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Existence of iterative Cauchy fractional differential
equation
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Abstract—Our main aim in this paper is to use the technique of
non expansive operators to more general iterative and non iterative
fractional differential equations (Cauchy type ). The non integer
case is taken in sense of Riemann-Liouville fractional operators.
Applications are illustrated.
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I. INTRODUCTION

Fractional calculus and its applications (that is the theory
of derivatives and integrals of any arbitrary real or complex
order) has importance in several widely diverse areas of
mathematical physical and engineering sciences. It generalized
the ideas of integer order differentiation and n-fold integration.
Fractional derivatives introduce an excellent instrument for
the description of general properties of various materials and
processes. This is the main advantage of fractional derivatives
in comparison with classical integer-order models, in which
such effects are in fact neglected. The advantages of fractional
derivatives become apparent in modeling mechanical and elec-
trical properties of real materials, as well as in the description
of properties of gases, liquids and rocks, and in many other
fields (see [1,2]).

The class of fractional differential equations of various types
plays important roles and tools not only in mathematics
but also in physics, control systems, dynamical systems and
engineering to create the mathematical modeling of many
physical phenomena. Naturally, such equations required to
be solved. Many studies on fractional calculus and fractional
differential equations, involving different operators such as
Riemann-Liouville operators [3], Erdlyi-Kober operators [4],
Weyl-Riesz operators [5], Caputo operators [6] and Grnwald-
Letnikov operators [7], have appeared during the past three
decades. The existence of positive solution and multi-positive
solutions for nonlinear fractional differential equation are
established and studied [8]. Moreover, by using the concepts
of the subordination and superordination of analytic functions,
the existence of analytic solutions for fractional differential
equations in complex domain are suggested and posed in
[9,10].

Our aim in this paper is to consider the existence and unique-
ness of nonlinear Cauchy problems of fractional order in sense

of Riemann-Liouville operators. Also, two theorems in the
analytic continuation of solutions are studied. In the fractional
Cauchy problems, we replace the first order time derivative by
a fractional derivative. Fractional Cauchy problems are useful
in physics [11]. Recently, the author studied the the fractional
Cauchy problems in complex domain [12].

One of the most frequently used tools in the theory of frac-
tional calculus is furnished by the Riemann-Liouville operators
(see[7]). The Riemann-Liouville fractional derivative could
hardly pose the physical interpretation of the initial conditions
required for the initial value problems involving fractional dif-
ferential equations. Moreover, this operator possesses advan-
tages of fast convergence, higher stability and higher accuracy
to derive different types of numerical algorithms (see[13]).

Definition 1.1. The fractional (arbitrary) order integral of the
function f of order α > 0 is defined by

Iαa f(t) =
∫ t

a

(t − τ)α−1

Γ(α)
f(τ)dτ.

When a = 0, we write Iαa f(t) = f(t) ∗ φα(t), where (∗)
denoted the convolution product (see [7]), φα(t) = tα−1

Γ(α) , t >

0 and φα(t) = 0, t ≤ 0 and φα → δ(t) as α → 0 where δ(t)
is the delta function.

Definition 1.2. The fractional (arbitrary) order derivative of
the function f of order 0 ≤ α < 1 is defined by

Dα
a f(t) =

d

dt

∫ t

a

(t − τ)−α

Γ(1 − α)
f(τ)dτ =

d

dt
I1−α
a f(t).

Remark 1.1. From Definition 1.1 and Definition 1.2, we have

Dαtμ =
Γ(μ + 1)

Γ(μ − α + 1)
tμ−α, μ > −1; 0 < α < 1

and

Iαtμ =
Γ(μ + 1)

Γ(μ + α + 1)
tμ+α, μ > −1; α > 0.

II. PRELIMINARIES

We extract here the basic theory of non-expansive mappings
in order to offer the notions and results that will be needed in
the next sections of the paper. Let (X, d) be a metric space.
A mapping P : X → X is said to be an ν-contraction if there
exists ν ∈ [0, 1) such that

d(Px, Py) ≤ νd(x, y), ∀x, y ∈ X.
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In the case where ν = 1 the mapping P is said to be non
expansive. Let K be a nonempty subset of a real normed linear
space E and P : K → K be a map. In this setting, P is non-
expansive if

‖Px − Py‖ ≤ ‖x − y‖ ∀x, y ∈ K.

The following result is a fixed point theorem for non
expansive mappings, due to Browder, Ghode and Kirk, see
e.g. [14]:

Theorem 2.1. Let K be a nonempty closed convex and
bounded subset of a uniformly Banach space E. Then any
non expansive mapping P : K → K has at least a fixed point.

Definition 2.1. Let K be a convex subset of a normed linear
space E and let P : K → K be a self-mapping. Given an
x0 ∈ K and a real number λ ∈ [0, 1], the sequence xn defined
by the formula

xn+1 = (1 − λ)xn + λPxn, n = 0, 1, 2, ...

is usually called Krasnoselskij iteration or Krasnoselskij-Mann
iteration.

Definition 2.2. Let K be a convex subset of a normed linear
space E and let P : K → K be a self-mapping. Given an
x0 ∈ K and a real number λn ∈ [0, 1], the sequence xn
defined by the formula

xn+1 = (1 − λn)xn + λnPxn, n = 0, 1, 2, ...

is usually called Mann iteration.

Edelstein [15] proved that strict convexity of E suffices for the
Krasnoselskij iteration converge to a fixed point of P. While,
Egri and Rus [16] proved that for any subset of E, the Mann
iteration converge to a fixed point of P when P is a non-
expansive mapping.
We need the following results, which can be found in [17]:

Lemma 2.1. Let K be a convex and compact subset of a
Banach space E and let P : K → K be a non-expansive
mapping. If the Mann iteration process xn satisfies the as-
sumptions
(a) xn ∈ K for all positive integers n,

(b) 0 ≤ λn ≤ b < 1 for all positive integers n,

(c)
∑∞
n=0 λn = ∞.

Then xn converges strongly to a fixed point of P.

Lemma 2.2. Let K be a closed bounded convex subset of
a real normed space E and P : K → K be a non-expansive
mapping. If I−P maps closed bounded subset of E into closed
subset of E and xn is the Mann iteration, with λn satisfying
assumptions (a)-(c) in Lemma 2.1, then xn converges strongly
to a fixed point of P in K.

III. EXISTENCE THEOREMS AND APPROXIMATION OF

SOLUTIONS

For most of the differential and integral equations with de-
viating arguments that appear in recent literature, the deviation
of the argument usually involves only the time itself. However,
another case, in which the deviating arguments depend on both
the state variable u and the time t, is of importance in theory
and practice. Equations of the form

u′(t) = f
(
t, u(u(t))

)
are called iterative differential equations. These equations are
important in the study of infection models and are related
to the study of the motion of charged particles with retarded
interaction (see [18-20]).

In this section, we establish the existence and uniqueness
results for the fractional differential equation

Dαu(t) = f
(
t, u(u(t))

)
(1)

with initial condition u(0) = u0, where t, u0 ∈ J := [0, T ]
and f ∈ C(J × J, J). For t ∈ J denote

Mt = max{t, T − t}
and

CL,α = {u : |u(t1)−u(t2)| ≤ L

Γ(α + 1)
|t1−t2|α,∀t1, t2 ∈ J, L > 0}.

It is clear that CL,α is a nonempty convex and compact subset

of the Banach space
(
C[J ], ‖.‖

)
, where ‖x‖ = supt∈J |x(t)|.

Theorem 3.1. Assume that the following conditions are satis-
fied for the initial value problem (1):

(A1) f ∈ C[J × J, J ];

(A2) ∃� > 0 : |f(t, u) − f(t, v)| ≤ �|u − v|, ∀ t, u, v ∈ J ;

(A3) If L is the Lipschitz constant such that |u(t1)−u(t2)| ≤
L

Γ(α+1) |t1 − t2|α, then

M = max{|f(t, u)| : (t, u) ∈ J × J} ≤ L

2
;

(A4) One of the following conditions holds:
(a) M Tα

Γ(α+1) ≤ Mu0 , where Mu0 = max{u0, T − u0};

(b) u0 = 0, M Tα

Γ(α+1) ≤ T − u0, f(t, u) ≥ 0, ∀t, u ∈ J ;

(c) u0 = T, M Tα

Γ(α+1) ≤ u0, f(t, u) ≥ 0, ∀t, u ∈ J .

If
(L̃ + 1)Tα�

Γ(α + 1)
≤ 1, (2)

then there exists at least one solution of problem (1) in CL,α
which can be approximated by the Krasnoselskij iteration

un+1 = (1−λ)un+λu0 +λ

∫ t

0

(t − τ)α−1

Γ(α)
f(τ, u(u(τ)))dτ,

where λ ∈ (0, 1) and u1 ∈ CL,α is arbitrary.
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Proof. Consider the integral operator P : CL,α → C(J)

Pu(t) = u0 +
∫ t

0

(t − τ)α−1

Γ(α)
f(τ, u(u(τ)))dτ,

(t ∈ J, u ∈ CL,α).

Our aim is show that P has a fixed point in CL,α. We proceed
to apply Schauder fixed point theorem or Banach fixed point
theorem.
First we show that CL,α is invariant set with respect to P, i.e.
T (CL,α) ⊂ CL,α. In virtue of condition (A4a) and for all
t ∈ J, u ∈ CL,α we have

|Pu(t)| ≤ u0 + |
∫ t

0

(t − τ)α−1

Γ(α)
f(τ, u(u(τ)))dτ |

≤ u0 + M
Tα

Γ(α + 1)
≤ T

and

|Pu(t)| ≥ u0 − |
∫ t

0

(t − τ)α−1

Γ(α)
f(τ, u(u(τ)))dτ |

≥ u0 − M
Tα

Γ(α + 1)
≥ u0 − Mu0 ≥ 0.

Thus (Pu)(t) ∈ J, t ∈ J. In the similar manner of (A4a), we
treat the cases (A4b) and (A4c). Now for every t1, t2 ∈ J, by
(A3), we obtain

|(Pu)(t1) − (Pu)(t2)| = |
∫ t1

0

(t − τ)α−1

Γ(α)
f(τ, u(u(τ)))dτ

−
∫ t2

0

(t − τ)α−1

Γ(α)
f(τ, u(u(τ)))dτ |

≤ M
|tα1 − tα2 + 2(t1 − t2)α|

Γ(α + 1)

≤ 2M
|t1 − t2|α
Γ(α + 1)

≤ L
|t1 − t2|α
Γ(α + 1)

.

Hence (Pu) ∈ CL,α whenever u ∈ CL,α. Therefore, P :
CL,α → CL,α (i. e., P is a self-mapping of CL,α). Let u, v ∈
CL,α and t ∈ J, by employing (A2) we have

|(Pu)(t) − (Pv)(t)| = |
∫ t

0

(t − τ)α−1

Γ(α)
f(τ, u(u(τ)))dτ

−
∫ t

0

(t − τ)α−1

Γ(α)
f(τ, v(v(τ)))dτ |

≤
∫ t

0

(t − τ)α−1

Γ(α)
|f(τ, u(u(τ))) − f(τ, v(v(τ)))|dτ

≤ �

∫ t

0

(t − τ)α−1

Γ(α)
|u(u(τ)) − v(v(τ))|dτ

= �

∫ t

0

(t − τ)α−1

Γ(α)
|u(u(τ)) − u(v(τ))

+ u(v(τ)) − v(v(τ))|dτ

≤ Tα�

Γ(α + 1)
[L̃ + 1]‖u − v‖,

where
L̃ = max

L

Γ(α + 1)
.

Now, by taking the supremum in the last assertion, we get

‖Pu) − (Pv)‖ ≤ (L̃ + 1)Tα�

Γ(α + 1)
‖u − v‖.

If (˜L+1)Tα�
Γ(α+1) < 1, then P is a contraction mapping and hence

in view of Banach fixed point theorem, Eq. (1) has a unique
solution. Now if

(L̃ + 1)Tα�

Γ(α + 1)
= 1

then P is non-expansive and, hence, continuous; thus Schauder
fixed point theorem implies that Eq. (1) has a solution in CL,α.
Finally, in view of Lemmas 2.1 and 2.2, we obtain the second
part of the theorem.

Next we establish the solution of Eq. (1) in a subset of CL,α
defined by

CL,α,δ =
{

u ∈ CL,α : u(t) ≤ δtα

Γ(α + 1)
, ∀t ∈ J

}
, δ ∈ (0, 1).

It is clear that CL,α,δ is non-empty, convex and compact subset
in C[J ].

Theorem 3.2. Assume that the following conditions are satis-
fied:

(A5) u0 ≤ δtα0
2Γ(α+1) t0( �= 0) ∈ J ;

(A6) If L is the Lipschitz constant such that |u(t1)−u(t2)| ≤
L

Γ(α+1) |t1 − t2|α, then M ≤ min{ δ2 , L2 };

(A7) There exists a τ > 0 such that τ > − ln(1−δ)
δ(T−t0) , T �= t0

and

Tα−1�

Γ(α)τ
(
1
δ

+ L̃) max{eτt0 − 1, 1 − eτ(t0−T )} ≤ 1 (3)

If (A2), (A4) hold then there exists at least one solution of
problem (1) in CL,α,δ which can be approximated by the
Krasnoselskij iteration

un+1 = (1−λ)un+λu0 +λ

∫ t

0

(t − τ)α−1

Γ(α)
f(τ, u(u(τ)))dτ,

where λ ∈ (0, 1) and u1 ∈ CL,α,δ is arbitrary.

Proof. We assume the Banach space C[J ] endowed with
Bieleckis norm given by the formula

‖u‖B = max
t∈J

|u(t)|e−s(t−t0), s > 0, t > t0

(t, s, t0 ∈ J = [0, T ], T < ∞).

Let P be defined as in the proof of Theorem 3.1. By assump-
tions (A2), (A4), and (A6), it follows that

P (CL,α,δ) ⊂ CL,α,δ.

Now we prove that CL,α,δ is an invariant set with respect to
the operator P . Indeed, if u ∈ CL,α,δ and t ∈ J then in view
of (A5) and (A6), we have
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Pu(t) ≤ u0 + M
tα

Γ(α + 1)

= u0 + M
(tα − tα0 ) + tα0

Γ(α + 1)

≤ δtα0
2Γ(α + 1)

+
δtα

2Γ(α + 1)
− δtα0

2Γ(α + 1)
+

δtα0
2Γ(α + 1)

≤ δtα

Γ(α + 1)
, t > t0,

that is Pu ∈ CL,α,δ.
Let u, v ∈ CL,α,δ and t ∈ J, we have

|(Pu)(t) − (Pv)(t)| = |
∫ t

0

(t − τ)α−1

Γ(α)
f(τ, u(u(τ)))dτ

−
∫ t

0

(t − τ)α−1

Γ(α)
f(τ, v(v(τ)))dτ |

≤ Tα−1�

Γ(α)

∣∣∣ ∫ t

0

(
L̃|u(τ) − v(τ)| + |u(v(τ)) − v(v(τ))|)dτ

∣∣∣
≤ Tα−1�

Γ(α)

(∣∣∣ ∫ t

0

L̃es(τ−t0)dτ
∣∣∣+ ∣∣∣ ∫ t

0

es(δτ−t0)dτ
∣∣∣)‖u − v‖B

≤ Tα−1�

Γ(α)

(∣∣∣ L̃
s

(es(t−t0) − 1)
∣∣∣

+
1
δs

∣∣∣es(δt−t0) − es(δt0−t0)
∣∣∣)‖u − v‖B .

This yields

|(Pu)(t) − (Pv)(t)|e−s(τ−t0) ≤ Tα−1�

sΓ(α)

(
L̃
∣∣∣1 − e−s(t−t0)

∣∣∣
+

1
δ

∣∣∣es(δ−1)t − es(δt0−t)
∣∣∣)‖u − v‖B

:= L(t)‖u − v‖B
where L(t) is a continuous function. Then there exists a
constant L̂ > 0 such that

max
t∈J

|L(t)| ≤ L̂.

Thus we have

‖Pu − Pv‖B ≤ L̂‖u − v‖B ,

which shows that P is Lipschitzian, hence continuous. By
Schauders fixed point theorem it follows that T has at least
one fixed point which is actually a solution of the initial value
problem (1).

We proceed to show that P is non-expansive function. The
function

g(t) = 1 − e−s(t−t0), s > 0, t > t0

is strictly increasing on J and g(t0) = 0; furthermore,

max
t∈J

g(t) = max{eτ̃ t0 − 1, 1 − eτ̃(t0−T )}.
Similarly for the function

h(t) = es(δ−1)t − es(δt0−t)

then
h′(t) = ses(δ−1)t[(δ − 1) + esδ(t−t0)].

Now the function

k(t) = (δ − 1) + esδ(t−t0)

is strictly decreasing on J ; hence,

k(t) ≥ k(T ) = (δ − 1) + esδ(T−t0). (4)

For δ ∈ (0, 1) and T �= t0 then by the assumption (A7)
there exists a τ > 0 such that

τ > − ln(1 − δ)
δ(T − t0)

, T �= t0

which implies that k(T ) > 0 and hence h is strictly increasing
on J. If we put s = τ we have

max
t∈J

|h(t)| = max
{
|1 − esδt0 |, |es(δ−1)T − es(δt0−T )|

}
.

But since δ ∈ (0, 1) thus we get

|es(δ−1)T − es(δt0−T )| = es(δ−1)T |1 − esδ(t0−T )|
≤ 1 − esδ(t0−T )

for sufficient s, δ, T and t0. Moreover, we have

|1 − esδt0 | ≤ esδt0 − 1.

Consequently, we receive

L(t) ≤ max
{

esδt0 − 1, 1 − esδ(t0−T )
}Tα−1�

sΓ(α)
(
1
δ

+ L̃).

This shows that P is non-expansive.

Similar argument holds when T = t0 in Eq. (4) we have
k(T ) = δ > 0 hence h is strictly increasing on J . Finally, one
can use Lemmas 2.1 and 2.2 to obtain the second part of the
theorem. This completes the proof.

Example 3.1. Consider the following initial value problem
associated to an fractional iterative differential equation⎧⎨

⎩
D0.5u(t) = − 1

3 + 1
4u(u(t)), t ∈ [0, 1]

u(0) = 1
3

(5)

where u ∈ C1([0, 1], [0, 1]). We are focused in the solutions
u ∈ C1([0, 1], [0, 1]) belonging to the set

C1,0.5 = {u : |u(t1) − u(t2)| ≤ 1
Γ( 3

2 )
|t1 − t2|0.5, ∀t1, t2 ∈ [0, 1]}

= {u : |u(t1) − u(t2)| ≤ 1
0.886

√
|t1 − t2|, ∀t1, t2 ∈ [0, 1]}

= {u : |u(t1) − u(t2)| ≤ 1.1
√

|t1 − t2|, ∀t1, t2 ∈ [0, 1]}.
To satisfy (A4a), we have M ≤ L

2 
 1
2 , M 1

3
= max{ 1

3 , 2
3} =

2
3 = 0.666 and

M
Tα

Γ(α + 1)
=

1
2
× 1

0.886
= 0.56 < 0.666.

Hence (A4a) is satisfied. The function f(t) = − 1
3 + 1

4u is
Lipschitzian with the Lipschitz constant � = 1

4 . This shows
that

(L̃ + 1)Tα�

Γ(α + 1)
=

2.1 × 0.25
0.886

= 0.592 < 1.
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Therefore, by Theorem 3.1 we obtain information on the
existence and approximation of the solutions of the initial
value problem (5).

If we consider the function f(t) = − 1
3 + 422

1000u in Example
3.1, then we obtain

(L̃ + 1)Tα�

Γ(α + 1)
=

2.1 × 0.422
0.886


 1.

Therefore, again by Theorem 3.1 we pose the existence and
approximation of the solutions of the initial value problem (5).

Again, we consider the problem (5) on the interval [34 , 1] for
� = 0.025, where u ∈ C1([ 34 , 1], [34 , 1]). We are interested in
the solutions u ∈ C1([34 , 1], [34 , 1]) belonging to the set

C1, 12 ,
3
4

=
{

u ∈ C1, 12
: u(t) ≤ δtα

Γ(α + 1)
, ∀t ∈ J

}
, δ ∈ (0, 1)}

= {u : u(t) ≤
3
4 t

1
2

Γ( 3
2 )

, ∀t ∈ [
3
4
, 1]}

= {u : u(t) ≤ 0.846
√

t, t ∈ [
3
4
, 1]}.

Our aim is to satisfy the assumptions of Theorem 3.2. (A2)
and (A4) are valid. Since u0 = 1

3 and t0 = 3
4 we have

u0 ≤ δtα0
2Γ(α + 1)

=⇒ 1
3

<
3
8
;

hence (A5) is satisfied. Moreover, a computation gives

M ≤ min{δ

2
,
L

2
} = min{δ

2
,
L

2
} = {3

8
,
1
2
} =

3
8

thus (A6) is satisfied. Now we proceed to satisfy (A7); since

− ln(1 − δ)
δ(T − t0)

=
− ln 1

4 × 16
3

= 6.933

and

max{eτt0 − 1, 1 − eτ(t0−T )} = max{189.5, .826}
then for τ = 7 we impose

Tα−1�

Γ(α)τ
(
1
δ

+ L̃)max{eτt0 − 1, 1 − eτ(t0−T )}

=
0.175
37.17

max{189.5, .826}
= 0.758 < 1.

Hence in view of Theorem 3.2, problem (5) has a solution in
the set C1, 12 ,

3
4
.

We can observe that Theorem 3.2 is unapplicable on the set
C1, 12 ,

1
2

over the interval [ 12 , 1] :

C1, 12 ,
1
2

=
{

u ∈ C1, 12
: u(t) ≤ δtα

Γ(α + 1)
, ∀t ∈ J

}
, δ ∈ (0, 1)}

= {u : u(t) ≤
1
2 t

1
2

Γ( 3
2 )

, ∀t ∈ [
1
2
, 1]}

= {u : u(t) ≤ 0.564
√

t, t ∈ [
1
2
, 1]}.

For u0 = 1
3 , t0 = 1

2 , α = 1
2 , δ = 1

2 , a calculation poses

u0 ≤ δtα0
2Γ(α + 1)

=⇒ 1
3

>
0.35
1.772

;

therefore, condition (A5) dose not satisfy.

Finally, Theorem 3.2, also can not be applied on the set C1, 12 ,
1
2

over the interval [ 34 , 1] :

C1, 12 ,
1
2

=
{

u ∈ C1, 12
: u(t) ≤ δtα

Γ(α + 1)
, ∀t ∈ J

}
, δ ∈ (0, 1)}

= {u : u(t) ≤
1
2 t

1
2

Γ( 3
2 )

, ∀t ∈ [
3
4
, 1]}

= {u : u(t) ≤ 0.5
√

t, t ∈ [
3
4
, 1]}.

For u0 = 1
3 , t0 = 3

4 , α = 1
2 , δ = 1

2 , a calculation yields

u0 ≤ δtα0
2Γ(α + 1)

=⇒ 1
3

>
1
4
;

therefore, condition (A5) dose not satisfy.

As such iterative fractional differential equations are used
to generalize the model infective disease processes, pattern
formation in the plane, and are important in investigations of
dynamical systems, future works will be also devoted to them.

REFERENCES

[1] R. Lewandowski, B. Chorazyczewski, Identification of the parameters of
the KelvinVoigt and the Maxwell fractional models, used to modeling of
viscoelastic dampers, Computers and Structures 88 (2010) 1-17.

[2] F. Yu, Integrable coupling system of fractional soliton equation hierarchy,
Physics Letters A 373 (2009) 3730-3733.

[3] K. Diethelm, N. Ford, Analysis of fractional differential equations, J.
Math. Anal. Appl., 265 (2002) 229-248.

[4] R. W. Ibrahim , S. Momani, On the existence and uniqueness of solutions
of a class of fractional differential equations, J. Math. Anal. Appl. 334
(2007) 1-10.

[5] S. M. Momani, R. W. Ibrahim, On a fractional integral equation of
periodic functions involving Weyl-Riesz operator in Banach algebras, J.
Math. Anal. Appl. 339 (2008) 1210-1219.

[6] B. Bonilla , M. Rivero, J. J. Trujillo, On systems of linear fractional
differential equations with constant coefficients, App. Math. Comp. 187
(2007) 68-78.

[7] I. Podlubny, Fractional Differential Equations, Acad. Press, London, 1999.
[8] S. Zhang, The existence of a positive solution for a nonlinear fractional

differential equation, J. Math. Anal. Appl. 252 (2000) 804-812.
[9] R. W. Ibrahim, M. Darus, Subordination and superordination for analytic

functions involving fractional integral operator, Complex Variables and
Elliptic Equations, 53 (2008) 1021-1031.

[10] R. W. Ibrahim, M. Darus, Subordination and superordination for univa-
lent solutions for fractional differential equations, J. Math. Anal. Appl.
345 (2008) 871-879.

[11] R. Hilfer, Fractional diffusion based on Riemann-Liouville fractional
derivatives, J. Phys. Chem. Bio. 104(2000) 3914-3917.

[12] R. W. Ibrahim, Existence and uniqueness of holomorphic solutions for
fractional Cauchy problem, J. Math. Anal. Appl. 380 (2011) 232-240.

[13] A. A. Kilbas, H. M. Srivastava and J.J. Trujillo, Theory and applications
of fractional differential equations. North-Holland, Mathematics Studies,
Elsevier 2006.

[14] V. Berinde, Iterative Approximation of Fixed Points,2nd Ed.,Springer
Verlag, Berlin Heidelberg New York, 2007.

[15] M. Edelstein, A remark on a theorem of M. A. Krasnoselskij, Amer.
Math. Monthly, 73(1966) 509-510.

[16] E. Egri, I. Rus, First order iterative functional-dierential equation with
parameter, Stud. Univ. Babes-Bolyai Math. 52 (2007) 67-80.

[17] C. Chidume, Geometric Properties of Banach spaces and nonlinear
Iterations, Springer Verlag, Berlin, Heidelberg, New York, 2009.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:4, 2013

679

[18] Yang, D. and Zhang, W., Solution of equivariance for iterative differen-
tial equations, Appl. Math. Lett. 17(2004) 759-765.

[19] A. Ronto, M. Ronto, Succsesive approximation method for some linear
boundary value problems for differential equations with a special type of
argument deviation, Miskolc Math. Notes, 10(2009) 69-95.

[20] V. Berinde, Existence and approximation of solutions of some first order
iterative differential equations, Miskolc Math. Notes,Vol. 11 (2010) pp.
1326.


