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Existence of periodic solution for p-Laplacian
neutral Rayleigh equation with sign-variable

coefficient of non linear term
Aomar Anane, Omar Chakrone, Loubna Moutaouekkil.

Abstract—As p-Laplacian equations have been widely applied
in field of the fluid mechanics and nonlinear elastic mechanics,
it is necessary to investigate the periodic solutions of functional
differential equations involving the scalar p-Laplacian. By using
Mawhin’s continuation theorem, we study the existence of periodic
solutions for p-Laplacian neutral Rayleigh equation

(ϕp(x′(t)−c(t)x′(t − r)))′ + f(x′(t)) + g1(x(t − τ1(t, |x|∞)))

+ β(t)g2(x(t − τ2(t, |x|∞))) = e(t),

It is meaningful that the functions c(t) and β(t) are allowed to change
signs in this paper, which are different from the corresponding ones
of known literature.

Keywords—periodic solution; neutral Rayleigh equation; variable
sign; Deviating argument; p-Laplacian; Mawhin’s continuation.

I. INTRODUCTION

IN recent years, periodic solutions involving the scalar p-
Laplacian were studied extensively by many mathematical

researchers.
Cheung and Ren [1] studied the following equation

(ϕp(x′(t))′ + f(x′(t)) + βg(x(t − τ(t))) = e(t),

under the condition of constant β > 0 .
Xuejun Gao [2] discussed the existence of periodic solutions
for p-Laplacian functional differential equations with two
deviating arguments

(ϕp(x′(t)))′ + f(x(t))x′(t) + g1(t, x(t − τ1(t)))
+ g2(t, x(t − τ2(t))) = e(t),

Feng, Lixiang and Shiping [3] investigated the existence
of periodic solutions for a p-Laplacian neutral functional
differential equation with the following form

(ϕp(x′(t) − c(t)x′(t − r)))′ = f(x(t))x′(t)
+ β(t)g(x(t − τ(t))) + e(t),

where c(t) and β(t) are allowed to change signs.
The purpose of this paper is to study the existence of periodic
solutions for p-Laplacian neutral Rayleigh equation

(ϕp(x′(t) − c(t)x′(t − r)))′ + f(x′(t))
+ g1(x(t − τ1(t, |x|∞))) + β(t)g2(x(t − τ2(t, |x|∞)))
= e(t)

(1)
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where p > 1 is a fixed real number. The conjugate exponent
of p is denoted by q, i.e 1

p + 1
q = 1. Let ϕp : R → R be the

mapping defined by ϕp(s) = |s|p−2s for s �= 0, and ϕp(0) =
0, f, gi ∈ C(R, R), f(0) = 0, c(t), β(t), e(t) are continuous
T -periodic functions defined on R and T > 0, c(t) is not a
constant function,

∫ T
0

β(t)dt �= 0,
∫ T
0

e(t)dt = 0, r ∈ R is a
constant with r > 0,τi ∈ C(R2, R)(i = 1, 2), τi(t + T, .) =
τi(t, .).
We will study the existence of periodic solutions for Eq (1)
under the case

∫ T
0

β(t)dt > 0 (
∫ T
0

β(t)dt < 0 can be discussed
in the same way). Obviously, β(t) is sign-changeable. On the
hand, it is meaningful that the growth degree with respect to
the variable u in g1(u) is allowed to be greater than p−1. For
constant m1 > p− 1, two-sided growth condition imposed on
g1(u) is given as follows

r1|u|m1 ≤ |g1(u)| ≤ r2|u|m1 , ∀|u| > d.

On the other hand we analyze some properties of the linear
difference operator A : [Ax](t) = x(t) − c(t)x(t − r) in the
first, and obtain new inequalities. By using the continuation
theorem of coincidence degree theory and some new analysis
techniques, we obtain some results on the existence of periodic
solutions to Eq (1). Meanwhile, the function c(t) is allowed
to change sign.

II. PRELIMINARIE

For convenience, define CT = {x ∈ C(R, R) : x(t + T ) =
x(t)} with the norm |x|∞ = max |x(t)|t∈[0,T ]. Clearly CT is
a Banach space . In what follows, we will use ‖.‖p to denote
the LP -norm. We also define a linear operator A as follows

A : CT → CT , (Ax)(t) = x(t) − c(t)x(t − r) (2)

and we have the following notation

Dp =
{

1 if 1 < p < 2,
3p−2 if p ≥ 2.

Lemma 2.1: [3]
Let B : CT → CT , (Bx)(t) = c(t)x(t − r),
then B satisfies the following conditions
(1) ‖B‖ ≤ |c|∞.

(2) (
∫ T
0
|[Bjx](t)|pdt)

1
p ≤ |c|j∞(

∫ T
0
|x(t)|pdt)

1
p , ∀x ∈

CT , p > 1, j ≥ 1.
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Lemma 2.2: [3]
If |c|∞ �= 1, then A has continuous bounded inverse A−1

with the following properties, where A is defined by (2.1), and

(1) ‖A−1‖ ≤ 1
|1−|c|∞| ,

(2) (A−1f)(t) = f(t) +
∑∞
j=1

∏j
i=1 c(t − (i − 1)r)f(t −

jr), ∀f ∈ CT ,

(3)
∫ T
0
|(A−1f)(t)|pdt ≤ ( 1

|1−|c|∞| )
p
∫ T
0
|f(t)|pdt, ∀f ∈

CT .

Now, we recall Mawhin’s continuation theorem which our
study is based upon.
Let X and Y be real Banach spaces and L : D(L) ⊂ X → Y
be a Fredholm operator with index zero. Here D(L) denotes
the domain of L. This means that ImL is closed in Y and
dim KerL = dim(Y/ImL) < +∞. Consider the supplemen-
tary subspaces X1 and Y1 and such that
X = KerL

⊕
X1 and Y = ImL

⊕
Y1 and let

P : X → KerL and Q : Y → Y1 be natural projections.
Clearly, KerL

⋂
(D(L)

⋂
X1) = {0}, thus the restriction

Lp := L|D(L)∩X1 is invertible. Denote the inverse of Lp by
K. Now, let Ω be an open bounded subset of X with
D(L)

⋂
Ω �= ∅, a map N : Ω → Y is said to be L-compact

on Ω. If QN(Ω) is bounded and the operator K(I − Q)N :
Ω → Y is compact.

Lemma 2.3: (Mawhin [4])
Suppose that X and Y are two Banach spaces, and L : D(L) ⊂
X → Y is a Fredholm operator with index zero. Furthemore,
Ω ⊂ X is an open bounded set, and
N : Ω → Y is L-compact on Ω. If all of the following
conditions hold:
(1) Lx �= λNx, ∀x ∈ ∂Ω

⋂
D(L), λ ∈]0, 1];

(2) Nx �∈ ImL,∀x ∈ ∂Ω
⋂

KerL; and
(3) deg{JQN,Ω∩KerL, 0} �= 0, where J : ImQ → KerL

is an isomorphism.
Then the equation Lx = Nx has at least one solution on
Ω
⋂

D(L).

In order to use Mawhin’s continuation theorem to study the
existence of T-periodic solution for Eq (1) , we rewrite Eq (1)
in the following system⎧⎨
⎩

x′
1(t) = [A−1ϕq(x2)](t),

x′
2(t) = − f([A−1ϕq(x2)](t)) − g1(x1(t − τ1(t, |x1|∞)))

− β(t)g2(x1(t − τ2(t, |x1|∞))) + e(t).
(3)

Where q > 1 is constant with 1
p + 1

q = 1. Clearly, if
x(t) = (x1(t), x2(t))T is a T -periodic solution to equation set
(3), then x1(t) must be a T -periodic solution to equation (1).
Thus, in order to prove that Eq (1) has a T -periodic solution, it
suffices to show that equation set (3) has a T -periodic solution.
Now, we set X = Y = {x = (x1(t), x2(t))T ∈
C(R, R2) : x1 ∈ CT , x2 ∈ CT } with the norm ‖x‖ =
max{|x1|∞, |x2|∞}. Obviously, X and Y are two Banach
spaces. Meanwhile, let

L : D(L) ⊂ X → Y, Lx = x′ =
(

x′
1

x′
2

)
. (4)

N : X → Y,

[Nx](t)

=

⎛
⎝ [A−1ϕq(x2)](t)

− f([A−1ϕq(x2)](t)) − g1(x1(t − τ1(t, |x1|∞)))−
β(t)g2(x1(t − τ2(t, |x1|∞))) + e(t)

⎞
⎠ .

(5)
It is easy to see that equation set (3) can be converted to the

abstract equation Lx = Nx. Moreover, from the definition of
L, we see that KerL = R

2, ImL = {y : y ∈ Y,
∫ T
0

y(s)ds =
0}. So L is a Fredholm operator with index zero.
Let projections P : X → KerL and Q : Y → ImQ be
defined by

Px =
1
T

∫ T

0

x(s)ds, Qy =
1
T

∫ T

0

y(s)ds

and let K represent the inverse of L|KerP∩D(L). Clearly,
KerL = ImQ = R

2 and

[Ky](t) =
∫ T

0

G(t, s)y(s)ds, (6)

where G(t, s) =

{ s
T , 0 ≤ s < t ≤ T ;
s − T

T , 0 ≤ t ≤ s ≤ T.
From (5)and (6), it isn’t hard to find that N is L-compact on
Ω, where Ω is an arbitrary open bounded subset of X .

Lemma 2.4: (Borsuk [5]) Ω ⊂ R
n is an open bounded set,

and symmetric with respect to 0 ∈ Ω. If f ∈ C(Ω, Rn) and
f(x) �= μf(−x),∀x ∈ ∂Ω,∀μ ∈ [0, 1], then deg(f,Ω, 0) is
an odd number.

Lemma 2.5: If c(t) ∈ CT is not a constant function,
|c|∞ < 1

2 ,

(Ax)(t) = x(t) − c(t)x(t − r) ≡ d1 (7)

where d1 is a nonzero constant, x(t) ∈ CT , then
(1) x(t) = A−1d1 is not a constant function,
(2)

∫ T
0

(A−1d1)(t)dt �= 0.

III. MAIN RESULTS

Theorem 3.1: Assume that the following conditions are
satisfied.
(H1)− For i = 1, 2, there are positive constants d, ri, r

∗
i ,

mi with m2 ≤ p − 1 such that
(1) β1|u|mi ≤ |gi(u)| ≤ β2|u|mi , ∀|u| > d,

βi =
{

ri, if gi(u) ≡ g1(u),
r∗i , if gi(u) ≡ g2(u).

(2) gi(w)sgn(w) < 0, ∀|w| > d.

(H2)− A := D 1
m1

+1

(
r∗
2 |β|∞
r1

) 1
m1

< 1.

(H3)− There exists constant α ≥ 0 such that
|f(y)| ≤ α|y|p−1,∀y ∈ R.
(H4)− There are constants r3 > 0, γ and k ∈ Z such that 0 ≤
τ1(t, x) − kT ≤ min

{
γ

p
p−1

1+|x|
r3p
p−1
∞

, T

}
, ∀(t, x) ∈ [0, T ] × R.

Then, Eq (1) has at least one T -periodic solution, if one of
the following conditions holds
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(1) m2 = p − 1 and Δ1 + Δ2 < 1.
(2) m2 < p − 1 and Δ1 < 1.

where

Δ1 =
(

1
1 − |c|∞

)p [
|c|∞(1 + |c|∞)p−1 +

αT

2(1 − A)

+
Dpr2γT 1+

(p−1)2

p

2p−1(1 − A)p−1
] .

and

Δ2 =
(

1
1 − |c|∞

)p [3m2r∗2 |β|∞T 1+(p−1)(m2+1)

2m2+1(1 − A)m2+1

]
.

Proof 1: Let Ω1 = {x ∈ X : Lx = λNx, λ ∈]0, 1]} if
x(.) = (x1(.), x2(.))T ∈ Ω1, then from (4) and (5), we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x′
1(t) = λ[A−1ϕq(x2)](t),

x′
2(t) = − λf(λ[A−1ϕq(x2)](t))

− λg1(x1(t − τ1(t, |x1|∞)))
− λβ(t)g2(x1(t − τ2(t, |x1|∞))) + λe(t).

(8)

From the first equation of (8), we have
x2(t) = ϕp( 1

λ (Ax′
1)(t), together with the second formula of

(8), which yields

[ϕp((Ax′
1)(t))]

′ + λpf(λ[A−1ϕq(x2)](t))
+ λpg1(x1(t − τ1(t, |x1|∞)))
+ λpβ(t)g2(x1(t − τ2(t, |x1|∞))) = λpe(t).

(9)

Integrating both sides of Eq.(9) on the interval [0, T ] and
applying integral mean value theorem, then there exists a
constant ξ ∈ [0, T ] such that

g1(x1(ξ − τ1(ξ, |x1|∞)))T

= −
∫ T

0

β(t)g2(x1(t − τ2(t, |x1|∞)))dt −
∫ T

0

f(x′
1(t))dt.

(10)
Now, we claim that

|x1(ξ − τ1(ξ, |x1|∞))| ≤ A|x1|∞ + B

(∫ T

0

|x′
1(t)|p−1dt

) 1
m1

+ C.
(11)

Where B = D 1
m1

+1

(
α
r1T

) 1
m1

,

C = D 1
m1

+1

(
Mg2 |β|∞

r1

) 1
m1

+ d, Mg2 = max
|v|≤d

|g2(v)|
.
Case(1). If |x1(ξ − τ1(ξ, |x1|∞))| ≤ d, then, Eq.(11) holds
clearly.
Case(2). If |x1(ξ − τ1(ξ, |x1|∞))| > d, it follows from
Eq.(10), (H1)(1) and (H3) that

r1T |x1(ξ − τ1(ξ, |x1|∞))|m1

≤ |β|∞
∫ T

0

|g2(x1(t − τ2(t, |x1|∞)))|dt −
∫ T

0

|f(x′
1(t))|dt

≤ r∗2T |β|∞|x1|m2∞ + α

∫ T

0

|x′
1(t)|p−1dt + Mg2T |β|∞.

It implies that

|x1(ξ − τ1(ξ, |x1|∞))|

≤ D 1
m1

+1[
(

r∗2 |β|∞
r1

) 1
m1 |x1|

m2
m1∞

+
(

α

r1T

) 1
m1

(∫ T

0

|x′
1(t)|p−1dt

) 1
m1

+
(

Mg2 |β|∞
r1

) 1
m1

]

≤ D 1
m1

+1

(
r∗2 |β|∞

r1

) 1
m1 |x1|∞

+ D 1
m1

+1

(
α

r1T

) 1
m1

(∫ T

0

|x′
1(t)|p−1dt

) 1
m1

+ D 1
m1

+1

(
Mg2 |β|∞

r1

) 1
m1

.

Thus, it is easy to see that Eq.(11) holds.
Let

ξ − τ1(ξ, |x1|∞) = kT + ξ,

where k is an integer and ξ ∈ [0, T ], by (11)

|x1(t)| ≤ A|x1|∞ + B

(∫ T

0

|x′
1(s)|p−1ds

) 1
m1

+
∫ t

ξ

|x′
1(s)|ds + C, t ∈ [ξ, ξ + T ].

and

|x1(t)| = |x1(t − T )|

≤ A|x1|∞ + B

(∫ T

0

|x′
1(s)|p−1ds

) 1
m1

+
∫ ξ

t−T
|x′

1(s)|ds + C, t ∈ [ξ, ξ + T ].

Combining the above two inequalities, we obtain

|x1|∞ = max
t∈[0,T ]

|x1(t)| = max
t∈[ξ,ξ+T ]

|x1(t)|

≤ max
t∈[ξ,ξ+T ]

{A|x1|∞ + B

(∫ T

0

|x′
1(s)|p−1ds

) 1
m1

+
1
2

(∫ t

ξ

|x′
1(s)|ds +

∫ ξ

t−T
|x′

1(s)|ds

)
+ C}

≤ A|x1|∞ + B

(∫ T

0

|x′
1(s)|p−1ds

) 1
m1

+
1
2

∫ T

0

|x′
1(s)|ds + C.

In view of (H2), we have

|x1|∞ ≤
∫ T
0
|x′

1(t)|dt

2(1 − A)
+

B

1 − A

(∫ T

0

|x′
1(t)|p−1dt

) 1
m1

+
C

1 − A
.

(12)
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On the hand, multiplying both sides of Eq.(9) by x1(t) and
integrating it from 0 to T , we obtain∫ T

0

[ϕp((Ax′
1)(t))]

′x1(t)dt

+ λp
∫ T

0

f(λ[A−1ϕq(x2)](t))x1(t)dt

+ λp
∫ T

0

g1(x1(t − τ1(t, |x1|∞)))x1(t)dt

+ λp
∫ T

0

β(t)g2(x1(t − τ2(t, |x1|∞)))x1(t)dt

= λp
∫ T

0

e(t)x1(t)dt.

(13)

On the other hand we have∫ T

0

[ϕp((Ax′
1)(t))]

′x1(t)dt

= −
∫ T

0

ϕp((Ax′
1)(t))x

′
1(t)dt

= −
∫ T

0

ϕp((Ax′
1)(t))[x

′
1(t) − c(t)x′

1(t − r)

+ c(t)x′
1(t − r)]dt

= −
∫ T

0

|(Ax′
1)(t)|pdt −

∫ T

0

c(t)x′
1(t − r)ϕp((Ax′

1)(t))dt.

(14)
Substituting Eq.(14) into Eq.(13) we get

∫ T

0

|(Ax′
1)(t)|pdt

= −
∫ T

0

c(t)x′
1(t − r)ϕp((Ax′

1)(t))dt

+ λp
∫ T

0

f(x′
1(t))x1(t)dt

+ λp
∫ T

0

g1(x1(t − τ1(t, |x1|∞)))x1(t)dt

+ λp
∫ T

0

β(t)g2(x1(t − τ2(t, |x1|∞)))x1(t)dt

− λp
∫ T

0

e(t)x1(t)dt.

(15)

It follows that∫ T

0

|(Ax′
1)(t)|pdt

≤ |c|∞
∫ T

0

|ϕp((Ax′
1)(t))||x′

1(t − r)|dt + |x1|∞
∫ T

0

|f(x′
1(t))|dt

+ λp
∫ T

0

g1(x1(t − τ1(t, |x1|∞)))[x1(t) − x1(t − τ1(t, |x1|∞))]dt

+ λp
∫ T

0

g1(x1(t − τ1(t, |x1|∞)))x1(t − τ1(t, |x1|∞))dt

+ |β|∞|x1|∞
∫ T

0

|g2(x1(t − τ2(t, |x1|∞)))|dt + T |x1|∞|e|∞.

(16)

Moreover, by using Hölder’s inequality and Minkowski in-
equality, we obtain

∫ T

0

|ϕp((Ax′
1)(t))||x′

1(t − r)|dt

≤
(∫ T

0

|ϕp((Ax′
1)(t))|qdt

) 1
q

×
(∫ T

0

|x′
1(t − r)|pdt

) 1
p

=

(∫ T

0

|(Ax′
1)(t)|pdt

) 1
q

×
(∫ T

0

|x′
1(t)|pdt

) 1
p

=

⎡
⎣
(∫ T

0

|x′
1(t) − c(t)x′

1(t − r)|pdt

) 1
p

⎤
⎦

p
q

×
(∫ T

0

|x′
1(t)|pdt

) 1
p

≤
⎡
⎣
(∫ T

0

|x′
1(t)|pdt

) 1
p

+

(∫ T

0

|c(t)x′
1(t − r)|pdt

) 1
p

⎤
⎦

p
q

×
(∫ T

0

|x′
1(t)|pdt

) 1
p

≤
⎡
⎣
(∫ T

0

|x′
1(t)|pdt

) 1
p

+ |c|∞
(∫ T

0

|x′
1(t)|pdt

) 1
p

⎤
⎦

p
q

×
(∫ T

0

|x′
1(t)|pdt

) 1
p

= (1 + |c|∞)p−1

∫ T

0

|x′
1(t)|pdt.

(17)
Define

E1 = {t : t ∈ [0, T ], |x1(t − τ1(t, |x1|∞))| ≤ d},
and

E2 = {t : t ∈ [0, T ], |x1(t − τ1(t, |x1|∞))| > d}.
By the condition (H1(2)), we obtain

λp
∫ T

0

g1(x1(t − τ1(t, |x1|∞)))x1(t − τ1(t, |x1|∞))dt

≤ λp
∫
E1

g1(x1(t − τ1(t, |x1|∞)))x1(t − τ1(t, |x1|∞))dt

≤ TdMg1 .
(18)

Where Mg1 = max|u|≤d |g1(u)|.
Substituting Eqs.(18)-(17) into Eq (16) and using (H1(1)) and
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(H3) yield

∫ T

0

|(Ax′
1)(t)|pdt

≤|c|∞(1 + |c|∞)p−1

∫ T

0

|x′
1(t)|pdt + α|x1|∞

∫ T

0

|x′
1(t)|p−1dt

+ r2 max
t∈[0,T ]

|x1(t) − x1(t − τ1(t, |x1|∞))|×
∫ T

0

|x1(t − τ1(t, |x1|∞))|m1dt + r∗2T |β|∞|x1|m2+1
∞

+ θ1|x1|∞ + TdMg1 ,
(19)

where θ1 = (2Mg1 + |β|∞Mg2 + |e|∞)T.
From Eq (19) and Hölder’s inequality, we obtain

α|x1|∞
∫ T

0

|x′
1(t)|p−1dt

≤ αT

2(1 − A)

∫ T

0

|x′
1(t)|pdt

+
αBT

m1+1
pm1

1 − A

(∫ T

0

|x′
1(t)|pdt

) (p−1)(m1+1)
pm1

+
αCT

1
p

1 − A

(∫ T

0

|x′
1(t)|pdt

) (p−1)
p

.

(20)

Moreover, from (H4) and Hölder’s inequality, we have

max
t∈[0,T ]

|x1(t) − x1(t − τ1(t, |x1|∞))|
= max
t∈[0,T ]

|x1(t) − x1(t − τ1(t, |x1|∞)) + kT |

= max
t∈[0,T ]

|
∫ t

t−τ1(t,|x1|∞)+kT

x′
1(t)dt|

≤ max
t∈[0,T ]

|τ1(t, |x1|∞) − kT | p−1
p

(∫ t

t−τ1(t,|x1|∞)+kT

|x′
1(t)|pdt

) 1
p

= max
t∈[0,T ]

|τ1(t, |x1|∞) − kT | p−1
p

(∫ 0

−τ1(t,|x1|∞)+kT

|x′
1(t)|pdt

) 1
p

≤ |τ1(t, |x1|∞) − kT |
p−1

p∞

(∫ T

0

|x′
1(t)|pdt

) 1
p

.

(21)

r∗2T |β|∞|x1|m2+1
∞

≤ r∗2T |β|∞[

∫ T
0
|x′

1(t)|dt

2(1 − A)

+
B

1 − A

(∫ T

0

|x′
1(t)|p−1dt

) 1
m1

+
C

1 − A
]m2+1

≤ 3m2r∗2T |β|∞
2m2+1(1 − A)m2+1

(∫ T

0

|x′
1(t)|dt

)m2+1

+
3m2r∗2T |β|∞Bm2+1

(1 − A)m2+1

(∫ T

0

|x′
1(t)|p−1dt

)m2+1
m1

+
3m2r∗2T |β|∞Cm2+1

(1 − A)m2+1

≤ 3m2r∗2 |β|∞T 1+
(p−1)(m2+1)

p

2m2+1(1 − A)m2+1

(∫ T

0

|x′
1(t)|pdt

)m2+1
p

+
3m2r∗2 |β|∞Bm2+1T 1+

(m2+1)
pm1

(1 − A)m2+1

(∫ T

0

|x′
1(t)|pdt

) (p−1)(m2+1)
pm1

+
3m2r∗2T |β|∞Cm2+1

(1 − A)m2+1
,

(22)and θ1|x1|∞

≤ θ1T
p−1

p

2(1 − A)

(∫ T

0

|x′
1(t)|pdt

) 1
p

+
θ1BT

1
pm1

1 − A

(∫ T

0

|x′
1(t)|pdt

) p−1
pm1

+
θ1C

1 − A
.

(23)

In order to show that the growth degree with respect to the
variable u in g1(u) is greater than p−1, we let m1 = r3+p−1,
where r3 is defined in (H4).
By applying the third part of Lemma2.2, we get

∫ T

0

|x′
1(t)|pdt =

∫ T

0

|(A−1Ax′
1)(t)|pdt

≤
(

1
1 − |c|∞

)p ∫ T

0

|(Ax′
1)(t)|pdt.

(24)

Then, substituting Eqs (20)-(24) into (19) and using (H4)
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yield∫ T

0

|(x′
1)(t)|pdt

≤ |c|∞(1 + |c|∞)p−1

(1 − |c|∞)p

∫ T

0

|x′
1(t)|pdt

+
α|x1|∞

∫ T
0
|x′

1(t)|p−1dt

(1 − |c|∞)p

+
r2T |τ1(t, |x1|∞) − kT |

p−1
p∞

(1 − |c|∞)p

(∫ T

0

|x′
1(t)|pdt

) 1
p

|x1|r3∞|x1|p−1
∞

+
r∗2T |β|∞|x1|m2+1

∞
(1 − |c|∞)p

+
θ1|x1|∞

(1 − |c|∞)p
+

TdMg1

(1 − |c|∞)p

≤ |c|∞(1 + |c|∞)p−1

(1 − |c|∞)p

∫ T

0

|x′
1(t)|pdt

+
α|x1|∞

∫ T
0
|x′

1(t)|p−1dt

(1 − |c|∞)p

+
r2γT

(1 − |c|∞)p

(∫ T

0

|x′
1(t)|pdt

) 1
p

[

∫ T
0
|x′

1(t)|dt

2(1 − A)
+

B

1 − A

(∫ T

0

|x′
1(t)|p−1dt

) 1
m1

+
C

1 − A
]p−1

+
r∗2T |β|∞|x1|m2+1

∞
(1 − |c|∞)p

+
θ1|x1|∞

(1 − |c|∞)p
+

TdMg1

(1 − |c|∞)p

≤ Δ1

∫ T

0

|x′
1(t)|pdt + Δ2

(∫ T

0

|x′
1(t)|pdt

)m2+1
p

+
αBT

m1+1
pm1

(1 − |c|∞)p(1 − A)

(∫ T

0

|x′
1(t)|pdt

) (p−1)(m1+1)
pm1

+
αCT

1
p

(1 − |c|∞)p(1 − A)

(∫ T

0

|x′
1(t)|pdt

) p−1
p

+
r2T

1+ p−1
pm1 γDpB

p−1

(1 − |c|∞)p(1 − A)p−1

(∫ T

0

|x′
1(t)|pdt

)m1+(p−1)2

pm1

+
3m2r∗2 |β|∞Bm2+1T 1+

(m2+1)
pm1

(1 − |c|∞)p(1 − A)m2+1

(∫ T

0

|x′
1(t)|pdt

) (p−1)(m2+1)
pm1

+
θ1BT

1
pm1

(1 − |c|∞)p(1 − A)

(∫ T

0

|x′
1(t)|pdt

) p−1
pm1

+

[
θ1T

p−1
p

2(1 − |c|∞)p(1 − A)
+

r2γTDpC
p−1

(1 − |c|∞)p(1 − A)p−1

]
×

(∫ T

0

|x′
1(t)|pdt

) 1
p

+
3m2r∗2T |β|∞Cm2+1

(1 − |c|∞)p(1 − A)m2+1

+
θ1C

(1 − |c|∞)p(1 − A)
+

TdMg1

(1 − |c|∞)p
.

(25)
Case1. If m2 = p − 1, using
m1+(p−1)2

pm1
< 1, (p−1)(m1+1)

pm1
< 1, (p−1)(m2+1)

pm1
< 1, 1

pm1
<

1, p−1
p < 1, 1

p < 1,Δ1 + Δ2 < 1 and Eq.(25), it is seen

that
∫ T
0
|x′

1(t)|pdt is bounded.

Case2. If m2 < p − 1, noticing
m2+1
p < p, m1+(p−1)2

pm1
< 1, (p−1)(m1+1)

pm1
<

1, (p−1)(m2+1)
pm1

< 1, 1
pm1

< 1, p−1
p < 1, 1

p < 1,Δ1 < 1
and Eq.(3.18), it is also seen that

∫ T
0
|x′

1(t)|pdt is bounded.

From the above two cases, there exists a constant M > 0 such
that

∫ T

0

|x′
1(t)|pdt ≤ M. (26)

Using Eq.(12) and Eq.(26) leads to

|x1|∞ ≤ T
p−1

p M
1
p

2(1 − A)
+

BT
1

pm1 M
p−1
pm1

1 − A
+

C

1 − A
� M1. (27)

Again, from the first equation of (8), we have

∫ T
0

(A−1ϕq(x2))(t)dt = 0,

then there is a constant η ∈ [0, T ], such that
(A−1ϕq(x2))(η) = 0, which together with the second
part of lemma2.2 gives

(A−1ϕq(x2))(η)

= ϕq(x2(η)) +
∞∑
j=1

j∏
i=1

c(η − (i − 1)r)ϕq(x2(η − jr))

= 0

,

|x2(η)|q−1 = |ϕq(x2(η))|

=

∣∣∣∣∣∣
∞∑
j=1

j∏
i=1

c(η − (i − 1)r)ϕq(x2(η − jr))

∣∣∣∣∣∣
≤

∞∑
j=1

|c|j∞|x2|q−1
∞

=
|c|∞

1 − |c|∞ |x2|q−1
∞ ,

it follows that

|x2(η)| ≤
( |c|∞

1 − |c|∞

) 1
q−1

|x2|∞. (28)

Let Mg1 = max|u|≤M1 |g1(u)|,Mg2 = max|u|≤M1 |g2(u)|,
and from Eq.(8), we have

x′
2(t) = −λf(x′

1(t)) − λg1(x1(t − τ1(t, |x1|∞)))
− λβ(t)g2(x1(t − τ2(t, |x1|∞))) + λe(t)

,

and
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∫ T

0

|x′
2(t)|dt

≤
∫ T

0

|f(x′
1(t))|dt +

∫ T

0

|g1(x1(t − τ1(t, |x1|∞)))|dt

+
∫ T

0

|β(t)g2(x1(t − τ2(t, |x1|∞)))|dt +
∫ T

0

|e(t)|dt

≤ α

∫ T

0

|x′
1(t)|p−1dt + TMg1 + |β|∞TMg2 + T |e|∞

≤ α

(∫ T

0

|x′
1(t)|pdt

) p−1
p

T
1
p + TMg1 + |β|∞TMg2 + T |e|∞

≤ αM
p−1

p T
1
p + TMg1 + |β|∞TMg2 + T |e|∞ � M2.

(29)
By (28) and (29)

|x2(t)| = |x2(η) +
∫ t

η

x′
2(s)ds|

≤
( |c|∞

1 − |c|∞

) 1
q−1

|x2|∞ +
∫ T

0

|x′
2(s)|ds

≤
( |c|∞

1 − |c|∞

) 1
q−1

|x2|∞ + M2, t ∈ [0, T ]

(30)

Since |c|∞ < 1
2 ,

(
|c|∞

1−|c|∞

) 1
q−1

< 1, together with(30), we
know there exists a positive constant M3 such that

|x2|∞ ≤ M3. (31)

Let Ω2 = {x|x ∈ KerL,QNx = 0} if x ∈ Ω2 then x ∈ R
2

is a constant vector, and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
T

∫ T
0

[A−1ϕq(x2)](t)dt = 0,

1
T

∫ T

0

[−f([A−1ϕq(x2)](t)) − g1(x1(t − τ1(t, |x1|∞)))−
β(t)g2(x1(t − τ2(t, |x1|∞))) + e(t)]dt = 0.

(32)
By the first formula of (32) and the second part of
Lemma 2.5, we have x2 = 0. Moreover, in view of∫ T
0

e(t)dt = 0, f(0) = 0 and the second formula of (32), we
know

g1(x1) + 1
T g2(x1)

∫ T
0

β(t)dt = 0.

Which, together with
∫ T
0

β(t)dt > 0 and (H1)(2), yields
|x1| ≤ d.
Now, we let Ω = {x|x = (x1, x2)T ∈ X, |x1| <
M1 + d, |x2| < M3 + d}, then Ω1 ∪ Ω2 ⊂ Ω. So from
(27) and (31), it is easy to see that conditions (1) and (2) of
Lemma 2.3 are satisfied.
Next, we verify the condition (3) of Lemma 2.3. To do this,
we define the isomorphism

J : ImQ → KerL, J(x1, x2)T = (x1, x2)T ,

then

JQN(x)

=

⎛
⎝ 1

T

∫ T
0

[A−1ϕq(x2)](t)dt
1
T

∫ T
0

[−f([A−1ϕq(x2)](t)) − g1(x1)−
β(t)g2(x1) + e(t)]dt

⎞
⎠ ,

x ∈ KerL
⋂

Ω.

By Lemma 2.4, we need to prove that

JQN(x) �= μ(JQN(−x)),∀x ∈ ∂ (Ω
⋂

KerL) , μ ∈ [0, 1]
Case1. If x = (x1, x2)T ∈
∂ (Ω

⋂
KerL) \{(M1 + d, 0)T , (−M1 − d, 0)T }, then

x2 �= 0 which, together with the second part of Lemma 2.5,
gives us

∫ T
0

[A−1ϕq(x2)](t)dt �= 0,(
1
T

∫ T

0

[A−1ϕq(x2)](t)dt

)(
1
T

∫ T

0

[A−1ϕq(−x2)](t)dt

)
< 0,

obviously, ∀μ ∈ [0, 1] JQN(x) �= μ(JQN(−x)).

Case2. If x = (M1 + d, 0)T or x = (−M1 − d, 0)T then
JQN(x)

=
(

0
−g1(x1) − 1

T g2(x1)
∫ T
0

β(t)dt

)
which, together with (H1)(2), yields ∀μ ∈ [0, 1], JQN(x) �=
μ(JQN(−x)).
Thus, the condition (3) of Lemma 2.3 is also satisfied. There-
fore, by applying Lemma 2.3, we conclude that the equation
Lx = Nx has at least one T -periodic solution on Ω, so Eq.(1)
has at least one T -periodic solution. This completes the proof
of Theorem 3.1.

IV. EXAMPLE AND REMARK

Let us consider the following equation

(ϕp(x′(t) − 0.1 sin(20πt)x′(t − r)))′ + f(x′(t))
+ g1(x(t − τ1(t, |x|∞)))

+

(√
3

40
+

1
20

sin(20πt)

)
g2(x(t − τ2(t, |x|∞)))

= cos(20πt),

(33)

where p = 4, c(t) = 0.1 sin 20πt, f(u) = u3 sinu, β(t) =√
3

4 + 1
20 sin 20πt, g1(u) = −u5

3 , τ1(t, |x|∞))) =
1
10 − γ

4
3 | sin t|

2+|x|
4
3∞

, g2(u) = −u3

10 , e(t) = cos 20πt. Therefore

we can choose r1 = 1
3 , r2 = 1

2 , r∗1 = 1
10 , r∗2 = 1

9 , d =
1, m1 = 5, m2 = 3, α = r3 = 1 and an integer k such
that (H1)− (H2) and condition (1) of Theorem 3.1 hold. By
Theorem 3.1, it seen that Eq.(1) has at least one 1

10 -periodic
solution while γ < 167, 6781.

Remark Clearly, it can be seen that the growth degree
m1 = 5 > p − 1 with respect to the variable u in g1(u) and
the functions c(t) = 0.1 sin 20πt, β(t) =

√
3

4 + 1
20 sin 20πt

can vary signs. Furthermore, it is easy to find that all the
results in [2], [3] and the references therein can not be
applicable to Eq.(33), which implies that the results of this
paper are essentially new.
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