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Abstract—Earphones and headphones, which are compact 

electro-acoustic transducers, tend to have a lot of acoustic absorption 

materials and porous materials known as dampers, which often have a 

large number of extremely small holes and narrow slits to inhibit the 

resonance of the vibrating system, because the air viscosity 

significantly affects the acoustic characteristics in such acoustic paths. 

In order to perform simulations using the finite element method 

(FEM), it is necessary to be aware of material characteristics such as 

the impedance and propagation constants of sound absorbing materials 

and porous materials. The transfer function is widely known as a 

measurement method for an acoustic tube with such physical 

properties, but literature describing the measurements at the upper 

limits of the audible range is yet to be found. The acoustic tube, which 

is a measurement instrument, must be made narrow, and the distance 

between the two sets of microphones must be shortened in order to 

take measurements of acoustic characteristics at higher frequencies. 

When such a tube is made narrow, however, the characteristic 

impedance has been observed to become lower than the impedance of 

air. This paper considers the cause of this phenomenon to be the effect 

of the air viscosity and describes an FEM analysis of an acoustic tube 

considering air viscosity to compare to the theoretical formula by 

including the effect of air viscosity in the theoretical formula for an 

acoustic tube. 

 

Keywords—Acoustic tube, air viscosity, earphones, FEM, porous 

materials, sound absorbing materials, transfer function method. 

I. INTRODUCTION 

OMPACT acoustic transducers such as headphones, 

earphones, and speakers built into cellular phones use 

porous materials known as dampers to inhibit the resonance of 

the vibrating system to regulate the acoustic characteristics. 

These dampers often have a large number of extremely small 

holes and narrow slits which significantly affect the 

characteristics of the air viscosity in such acoustic paths. 

Computer-aided engineering (CAE) technology is currently 

used widely even in the acoustic field, as the processing speed  

of computers have accelerated and their capacities expanded. 
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However, the subjects of analysis are mainly objects of 

larger dimensions such as building structures, and there are few 

cases that involve the analysis of acoustic propagation 

characteristics of compact spaces such as earphones or 

headphones at the upper limits of the audible range (20 kHz). 

It is necessary to take into consideration the effects of porous 

materials when conducting simulations. In order to incorporate 

the effects of porous materials in simulations using methods 

such as the finite element method (FEM), the physical 

properties of the damping material, characteristic impedance, 

and propagation constant are required. The transfer function 

method [1] using an acoustic tube is available for taking 

measurements of characteristic impedance or propagation 

coefficients of porous materials, but the acoustic tubes 

available in the market have a measurable frequency range that 

only extends from approximately 200 Hz to 6 kHz. Therefore, 

such acoustic tubes cannot be used to take measurements 

further up the audible range, which extends to 20 kHz 

frequency. No previous publication examines the physical 

properties of damping materials up to 20 kHz. 

It is necessary to narrow the diameter of the acoustic tube 

and to shorten the distance between the two microphones in 

order to take measurements of material properties at high 

frequencies. The effect of viscosity between air and the tube 

wall, along which the wave travels, can no longer be ignored as 

the tube is narrowed down. This paper reports on the effect of 

air viscosity inside acoustic tubes, analyzed through FEM using 

a complex effective density and complex bulk modulus. The 

analysis results are then examined by comparing them with the 

results of calculations using theoretical formula. 

II. THREE-DIMENSIONAL CLOSED ACOUSTIC FIELD WITH 

CONSIDERATION OF COMPLEX EFFECTIVE DENSITY AND 

COMPLEX BULK MODULUS 

The acoustic field of the narrow tube is discretized with 

three-dimensional finite elements. 

The equation of motion for an ideal non-viscous compressed 

fluid subject to harmonic vibration of minute amplitudes is 

expressed as: 

 

{ }2
grad p Uρω− = −         (1) 

 

Furthermore, the continuity equation is: 

 

{ }divp E U= −
                             (2) 

Examination of the Effect of Air Viscosity on Narrow 

Acoustic Tubes Using FEM Involving Complex 

Effective Density and Complex Bulk Modulus 
M. Watanabe, T. Yamaguchi, M. Sasajima, Y. Kurosawa, Y. Koike 

C



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:11, 2013

2208

 

 

where p is the pressure, {U} is the particle displacement vector, 

ω is the angular frequency, ρ is the effective density, and E is 

the bulk modulus. 

The relationship between the acoustic pressure p inside the 

element and the acoustic pressure {Pe} of the nodal point can be 

approximated in the following manner using an appropriate 

interpolation function Ni, (i = 1,2,3…): 
 

[ ] { }T

ep N p=          (3) 

 

where [N]
T
 = [N1,N2,N3,…], and the superscript T represents the 

transposition. 

The kinetic energy, strain energy, and potential energy are 

obtained from (1), (2), and (3), and the following equations are 

obtained using the principle of minimum energy: 

 

[ ] [ ]( ){ } { }2 2

e ee e
K M p uω ω− = −      (4) 

 

[ ] ( )1 ee e
K Kρ  =  

ɶ         (5) 

 

[ ] ( )1
ee e

M E M =  
ɶ        (6) 

 

where {ue} is the nodal point displacement vector of the e
th

 

element in (4), [K]e is the stiffness matrix of the element, and 

[M]e is the mass matrix of the element. [K]e and [M]e are, 

respectively, the interpolation function and the matrix 

comprised of its derivatives, while the matrix components of 

rows i and columns j, Meij and Keij, are expressed as: 
 

( )( ) ( ) ( )
( )( )

eij i j i j

i j

K N x N x N y N y

N z N z dxdydz

= ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂

+ ∂ ∂ ∂ ∂

∫∫∫ɶ

 (7) 

 

eij i jM N N dxdydz= ∫∫∫       (8) 

 

The following model, along with the effective density and 

the bulk modulus expressed as complex numbers, has been 

proposed and examined for considering the acoustic field inside 

porous materials. However, for the cases of narrow tubes, the 

frequency-dependent effective density and bulk modulus are 

used. The complex effective density and the complex bulk 

modulus are given by: 

 

*

e e eR eIjρ ρ ρ ρ⇒ = +        (9) 

 
*

e e eR eI
E E E jE⇒ = +        (10) 

 

Furthermore, the imaginary part of the effective density ρeI is 

a parameter for flow resistance. The imaginary part of the bulk 

modulus EeI expresses the hysteresis of the relationship 

between the pressure p and the volumetric strain div{U}. 

This is substituted into (9) and (5) to obtain the stiffness 

matrix of the element, [K]e as: 

[ ] [ ] ( )1R ee e
K K jη= +         (11) 

 

However,  

[ ] ( )( )2 2 ,R eR eR eIe e
K Kρ ρ ρ  = +  

ɶ

 
 

,
e eI eR

η ρ ρ= −           (12) 

 

where [KR]e is the real part of [K]e. 

This is substituted into (10) and (6) to obtain the mass matrix 

of the element, [M]e. 

 

   [ ] [ ] ( )1R ee e
M M jχ= +        (13) 

 

However, 

[ ] ( )( )[ ] ,
~22

eeIeReReR MEEEM +=
 

 

e eI eR
E Eχ = −          (14) 

 

where [MR]e is the real part of [M]e. 

The following discretization formula is obtained for the entire 

system by superposing all elements for the field that applies to 

(4)-(14) [2], [3]: 

 

[ ] ( ) [ ] ( )( ){ } { }
max

2 2

1

1 1
e

R e R e ee e
e

K j M j p uη ω χ ω
=

+ − + =∑ (15) 

 

In (15), [KR]e, [MR]e, and {pe} have been rewritten to ensure 

that the matrix size is the same as the number of degrees of 

freedom for the entire system. The nodal particle displacement 

vector for the entire system is {u}. Equation (15) is a 

simultaneous linear equation with a complex coefficient, and it 

provides the nodal acoustic pressure {pe} on inserting ω and 

{u} as known quantities. The frequency response of the narrow 

tube model was obtained from (15) in this analysis. 

III. THEORETICAL EQUATION FOR AN ACOUSTIC TUBE WITH 

CONSIDERATION OF AIR VISCOSITY 

It is possible to derive the acoustic pressure inside an 

acoustic tube using the wave motion equation. The following 

can be derived from the equation for a closed acoustic tube [4]: 
 

( )
0 0 0

cos

sin

j t
k l x

P j c u e
kl

ωρ
−

=      (16) 

 

where P is the sound pressure, ρ0 is the density of air, c0 is the 

sound speed in air, ω is the angular frequency, u0 is the velocity 

amplitude of the plane of vibration, k is the wave number, l is 

the overall length of the acoustic tube, and x is the distance 

between the tip of the tube and a microphone. This equation is 

for an ideal condition and the viscosity of air is neglected in its 

derivation. 

In order to take the air viscosity into consideration, it is 

necessary to derive the complex effective density, the complex 
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sound speed, and the complex bulk modulus. 

First, in order to derive the complex effective density, the 

particle velocity distribution inside the tube must be derived 

using the following equation for the complex effective density 

[5], [6]: 

 

( )

( )
0 2

2
,

2
1

T

j a
T

j

σ σµ
ρ ρ

ω σ
σ

∗ = + ⋅
−

                (17) 

 

where ρ* is the complex effective density, µ is the air viscosity, 

and a is the radius of the tube. Furthermore, σ and T(σ) are: 

 
1

2

a
ω

σ
ν

 =  
 

                                 (18) 

 

( )
( )
( )

0

'

0

,
J j j

T
J j j

σ
σ

σ
=                         (19) 

 

and J0' is obtained by deriving J0 with the Bessel function σ. 

The bulk modulus is derived subsequently and expressed in 

the following manner [7]: 

 

( )
( )

0

1

0

,
2

1 ( 1)

P
K

J Bs j

Bs jJ Bs j

γ

γ

∗ =
−

+ −
− −

              (20) 

 

where K
*
 is the complex bulk modulus, P0 is the atmospheric 

pressure, and γ is the specific heat ratio. Furthermore, B and s 

are given by: 

 
1

2

,PC
B

µ
κ

 =  
 

                             (21) 

 
1

2 2
0 ,
a

s
ωρ

µ
 

=  
 

                             (22) 

 

where CP is the constant-pressure specific heat and κ is the 

coefficient of thermal conductivity. 

The complex sound speed is expressed using the following 

equation based on the complex effective density from (17) and 

complex bulk modulus from (20): 

 

*
*

*
c

K

ρ
= .                                   (23) 

 

Furthermore, the complex wave number k
*
 is: 

 

*

*
k

c

ω
=  .                                  (24) 

 

The following equation is derived by substituting the 

complex sound speed c*, complex effective density ρ*, and 

complex wave number k* for, respectively, the sound speed c0, 

air density ρ0, and wave number k from (16), which is a 

theoretical equation for the sound pressure inside the acoustic 

tube, by using (17), (23), and (24) : 

 

( )
0

cos

sin

j t
k l x

P j c u e
k l

ωρ
∗

∗ ∗ ∗
∗

−
= .                (25) 

IV. FEM SIMULATION 

The FEM simulation was performed using (15) for 

determining the physical properties of air inside the acoustic 

tube and to define the frequency-dependent complex effective 

density and complex bulk modulus with consideration of air 

viscosity. 

In order to reduce the amount of calculations, a quarter-scale 

model of the circular tube was used, as shown in Fig. 1. In 

consideration of future experiments, the adopted diameters for 

the tubes were 14mm and 8mm. A thin straight tube of 1 mm, 

considered to show a significant air viscosity effect, was also 

analyzed. The length of the tubes was 250mm. 

 

0mm

250mm
222mm

excitation point

observation point

 

Fig. 1 The FEM model 

 

The comparison of the calculated values derived from the 

theoretical equation presented in (25) and the results of the 

FEM simulation is shown in Fig. 2. Furthermore, the graph also 

features a plot of the theoretical equation using the ordinary 

sound speed and density of air. 

 

0

20

40

60

80

100

120

140

500 1500 2500 3500 4500 5500 6500 7500

frequency[Hz]

d
B

theoretical value without viscosity

theoretical value with viscosity

FEM with viscosity

 

(a) 

 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:11, 2013

2210

 

 

0

20

40

60

80

100

120

140

500 1500 2500 3500 4500 5500 6500 7500

frequency[Hz]

d
B

theoretical value without viscosity

theoretical value with viscosity

FEM with viscosity

 

(b) 

 

0

20

40

60

80

100

120

140

500 1500 2500 3500 4500 5500 6500 7500

frequency[Hz]

d
B

theoretical value without viscosity

theoretical value with viscosity

FEM with viscosity

 

(c) 

Fig. 2 Results of the theoretical calculation and FEM simulation for 

different tube diameters (a) 14mm diameter, (b) 8mm diameter, (c) 

1mm diameter 

 

The observations were performed at the position l = 222mm. 

First, a comparison of the theoretical equation with FEM 

reveals that the theoretical equation, which uses the ordinary 

sound speed without viscosity and density, has extremely acute 

resonance with the same plot, regardless of diameter. When the 

complex sound speed and the complex effective density are 

considered, the acuteness of the peak of the resonance point 

was inhibited with the narrowing of the diameter of the tube 

because of the air viscosity effect. The results of the FEM 

simulation revealed that the outcomes were similar to the 

theoretical values that consider the complex sound speed and 

complex effective density. Furthermore, a graph with a 

different diameter at one location of resonance is featured in 

Fig. 3 in order to observe the effect of viscosity clearly. 
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Fig. 3 Comparison of the results of the theoretical calculation and the 

FEM simulation for different tube diameters 

 

The acuteness of the resonance point was inhibited as the 

diameter of the tube was narrowed, leading to even lower 

resonance frequencies, as shown in Fig. 3. 

A number of contour diagrams for a number of pressure 

distributions |P| of resonance points are featured in Fig. 4. The 

loops and nodes of many modes are revealed inside the tube 

with the rise in the frequency, expressing the acoustic 

distribution inside the tube. In cases where the diameter of the 

tube was large, the contour is not significantly represented, but 

when the diameter of the tube is 1mm, the contour of the loops 

and nodes of sound pressure |P| take on a paler color as the 

distance from the sound source increases, indicating that 

damping occurs because of the air viscosity effect. 

Furthermore, in terms of pressure, the same pressure is 

distributed across the uniform sections, resulting in planar 

waves. 
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(b) 

 

 
(c) 

Fig. 4 Contour diagrams of pressure distributions from the FEM 

simulation results (a) 14mm diameter, (b) 8mm diameter, (c) 1mm 

diameter 

 

V. CONCLUSION 

The complex effective density and the complex bulk 

modulus were used to determine the effect of the air viscosity 

inside acoustic tubes. Results from the FEM and theoretical 

equation were compared and examined. 

The FEM, used with the consideration of air viscosity and 

the use of the complex effective density and complex bulk 

modulus obtained by M. A. Biot (1992) [5], was compared with 

the corresponding theoretical solutions. 

When the air viscosity was taken into consideration in the 

theoretical calculation, the acuteness of the resonance point was 

inhibited and the resonance frequency was decreased as the 

diameter of the tube became thinner. The FEM with 

consideration of air viscosity matched the theoretical values 

qualitatively as well as quantitatively. This made it possible to 

show the validity of the FEM simulation with consideration of 

the air viscosity. 
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