0) = 0, x(1) =
∫ 1

0
g(s)x(s)ds,

where 1 < α ≤ 2, 0 < β < 1. Our results are based on the Schauder
fixed point theorem and the Banach contraction principle.

Keywords—Fractional differential equation; Integral boundary
condition; Schauder fixed point theorem; Banach contraction prin-
ciple.

I. INTRODUCTION

IN the last few decades, fractional-order models are found to
be more adequate than integerorder models for some real

world problems. Fractional derivatives provide an excellent
tool for the description of memory and hereditary properties
of various materials and processes. This is the main advantage
of fractional differential equations in comparison with classical
integer-order models. Fractional differential equations arise
in many engineering and scientific disciplines as the math-
ematical modeling of systems and processes in the fields of
physics, chemistry, aerodynamics, electrodynamics of complex
medium, polymer rheology, and so forth, involves derivatives
of fractional order. In consequence, the subject of fractional
differential equations is gaining much importance and atten-
tion. For examples and details, see [1-11] and the references
therein. However, the theory of boundary value problems for
nonlinear fractional differential equations is still in the initial
stages and many aspects of this theory need to be explored.

Boundary value problems with integral boundary conditions
constitute a very interesting and important class of problems.
They include two, three, multipoint, and nonlocal boundary
value problems as special cases. For boundary value problems
with integral boundary conditions and comments on their
importance, we refer the reader to the papers [12-15] and the
references therein.

In this paper, we consider the following boundary value
problem for a nonlinear fractional differential equation with
integral boundary conditions{

Dα
t x(t) = f(t, x(t), Dβ

t x(t)), t ∈ (0, 1),
x(0) = 0, x(1) =

∫ 1

0
g(s)x(s)ds.

(1)
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where 1 < α ≤ 2, 0 < β < 1 and Dα
t represents the standard

Riemannn-liouville fractional derivative, f : [0, 1]×R×R → R

is assumed to satisfy certain conditions, which will be speci-
fied later, g ∈ L1[0, 1] satisfies 1 − ∫ 1

0
g(s)sα−1ds > 0.

This paper is organized as follows. In next section, we
present some basic definitions and preliminary lemmas. Sec-
tion 3 is devoted to the existence results for (1) based on
Schauder fixed point theorem and Banach contraction princi-
ple. In the last section, two examples are given to illustrate
our main results.

II. PRELIMINARIES

In this section, we shall first recall some basic definitions,
lemmas which are used in what follows (see [8-11]).

Definition 2.1 The αth fractional order integral of the
function u : (0,∞) �→ R is defined by

Iα
t u(t) =

1
Γ(α)

∫ t

0

(t − s)α−1u(s)ds,

where α > 0, Γ is the gamma function, provided the right
side is pointwise defined on (0,∞).

Definition 2.2 The αth fractional order derivative of a
continuous function u : (0,∞) �→ R is defined by

Dα
t u(t) =

1
Γ(n − α)

(
d

dt
)n

∫ t

0

(t − s)n−α−1u(s)ds,

where α > 0, n = [α] + 1, provided that the right side is
pointwise defined on (0,∞).

Lemma 2.1 Let α > 0. then the fractional differential
equation

Dα
t u(t) = 0

has a solution

u(t) = c1t
α−1 + c2t

α−2 + . . . + cntα−n,

and ci ∈ R, i = 1, 2, . . . , n, n = [α] + 1.
Lemma 2.2 Let α > 0. Then

Iα
t Dα

t u(t) = u(t) + c1t
α−1 + c2t

α−2 + . . . + cntα−n,

for some ci ∈ R, i = 1, 2, . . . , n, and n = [α] + 1.
Lemma 2.3 Let h ∈ C([0, 1]), then for 1 < α ≤ 2, 0 <

β < 1, the linear problem{
Dα

t x(t) = h(t), t ∈ (0, 1),
x(0) = 0, x(1) =

∫ 1

0
g(s)x(s)ds.

(2)
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has a unique solution

x(t) =
∫ 1

0

G(t, s)h(s)ds, (3)

where

G(t, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(t−s)α−1

Γ(α) + Θtα−1

Γ(α)

[ ∫ 1

s
g(r)(r − s)α−1dr

−(1 − s)α−1
]
, 0 ≤ s ≤ t ≤ 1,

Θtα−1

Γ(α)

[ ∫ 1

s
g(r)(r − s)α−1dr

−(1 − s)α−1
]
, 0 ≤ t ≤ s ≤ 1,

(4)

here, Θ =
[
1 − ∫ 1

0
g(s)sα−1ds

]−1
.

Proof: In view of Lemma 2.2 and equation (2), we have

x(t) = Iα
t h(t) + c1t

α−1 + c2t
α−2, for c1, c2 ∈ R.

Hence, the general solution of equation (2) is

x(t) =
∫ t

0

(t − s)α−1h(s)
Γ(α)

ds + c1t
α−1 + c2t

α−2,

for c1, c2 ∈ R. The boundary condition x(0) = 0 implies that
c2 = 0. And it is follows from

x(1) =
∫ 1

0

g(s)x(s)ds

that

c1 = Θ
[ ∫ 1

0

g(s)
∫ s

0

(s − r)α−1h(r)
Γ(α)

drds

−
∫ 1

0

(1 − s)α−1h(s)
Γ(α)

ds

]

=
Θ

Γ(α)

[ ∫ 1

0

∫ s

0

g(s)(s − r)α−1h(r)drds

−
∫ 1

0

(1 − s)α−1h(s)ds

]

=
Θ

Γ(α)

[ ∫ 1

0

∫ 1

s

g(r)(r − s)α−1h(s)drds

−
∫ 1

0

(1 − s)α−1h(s)ds

]

=
Θ

Γ(α)

∫ 1

0

[ ∫ 1

s

g(r)(r − s)α−1dr

−(1 − s)α−1

]
h(s)ds

where, Θ =
[
1 − ∫ 1

0
g(s)sα−1ds

]−1
.

So

x(t) =
∫ t

0

(t − s)α−1h(s)
Γ(α)

ds

+
Θtα−1

Γ(α)

∫ 1

0

[ ∫ 1

s

g(r)(r − s)α−1dr

−(1 − s)α−1

]
h(s)ds

=
∫ 1

0

G(t, s)h(s)ds.

This completes the proof.

III. MAIN RESULTS

Let C([0, 1], R) be the space of continuous functions defined
on [0, 1]. The space

B = {x : x ∈ C([0, 1], R), Dα
t x ∈ C([0, 1], R)}

equipped with the norm ‖x‖B = max
t∈[0,1]

|x(t)|+ max
t∈[0,1]

|Dα
t x(t)|

is a Banach space.
For the forthcoming analysis, we impose some growth

conditions on the function f as follows:
(H1) f : [0, 1] × R × R → R is continuous;
(H2) There exists a nonnegative function φ ∈ L([0, 1]) such

that |f(t, x, y)| ≤ φ(t)+c1|x|σ1 +c1|y|σ2 , where c1, c2 ∈
R are nonnegative constants and 0 < σ1, σ2 < 1;

(H3) There exists a nonnegative function φ ∈ L([0, 1]) such
that |f(t, x, y)| ≤ φ(t)+c1|x|σ1 +c1|y|σ2 , where c1, c2 ∈
R are nonnegative constants and σ1, σ2 > 1;

(H4) There exists a constant k > 0 such that

|f(t, x, y) − f(t, x̄, ȳ)| ≤ k(|x − x̄| + |y − ȳ|)
for each t ∈ [0, 1] and all x, y, x̄, ȳ ∈ R.

For convenience, we define the following constants:

p = max
t∈[0,1]

∫ 1

0

|G(t, s)φ(s)|ds,

q =
1 + Θ

Γ(α + 1)
+

Θ
Γ(α)

∫ 1

0

∫ 1

s

|g(r)|(r − s)α−1drds,

ρ =
1 + Θ

Γ(α + 1)
+

1
Γ(α − β + 1)

+
Θ

αΓ(α − β)

+
(

Θ
Γ(α − β)

+
Θ

Γ(α)

) ∫ 1

0

∫ 1

s

|g(r)|(r − s)α−1drds.

Lemma 3.1 Assume that (H1) holds, then x ∈ B is a
solution of BVP (1) if and only if x ∈ B is a solution of
the integral equation

x(t) =
∫ 1

0

G(t, s)f(s, x(s), Dβ
s x(s))ds. (5)

Proof: Let x ∈ B is a solution of BVP (1), by the method
used to prove Lemma 2.3, we can prove that x ∈ B is a
solution of the integral equation (5).

Conversely, let x ∈ B be a solution of the integral equation
(5). For

x(t) =
∫ 1

0

G(t, s)f(s, x(s), Dβ
s x(s))ds

=
∫ t

0

(t − s)α−1f(s, x(s), Dβ
s x(s))

Γ(α)
ds

+Θ
[ ∫ 1

0

g(s)
∫ s

0

(s − r)α−1f(r, x(r), Dβ
r x(r))

Γ(α)
drds

−
∫ 1

0

(1 − s)α−1f(s, x(s), Dβ
s x(s))

Γ(α)
ds

]
tα−1

= Iα
t f(t, x(t), Dβ

t x(t))

+Θ
[ ∫ 1

0

g(s)Iα
s f(s, x(s), Dβ

s x(s))ds

−Iα
1 f(1, x(1), Dβ

1 x(1))
]
tα−1
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together with the relations

Dα
t Iα

t f(t) = f(t) and Dα
t tα−1 = 0,

then

Dα
t x(t) = f(t, x(t), Dβ

t x(t)).

On the other hand, it is easy to show that x(0) = 0 and
x(1) =

∫ 1

0
g(s)x(s)ds, which implies that x ∈ B is a solution

of BVP (1). This completes the proof.
Theorem 3.1 Assume that (H1) and (H2) hold, then BVP

(1) has a solution.
Proof: Define an operator Φ : B → B by

(Φx)(t) =
∫ 1

0

G(t, s)f(s, x(s), Dβ
s x(s))ds. (6)

In view of the continuity of f and G, the operator Φ is
continuous.

Let
M = {x ∈ B : ‖x‖B ≤ R, t ∈ [0, 1]}

where

R ≥ max{3p, (3c1q)
1

1−σ1 , (3c2q)
1

1−σ2 }.
Firstly, we prove that Φ : M → M. In fact, for each x ∈ M,

we have

|(Φx)(t)| =
∫ 1

0

|G(t, s)||f(s, x(s), Dβ
s x(s))|ds

≤
∫ 1

0

|G(t, s)φ(s)|ds

+(c1R
σ1 + c1R

σ2)
∫ 1

0

|G(t, s)|ds

≤
∫ 1

0

|G(t, s)φ(s)|ds

+(c1R
σ1 + c1R

σ2)
[ ∫ t

0

(t − s)α−1

Γ(α)
ds

+
∫ 1

0

Θtα−1

Γ(α)

∣∣∣∣
∫ 1

s

g(r)(r − s)α−1dr

−(1 − s)α−1

∣∣∣∣ds

]

≤
∫ 1

0

|G(t, s)φ(s)|ds

+(c1R
σ1 + c1R

σ2)
[ ∫ t

0

(t − s)α−1

Γ(α)
ds

+
Θ

Γ(α)

∫ 1

0

∫ 1

s

|g(r)|(r − s)α−1drds

+
Θ

Γ(α)

∫ 1

0

(1 − s)α−1ds

]

≤
∫ 1

0

|G(t, s)φ(s)|ds

+(c1R
σ1 + c1R

σ2)
[

1 + Θ
Γ(α + 1)

+
Θ

Γ(α)

∫ 1

0

∫ 1

s

|g(r)|(r − s)α−1drds

]

≤ p + (c1R
σ1 + c1R

σ2)q

≤ R

3
+

R

3
+

R

3
= R.

Therefore, ‖(Φx)(t)‖B ≤ R. Thus, Φ : M → M.
Next, we show that Φ is completely continuous. In fact,

Let N = max
t∈[0,1]

|f(t, x(t), Dβ
t x(t))|+ 1. For each x ∈ M, and

t1, t2 ∈ [0, 1] with t1 < t2, then

|(Φx)(t2) − (Φx)(t1)|
=

∫ 1

0

|G(t2, s) − G(t1, s)||f(s, x(s), Dβ
s x(s))|ds

≤ N |Iα
t2(1) − Iα

t1(1)|

+
ΘN

Γ(α)

[ ∫ 1

0

∫ 1

s

|g(r)|(r − s)α−1drds

+
∫ 1

0

(1 − s)α−1ds

]
(tα−1

2 − tα−1
1 )

≤ N

Γ(α + 1)
(t2α − t1

α)

+
ΘN

Γ(α)

[ ∫ 1

0

∫ 1

s

|g(r)|(r − s)α−1drds

+
1
α

]
(tα−1

2 − tα−1
1 ).

By using Da
t tb = Γ(b+1)

Γ(b−a+1) t
b−a, then

|(Dβ
t2Φx)(t2) − (Dβ

t1Φx)(t1)|
≤ |Iα−β

t2 f(t2, x(t2), D
β
t2x(t2))

−Iα−β
t1 f(t1, x(t1), D

β
t1x(t1))|

+
ΘN

Γ(α − β)

[ ∫ 1

0

∫ 1

s

|g(r)|(r − s)α−1drds +
1
α

]
(tα−β−1

2 − tα−β−1
1 )

≤ N |Iα−β
t2 (1) − Iα−β

t1 (1)|

+
ΘN

Γ(α − β)

[ ∫ 1

0

∫ 1

s

|g(r)|(r − s)α−1drds +
1
α

]
(tα−β−1

2 − tα−β−1
1 )

≤ N

Γ(α − β + 1)
(t2α−β − t1

α−β)

+
ΘN

Γ(α − β)

[ ∫ 1

0

∫ 1

s

|g(r)|(r − s)α−1drds +
1
α

]
(tα−β−1

2 − tα−β−1
1 ).

Now, we conclude that ΦM is equicontinuous, since the
functions tα−1

2 − tα−1
1 , tα2 − tα1 , tα−β−1

2 − tα−β−1
1 , t2

α−β −
t1

α−β are uniformly continuous on [0, 1]. Also, ΦM is a
uniformly bounded set. So, ΦM ⊂ M. By the Arzela-Ascoli
theorem, Φ : M → M is completely continuous. Hence
the Schauder fixed point theorem implies the existence of a
solution in M for BVP (1). This completes the proof.

Theorem 3.2 Assume that (H1) and (H3) hold, then BVP
(1) has a solution.

Proof: The proof is similar to that of Theorem 3.1, so we
omit it here.

Theorem 3.3 Assume that (H1) and (H4) hold. If kρ < 1,
then BVP (1) has a unique solution.
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Proof: For any x, y ∈ B, by (H4), we have

|(Φx)(t) − (Φy)(t)|
=

∫ 1

0

|G(t, s)||f(s, x(s), Dβ
s x(s))

−f(s, y(s), Dβ
s y(s))|ds

≤ k

[
1 + Θ

Γ(α + 1)
+

Θ
Γ(α)

∫ 1

0

∫ 1

s

|g(r)|(r − s)α−1drds

]
‖x − y‖,

and

|(Dβ
t Φx)(t) − (Dβ

t Φy)(t)|
≤ Iα−β

t |f(t, x(t), Dβ
t x(t2)) − f(t, y(t), Dβ

t y(t))|
+

Θ
Γ(α − β)

[ ∫ 1

0

∫ 1

s

|g(r)|(r − s)α−1drds +
1
α

]
tα−β−1|f(t, x(t), Dβ

t x(t2)) − f(t, y(t), Dβ
t y(t))|

≤
{

Iα−β
t (1) +

Θ
Γ(α − β)

[ ∫ 1

0

∫ 1

s

|g(r)|(r − s)α−1drds

+
1
α

]
tα−β−1

}
|f(t, x(t), Dβ

t x(t2))

−f(t, y(t), Dβ
t y(t))|

≤ k

{
1

Γ(α − β + 1)

+
Θ

Γ(α − β)

[ ∫ 1

0

∫ 1

s

|g(r)|(r − s)α−1drds

+
1
α

]}
‖x − y‖.

Then

‖(Φx)(t) − (Φy)(t)‖
≤ k

[
1 + Θ

Γ(α + 1)
+

1
Γ(α − β + 1)

+
Θ

αΓ(α − β)

+
(

Θ
Γ(α − β)

+
Θ

Γ(α)

) ∫ 1

0

∫ 1

s

|g(r)|(r − s)α−1drds

]
‖x − y‖

= kρ‖x − y‖
< ‖x − y‖.
By the contraction mapping principle, BVP (1) has a unique

solution. This completes the proof.

IV. EXAMPLES

Consider the following boundary value problem{
D

3
2
t x(t) = f(t, x(t), D

1
2
t x(t)), t ∈ (0, 1),

x(0) = 0, x(1) =
∫ 1

0
sx(s)ds.

(7)

Then Θ =
[
1 − ∫ 1

0
s

3
2 ds

]−1 = 5
3 > 0.

Example 1. f(t, x(t), D
1
2
t x(t)) = (t− 1

4 )2et

1+t3 + sin πt√
π
|x(t)|σ1 +

e−t

5+|D
1
2
t x(t)|

|D 1
2
t x(t)|σ2 . Let φ(t) = (t− 1

4 )2et

1+t3 , c1 = 1√
π
, c2 =

1
5 , then |f(t, x(t), D

1
2
t x(t))| < φ(t) + c1|x(t)|σ1 +

c2|D
1
2
t x(t)|σ2 . For 0 < σ1, σ2 < 1, the assumption (H2) holds

and for σ1, σ2 > 1, the assumption (H3) holds. Therefore, by
Theorem 3.1 and Theorem 3.2, BVP (7) has a solution.

Example 2. f(t, x(t), D
1
2
t x(t)) = (t− 1

2 )2(x(t)+D
1
2
t x(t))

(4+e2t)(1+x(t)+D
1
2
t x(t))2

.

Let k = 1
20 , then the assumption (H4) holds. By a direct

calculation, we can get ρ = 5.4324 and kρ = 0.2716 < 1.
Therefore, by Theorem 3.3, BVP (7) has a unique solution.
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