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Existence and exponential stability of almost
periodic solution for recurrent neural networks on

time scales
Lili Wang and Meng Hu

Abstract—In this paper, a class of recurrent neural networks
(RNNs) with variable delays are studied on almost periodic time
scales, some sufficient conditions are established for the existence
and global exponential stability of the almost periodic solution. These
results have important leading significance in designs and applications
of RNNs. Finally, two examples and numerical simulations are
presented to illustrate the feasibility and effectiveness of the results.
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I. INTRODUCTION

IT is well known that recurrent neural networks(RNNs)
include a lot of famous neural networks such as cellular

neural networks (CNNs), Hopfield neural networks (HNNs),
bidirectional associative memory (BAM) networks, etc. In past
few years, different classes of RNNs have been extensively
studied due to their promising potential for applications in the
areas of signal and image processing, associative memories
and pattern classification, parallel computation and optimiza-
tion problems, see [1-6] and references therein.

As is well known, the properties of periodic oscillatory
solutions are of great interest in many applications. For in-
stance, the human brain is in periodic oscillatory or chaos.
Hence, it is of fundamental importance to study periodic os-
cillatory and chaos phenomena of neural networks. However,
upon considering long-term dynamical behaviors, the periodic
parameters often turn out to experience certain perturbations,
that is, parameters become periodic up to a small error. Thus,
almost periodic oscillatory behavior is considered to be more
accordant with reality.

The theory of calculus on time scales (see [7] and references
cited therein) was initiated by Stefan Hilger in 1988 [8] in
order to unify continuous and discrete analysis, and it has a
tremendous potential for applications and has recently received
much attention since his foundational work [9-12]. Therefore,
it is practicable to study that on time scales which can unify
the continuous and discrete situations.

Motivated by the above, in this paper, we consider the
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following RNNs with variable delays on time scales:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yΔ
i (t) = −ai(t)yi(t) +

n∑
j=1

cij(t)gj(yj(t))

+
n∑

j=1

dij(t)fj(yj(t − τij(t)))

+Ii(t), t ∈ T
+,

yi(s) = φi(s), s ∈ [−τ̂ , 0]T, i ∈ Λ,

(1)

where T is an almost periodic time scale, T
+ = T ∩

(0,+∞), Λ = {1, 2, . . . , n}, the integer n corresponds to the
number of units in (1); yi(t) corresponds to the state of the
ith unit at time t; ai(t) > 0 represents the passive decay rate;
cij and dij weight the strength of jth unit on the ith unit
at time t; Ii(t) is the input to the ith unit at time t from
outside the networks; gi and fi denote activation functions
of transmission; τij(t) corresponds to the signal transmission
delay along the axon of the jth unit which is nonnegative and
bounded, i.e., 0 ≤ τij(t) ≤ τ̂ .

II. PRELIMINARIES

In this section, we shall first recall some basic definitions,
lemmas which will be used in what follows.

Let T be a nonempty closed subset (time scale) of R. The
forward and backward jump operators σ, ρ : T → T and the
graininess μ : T → R

+ are defined, respectively, by σ(t) =
inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, μ(t) =
σ(t) − t.

The basic theories of dynamic systems on time scales and
almost periodic differential equations, one can see [7,13,14].

Definition 2.1 (see [13]) Let x ∈ R
n, and A(t) be an n ×

n rd-continuous matrix on T, the linear system

xΔ(t) = A(t)x(t), t ∈ T (2)

is said to admit an exponential dichotomy on T if there exist
positive constants k, α, projection P and the fundamental
solution matrix X(t) of (2), satisfying

|X(t)PX−1(σ(s))|0 ≤ ke�α(t, σ(s)),
s, t ∈ T, t ≥ σ(s),

|X(t)(I − P )X−1(σ(s))|0 ≤ ke�α(σ(s), t),
s, t ∈ T, t ≤ σ(s),

where | · |0 is a matrix norm on T.
Lemma 2.1 (see [14]) If the linear system (2) admits an

exponential dichotomy, −Ā is an M -matrix, then system

xΔ(t) = A(t)x(t) + f(t), t ∈ T, (3)
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has a unique almost periodic solution x(t), and

x(t) =
∫ t

−∞
X(t)PX−1(σ(s))f(s)Δs

−
∫ +∞

t

X(t)(I − P )X−1(σ(s))f(s)Δs,

where X(t) is the fundamental solution matrix of (2), and
Ā =

(
sup(aij(t))

)
n×n

, 1 ≤ i, j ≤ n, t ∈ T.
Lemma 2.2 (see [13]) Let ci(t) be an almost periodic

function on T, where ci(t) > 0, −ci(t) ∈ R+, ∀ t ∈ T

and
min

1≤i≤n

{
inf
t∈T

ci(t)
}

= m̃ > 0,

then the linear system

xΔ(t) = diag
( − c1(t),−c2(t), · · · ,−cn(t)

)
x(t)

admits an exponential dichotomy on T.
Lemma 2.3 (see [14]) If the following conditions satisfy:

(1) D+xΔ
i (t) ≤

n∑
j=1

aijxj(t) +
n∑

j=1

bij x̄j(t), t ∈ [t0,+∞)T,

i, j = 1, 2, · · · , n, where aij ≥ 0(i 	= j), bij ≥ 0,
n∑

i=1

x̄i(t0) > 0, x̄i(t) = sup
s∈[t−τ0,t]T

xi(s), and τ0 > 0

is a constant;
(2) M̃ := −(aij + bij)n×n is an M -matrix;
then there exists constants γi > 0 and a > 0, such that the
solutions of inequality (1) satisfies

xi(t) ≤ γi

( n∑
j=1

x̄j(t0)
)

e�a(t, t0), ∀t ∈ (t0,+∞)T,

where i = 1, 2, · · · , n.

III. EXISTENCE AND EXPONENTIAL STABILITY

In this section, we will study the existence and exponential
stability of almost periodic solution of (1). Hereafter, we will
use the norm ‖z‖ = max

i∈Λ

{
sup
t∈T

|zi(t)|
}
, and let AP (T) as a

set constructed by all almost periodic functions on an almost
time scale T.

Firstly, we make the following assumptions:
(H1) ai(t), cij(t), dij(t), τij(t), Ii(t) are all almost periodic

functions defined on T, i, j ∈ Λ.
(H2) The activation functions fj , gj ∈ C(R, R) and satisfy

fj(0) = 0, gj(0) = 0, respectively. Moreover, there ex-
ists positive numbers Lf

j , Lg
j such that |fj(x)− fj(y)| ≤

Lf
j |x − y|, |gj(x) − gj(y)| ≤ Lg

j |x − y|, j ∈ Λ.

(H3) min
i∈Λ

{
inf
t∈T

ai(t)
}

> 0, and 1 − μ(t)ai(t) > 0, ∀ t ∈
T, i ∈ Λ.

We know that all almost periodic functions are bounded.
For convenience, we denote h = sup

t∈T

|h(t)|, h = inf
t∈T

|h(t)|
for any h(t) ∈ AP (T).

Theorem 3.1 Assume that (H1) − (H3) hold, then system
(1) has exactly one almost periodic solution in the region ‖z−
z0‖ ≤ QW

1−Q , if the following condition holds

Q = max
i∈Λ

{
1
ai

[ n∑
j=1

d̄ijL
f
j +

n∑
j=1

c̄ijL
g
j

]}
< 1,

where
z0 =

{ ∫ t

−∞ e−a1(t, σ(s))I1(s)Δs, · · · , ∫ t

−∞ e−an(t, σ(s)) ×
In(s)Δs

}
, W = max

i∈Λ

{
Ii

ai

}
.

Proof: Let B =
{
z|z =

(
ψ1, ψ2, · · · , ψn

)T }
, where z is

a continuous almost periodic function on T with the norm

‖z‖ = max
i∈Λ

{
sup
t∈T

|ψi(t)|
}
,

then, B is a Banach space.
For any z ∈ B, we consider the almost periodic solution

yz(t) of the nonlinear almost periodic differential equation

yΔ
i (t) = −ai(t)yi(t) +

n∑
j=1

dij(t)fj(ψj(t − τij(t)))

+
n∑

j=1

cij(t)gj(ψj(t)) + Ii(t), i ∈ Λ. (4)

Since min
i∈Λ

{
inf
t∈T

ai(t)
}

> 0, by Lemma 2.2, the linear
system

yΔ(t) = diag(−a1(t),−a2(t), · · · ,−an(t))y(t)

admits an exponential dichotomy. Then, together with Lemma
2.1, the uniqueness solution of system (4) can be expressed as
the following form:

yz(t) =
{ ∫ t

−∞
e−a1(t, σ(s))

[ n∑
j=1

d1j(s)fj(ψj(s − τ1j(s)))

+
n∑

j=1

c1j(s)gj(ψj(s)) + I1(s)
]
Δs, · · · ,

∫ t

−∞
e−an

(t, σ(s))
[ n∑

j=1

dnj(s)fj(ψj(s − τnj(s)))

+
n∑

j=1

cnj(s)gj(ψj(s)) + In(s)
]
Δs

}
. (5)

Define a mapping Φ : B → B by setting

Φ(z)(t) = yz(t), ∀ z ∈ B.

Set

B
∗ =

{
z|z ∈ B, ‖z − z0‖ ≤ QW

1 − Q

}
.

Then B
∗ is a closed convex subset of B. According to the

definition of the norm of the Banach space B, we have

‖z0‖ = max
i∈Λ

{
sup
t∈T

∣∣∣∣
∫ t

−∞
e−ai

(t, σ(s))Ii(s)Δs

∣∣∣∣
}

≤ max
i∈Λ

{
Ii

ai

}
= W.

Therefore,

‖z‖ ≤ ‖z − z0‖ + ‖z0‖ =
W

1 − Q
.
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First, we prove that the mapping Φ is a self-mapping from
B
∗ to B

∗, In fact, for any z ∈ B
∗, we have

‖Φ(z) − z0‖
= max

i∈Λ
sup
t∈T

{∣∣∣∣
∫ t

−∞
e−ai(t, σ(s))

×
[ n∑

j=1

dij(s)fj(ψj(s − τij(s)))

+
n∑

j=1

cij(s)gj(ψj(s))
]
Δs

∣∣∣∣
}

≤ max
i∈Λ

sup
t∈T

{ ∫ t

−∞
e−ai

(t, σ(s))

×
[ n∑

j=1

|dij(s)||fj(ψj(s − τij(s)))|

+
n∑

j=1

|cij(s)||gj(ψj(s))|
]
Δs

}

≤ max
i∈Λ

sup
t∈T

{ ∫ t

−∞
e−ai

(t, σ(s))

×
[ n∑

j=1

d̄ijL
f
j |ψj(s − τij(s))|

+
n∑

j=1

c̄ijL
g
j |ψj(s)|

]
Δs

}

≤ max
i∈Λ

sup
t∈T

{ ∫ t

−∞
e−ai

(t, σ(s))

×
[ n∑

j=1

d̄ijL
f
j +

n∑
j=1

c̄ijL
g
j

]
Δs

}
‖z‖

≤ max
i∈Λ

{
1
ai

[ n∑
j=1

d̄ijL
f
j +

n∑
j=1

c̄ijL
g
j

]}
‖z‖

= Q‖z‖ ≤ QW

1 − Q
,

which implies that Φ(z)(t) ∈ B
∗. Therefore, the mapping Φ

is a self-mapping from B
∗ to B

∗.
Next, we prove that the mapping Φ is a contraction mapping

of B
∗. In fact, in view of (H1)−(H3), for any z, z̄ ∈ B, where

z =
(
ψ1, ψ2, · · · , ψn

)T
, z̄ =

(
ψ̄1, ψ̄2, · · · , ψ̄n

)T
,

we have

‖Φ(z) − Φ(z̄)‖
= max

i∈Λ
sup
t∈T

{∣∣∣∣
∫ t

−∞
e−ai

(t, σ(s))

×
[ n∑

j=1

dij(s)[fj(ψj(s − τij(s)))

−fj(ψ̄j(s − τij(s)))]

+
n∑

j=1

cij(s)[gj(ψj(s)) − gj(ψ̄j(s))]
]
Δs

∣∣∣∣
}

≤ max
i∈Λ

sup
t∈T

{ ∫ t

−∞
e−ai

(t, σ(s))

×
[ n∑

j=1

|dij(s)||fj(ψj(s − τij(s)))

−fj(ψ̄j(s − τij(s)))|

+
n∑

j=1

|cij(s)||gj(ψj(s)) − gj(ψ̄j(s))|
]
Δs

}

≤ max
i∈Λ

sup
t∈T

{ ∫ t

−∞
e−ai(t, σ(s))

×
[ n∑

j=1

d̄ijL
f
j |ψj(s − τij(s)) − ψ̄j(s − τij(s))|

+
n∑

j=1

c̄ijL
g
j |ψj(s) − ψ̄j(s)|

]
Δs

}

≤ max
i∈Λ

sup
t∈T

{ ∫ t

−∞
e−ai(t, σ(s))

×
[ n∑

j=1

d̄ijL
f
j +

n∑
j=1

c̄ijL
g
j

]
Δs

}
‖z − z̄‖

≤ max
i∈Λ

{
1
ai

[ n∑
j=1

d̄ijL
f
j +

n∑
j=1

c̄ijL
g
j

]}
‖z − z̄‖

= Q‖z − z̄‖

This implies that the mapping Φ is a contraction mapping
since Q < 1. Hence, Φ has exactly one fixed point z∗ in
B
∗ such that Φ(z∗) = z∗. Otherwise, it is easy to verify that

z∗ satisfies system (1). Thus, system (1) has a unique almost
periodic solution in B

∗. This completes the proof.
Theorem 3.2 Assume that (H1) − (H3) and conditions

of Theorem 3.1 hold. Suppose that A − (CLg + DLf ) is
an M -matrix, where A = diag(a1, a2, · · · , an)n×n, C =
(c̄ij)n×n, D = (d̄ij)n×n, Lg = diag(Lg

1, L
g
2, · · · , Lg

n), Lf =
diag(Lf

1 , Lf
2 , · · · , Lf

n), then the almost periodic solution of
system (1) is globally exponentially stable.

Proof: From Theorem 3.1, we know that (1) has an almost
periodic solution x∗(t) = (x∗

1(t), x
∗
2(t), . . . , x

∗
n(t))T . Suppose

that x(t) = (x1(t), x2(t), . . . , xn(t))T be an arbitrary solution
of (1).

Let u(t) = x(t) − x∗(t), then for i ∈ Λ, system (1) can be
written as

uΔ
i (t) = −ai(t)ui(t) +

n∑
j=1

cij(t)pj(uj(t))

+
n∑

j=1

dij(t)qj(uj(t − τij(t))), t ∈ T
+, (6)

where pj(uj(t)) = gj(xj(t))−gj(x∗
j (t)), qj(uj(t−τij(t))) =

fj(xj(t − τij(t))) − fj(x∗
j (t − τij(t))). The initial condition

of system (6) is Ψ(s) = ψ(s) − x∗(s), s ∈ [−τ̂ , 0]T.

From (H2), we can get

|pj(uj)| ≤ Lg
j |uj |, |qj(uj)| ≤ Lf

j |uj |, j ∈ Λ.

Let Vi(t) = |ui(t)|, then the upper right derivative
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D+V Δ(t) along the solutions of system (6) is as follows:

D+V Δ
i (t) = sign(ui(t))uΔ

i (t)

≤ −ai|ui(t)| +
n∑

j=1

c̄ijL
g
j |uj(t)| +

n∑
j=1

d̄ijL
f
j |ūj(t)|

≤ −aiVi(t) +
n∑

j=1

c̄ijL
g
jVj(t) +

n∑
j=1

d̄ijL
f
j V j(t),

that is

D+V Δ(t) ≤ (−A + CLg)V (t) + DLfV (t), t ∈ T
+.

For A − (CLg + DLf ) is an M -matrix, by Lemma 2.3,
there exist constants α > 0, r > 0, such that

Vi(t) = |ui(t)| ≤ r sup
δ∈[−τ̂ ,0]T

|ψi(δ) − x∗(δ)|e�α(t, 0), i ∈ Λ,

that is

|xi(t) − x∗
i (t)| ≤ r sup

δ∈[−τ̂ ,0]T

|ψi(δ) − x∗(δ)|e�α(t, 0)

≤ r

e�α(0, δ)
‖ψ − x∗‖e�α(t, δ), i ∈ Λ.

Let N = N(δ) = r
e�α(0,δ) , then

‖x − x∗‖ ≤ N‖ψ − x∗‖e�α(t, δ), t ∈ T
+.

Therefore, the almost periodic solution x∗ = (x∗
1, x

∗
2, · · · ,

x∗
n)T of system (1) is globally exponentially stable. This

completes the proof.

IV. EXAMPLES AND SIMULATIONS

Example 1. Assume that T = R, Λ = {1, 2}. Take

ai(t) =
[

2 + sin t 0
0 2 − cos(t)

]
,

cij(t) =
[

0 0.5 sin
√

2t
0.3 sin t 0

]
,

dij(t) =
[

0.4 sin 2t 0
0 0.5 sin

√
2t

]
,

Ii(t) =
[

3 sin
√

5t
3 cos 2t

]
, τ(t) = cos2 t,

fj(yj(t − τij(t))) = tanh(yi − τ(t))),

gj(yj) =
1
2
(|yj + 1| − |yj − 1|).

in system (1). By a direct calculation, one can derive that
ai = 1, λi = 1, Lf

j = Lg
j = 1, i, j ∈ Λ, Q = 0.9 < 1, and

A − (CLg + DLf ) =
[

0.6 −0.5
−0.3 0.5

]

is an M -matrix.
According to Theorems 3.1 and 3.2, system (1) has an

almost periodic solution, which is exponential stability, see
Fig.1.
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Fig. 1. Transient response of states y1, y2 in example 1 with initial values
(0.01, 0.01), (0.1, 0.1) and (0.2, 0.2).
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Fig. 2. Transient response of states y1, y2 in example 2 with initial values
(0.1, 0.1), (0.2, 0.2) and (0.5, 0.5).

Example 2. Assume that T = Z, Λ = {1, 2}. Take

ai(t) =
[

0.5 + 0.1 sin π
2 t 0

0 0.5 − 0.1 cos π
2 t

]
,

cij(t) =
[

0 0.05 sin
√

2t
0.03 sin t 0

]
,

dij(t) =
[

0.04 sin 2t 0
0 0.05 sin

√
2t

]
,

Ii(t) =
[

0.3 sin
√

5t
0.3 cos 2t

]
, τ(t) = sin t

fj(yj(t − τij(t))) = tanh(yi − τ(t))),
gj(yj) = tanh(yj).

in system (1). By a direct calculation, one can derive that
ai = 0.4, λi = 1, Lf

j = Lg
j = 1, i, j ∈ Λ, Q = 0.225 < 1,

and

A − (CLg + DLf ) =
[

0.36 −0.05
−0.03 0.35

]

is an M -matrix.
According to Theorems 3.1 and 3.2, system (1) has an

almost periodic solution, which is exponential stability, see
Fig.2.
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