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Abstract—The exact solutions of the equations describing the 

steady plane motion of an incompressible fluid of variable viscosity 
for an arbitrary state equation are determined in the −),( ψξ or 

),( ψη - coordinates where )y,x(ψ  is the stream function, ξ  and η  

are the parts of the analytic function, )y,x(i)y,x( ηξϖ += . 
Most of the solutions involve arbitrary function/ functions indicating 
that the flow equations possess an infinite set of solutions. 
 

Keywords—Exact solutions, Fluid of variable viscosity, Navier-
Stokes equations, Steady plane flows 
 

I. INTRODUCTION 
AEEM and Nadeem [1] extended Martin’s [2] approach to 
study the steady plane flows of an incompressible fluid of 

variable viscosity for an arbitrary state equation.  Naeem and 
Nadeem determined some new exact solutions to the flow 
equations and also indicated applicability of some of the 
solutions to physically possible situations. In Martin’s 
approach a natural curvilinear coordinate system  ),( ψφ   in the 
physical plane ),( yx  is introduced in which ψ  = constant are 
the streamlines and φ  = constant is an arbitrary family of 
curves.  In Martin’s approach, the transformed system of flow 
equations becomes undetermined and is due to arbitrariness of 
the coordinate linesφ  = constant. The system can be made 
determinate in a number of ways. Naeem and Nadeem [1] 
made the system determinate by making system orthogonal, in 
which case coefficient F of the first fundamental element 2ds  
is zero. Naeem and Ali [3], following Martin’s approach made 
the system governing the motion of fluid in [1] determined by 
taking x=φ . 

Recently Labropulu and Chandna [4] extended Martin’s 
approach to study the steady plane infinitely conducting MHD 
aligned flows and made their system of flow equations 
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determinate by taking ),(),( yxyx ξφ =  or ),(),( yxyx ηφ =  where 
),( yxξ and ),( yxη are the real and imaginary parts of an 

analytic function ϖ . Labropulu and Chandna obtained exact 
solutions for the flows when the stream line pattern is of the 
form =

−
)(

)(
ξ

ξη
g

f  Constant or =
−

)(
)(

η
ηξ

m
k Constant. 

In the present work, we extend Labropulu and Chandna 
approach to study the steady plane flows of an incompressible 
fluid of variable viscosity for arbitrary state equation and 
present some exact solutions.  The most of the solutions 
contain arbitrary function(s) allowing us to construct an infinite 
set of solutions to flow equations. The plan of this is as 
follows:  

In the next section description of basic flow equations are 
discussed.  Section-III presents the flow equations in the 
physical plane and Martin’s system ),( ψφ .  The coefficients E, 
F, G of first fundamental 2ds are also given in ),( ψξ - and 

),( ψη - coordinate system. In Section-IV, exact solutions to 
flow equations are determined. 

II. BASIC FLOW EQUATIONS 
The basic non-dimensional equations governing the steady 

plane motion of an incompressible fluid of variable viscosity in 
the presence of an unknown external force with no heat 
addition are:  
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where vu,  are the velocity components, p  the pressure, μ  the 
fluid viscosity, T the fluid temperature, Re  the Reynolds 
number, Pr  the  Prandtl number and  Ec  the Eckert number, 
ρ   the density of the fluid and 2,1 ff ,  are the components of 

the external force. In (2) and (3) λ* is a non-dimensional 
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number, and in case of motion under the gravitational force, λ*, 
is called the Froude number (Fr). 
 
We define the following functions: 

yx uv −=ω                  (6) 
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In term of these functions, the system (1-5) is replaced by the 
following system: 
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of six equations in eight unknowns 21 FFTLvu ,,,,,,,, ωμ  
as functions of yx, . The advantage of this system over the 
original system is that the order of (2) and (3) has decreased 
from two to one. In (9) and (10) for convenience we have put 

2
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1 , fFfF λλ ==  
Equation (8) implies the existence of a stream function ),( yxψ  
such that  

xy vu ψψ −== ,                   (14) 

Let   ),( yxψ  = constant   defines the family of streamlines.  Let 
us   assume  ),( yxφ  = constant to be some arbitrary family of 
curves such that it generates with ),( yxψ = constant a 
curvilinear net  ),( ψφ  in the physical plane. 
Let 

( )φψψφ yyxx == ),,(               (15) 
define the curvilinear net in ),( yx - plane and let the squared 
element of arc length along any curve be 
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Equation (15) can be solved to obtain  
( )yxyx ,),,( ψψφφ ==                (18) 

such that 
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provided that  0 < | J | < ∞, where J  is the transformation 
Jacobian,  and is defined as 

φψψφ yxyxJ −=                 (20) 

If  α  is the angle of inclination of the tangent to the coordinate 
line  ψ  = constant directed in the sense of increasing φ ,  we 
have from differential geometry, the following results: 
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The three functions E, F, G of ψφ,   satisfy the Gauss equation: 
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where K is the Gaussian curvature. 
 

III. TRANSFORMATION OF BASIC FLOW EQUATIONS IN THE 
STREAMLINED COORDINATE SYSTEM ),( ψφ  

If the arbitrary curve ),( yxφ = constant and the streamlines 
=),( yxψ  constant generate a curvilinear net in the physical 

frame, the system of equations (8-13) is transformed to the 
following system:  
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which in φ  and ψ  are considered as independent variables. 
This is a system of seven equations in ten unknown functions 
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21,,,,,,,,, FFqTLWGFE μ .  In (25-27), the functions A and 
M are given by  
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Recently Labropulu and Chandna [4] presented a new 
approach for the determination of exact solutions of steady 
plane infinitely conducting MHD aligned flows. In their 
approach ),( ψξ −coordinate net or ),( ψη − coordinate is used 
to obtain exact solution of these flows where coordinates 

),( yxψ  is the  stream function and ),( yxξ  and  ),( yxη  are the real 
and imaginary parts of an analytic function ),(),( yxiyx ηξϖ += ,  
Labropulu and Chandna following Martin’s transform their 
flow equations in ),( ψφ -system where ψ  = constant is 
represents family of streamline and φ = constant is an arbitrary 
family of curves. The system of flow equations becomes 
undetermined due to arbitrariness of the coordinate lines φ = 
constant. Labropulu and Chandna made the system determinate 
by taking ),( yxξφ =  or ),( yxηφ =  where ),( yxξ  and ),( yxη  
are real and imaginary part of the analytical functions ϖ  as 
outlined blow: 
Let 

ηξϖ i+=                    (33) 
be an analytic function of  iyxz +=  where  ),( yxξξ =  and 

),( yxηη = . Since  ϖ  is analytic function of  x  and y , then 
real and imaginary part must satisfy Cauchy-Riemann 
equations: 
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provided  that ∞<*<0 J  where *J  is given by  
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Employing (35), (36) and (39) in 222 dydxds +=  , we get 
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Equation (39), employing (35) and (37), yields  
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affirmative so that their exist some function  )(ψγ  such that  

( ) 0'),(
)(

)(
≠=

− ψγψγ
ξ

ξη
g

f              (41) 

[ ]{ } { }
( ) ( ) ( ) 222*

*22*2

''
)()(')('2)()(')('1

ψγξψξψγξ

ψγξξξψγξξ

dgJddg
gfJdgfJds

+

++++=   (42) 

[ ]{ }21 )()(')('* ψγξξ gfJE ++=            (43)  
)(')(* ψγξ 22gJG =                 (44) 

[ ] )(')()()(')('* ψγξψγξξ ggfJF +=           (45) 

)(')(* ψγξgJW =                 (46) 
)(')(* ψγξgJJ =                  (47) 

Similarly to analyze whether a family of curves  

=
−

)(
)(

η
ηξ

m
k Constant, can or can’t be streamlines in ),( ψη -

coordinate net, they assumed affirmative so that their exist 
some function  )(ψγ  such that  

( ) 0≠=
− ψγψγ

η
ηξ '),(
)(

)(
m

k              (48) 

[ ]{ }21 )()(')('* ψγηη mkJE ++=             (49) 
)(')(* ψγη 22mJG =                 (50) 

[ ] )(')()()(')('* ψγηψγηη mmkJF +=           (51) 
)(')(* ψγηmJW =                 (52) 
)(')(* ψγηmJJ −=                 (53) 

For both family of streamlines there exists some function  
)(ψγ  [4] such that 
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Now in the next section, we determine the solutions of the (24-
30) by assuming ξφ =  or ηφ =  and  utilizing (42-55) for  the 
family of streamlines in  ),( ψξ  and  ),( ψη  coordinate net, 
respectively. 
 

IV. SOLUTIONS 
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In the absence of external force. 
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A  Example1 (Flows with ξ  = constant as streamlines) 
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We let [4] 
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where )(ψγ  is an unknown function and ξ   is given by (57). 
Comparing (59) with (55), we get  
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Utilizing (60) in (49-53), we get 
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Equations (24-29), utilizing (61) and (62), become 
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where in (64-66), the functions  A and  M  are given by  
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In order to determine the solutions of (64-66), we make use of 
the compatibility condition  ψηηψ LL =   and this yield 
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Equation (70) is the equation which the viscosity μ  and  )(ψγ   
must satisfy. 
Equation (70) possesses many solutions and we consider only 
those solutions for which the exact solution of (66) can be 
determined.  These solutions are for the following cases: 

Case I  0'' =γ  
Case II  0'' ≠γ  

We study these cases separately 
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The temperature distribution T for μ  given by (75) satisfies the 
equation  
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For μ   given by (76),  the temperature distribution  T  satisfies 
the equation 
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Case II  
When 0'' ≠γ , the (70) possesses trivial and non-trivial 
solutions. 

 Now   Z = 0 is the trivial solution of (70) and provides 
02

2
=+

'

''

γ

γ                   (83) 
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where  2cc1 ,  are arbitrary constants. Equations (68) and (69), 
employing (83), yield 

A = 0 

M = 0 

Equations (64) and (65), utilizing (85) yields  
L = constant = c3  (say).             (86) 

We note that in this case the viscosity function μ  is arbitrary. 
 Now the (66), on using  (84) and (85), becomes 
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The solution of (87) is  
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where  654 c), (c), (c 00 ≠≠   are arbitrary constants.For a non-
trivial solution of (70) we let 
Z = constant = 7c  (say). 
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Equations (64) and (65) on using 7cZ = , yield  
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where  ( )0c7 ≠  and 8c  are arbitrary constants. 
The temperature distribution in this case, satisfies 
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where ( ) 11109 ,,0c cc≠ are arbitrary constants. We mention that 
the function )(ψγ  is arbitrary in this case, and therefore we 
can construct an infinite set of solutions to the flow equations. 

 
B Example-2 ( Flows with =η  constant as streamlines) 

Assume [4] 
)(ψγη =                 (95) 

where )(ψγ  is unknown function and η   is given by 
(57).Equations (96) and (54), give 
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Equations (43-47), employing (96) yield 
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Equations (24-29), employing (97), give 
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where the functions A and M are given by  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−= )(

)('

)('')(
)('

ψγ
ψγ

ψγψγ
ψγ

μ
ξ 2

2
24

22 SinCos
Re

A
e

        (103) 

 
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−= )(

)('

)('')(
)('

ψγ
ψγ

ψγψγ
ψγ

μ
ξ 2

2
22

22 CosSin
Re

M
e

       (104) 

Equations (99) and (100), employing (102-104), can be 
rewritten as 
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Proceeding in the same manner as in example–1, a solution of  
(105) and (106) is  
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provided baψγ += . In (109) and (110), ( )ψξ 21 ZZ ),(  and  

)(Z3 ξ  are arbitrary functions and  2gg1 ,  are arbitrary 
constants. 
The temperature distribution T satisfies the equation 

ξξψψξξ
μ

2
2 4

e

PETRaPTTa rc
er −=−+            (111) 

where μ   is given by (109). The solution of (111) is 
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where 65432 ,,,,, aaaaaa1  are all arbitrary constants. We 

note that the expressions for L,μ  and T  involve arbitrary 
functions, and this allows us to construct a large number of 
solution to the flow equations. 
(2) Assume 
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where  2121 ibbbiaaa +=+= ** ,  
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(112) 
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C Example 3 (Flows with =−λξη  constant as streamlines) 
Proceeding in the same manner as in examples 1 and 2, we 

find  
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For this example, in (24-29), employing (114), become  
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and 987654321 ,,,,,,,, βββββββββ are given in  ppendix-
B. 
Equations (116-118), employing (119) and (120), become 

ψξψ βγβ
γ
γβ XXL 1312314 '

'
''

++−=           (121) 

'1110 γ
ββ ψ

ξξ

X
XL −−=               (122) 

( )

μ
γ

γ
λγ

γ
λλγ ξψψψξψξξ

22

2

22

'
'

1''
'

12'

XRPE

TRPTTTT

erc

er

−=

−
+

−
+

+−       (123) 

where 
),(

)('

)(''
),( ψξμ

ψγ

ψγ
ψξ

3
eR

X =
             (124) 

and  1413121110 ,,,, βββββ  are given in appendix B.  
On eliminating the generalized energy function L from  (121) 
and (122), we obtain  
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Equation (125) is the compatibility equations for example (3). 
We found that this compatibility equation possesses solutions 

for the following possible cases for which equation (123) is 
exactly solvable. 
Case I   0)('' =ψγ  
Case II  0)('' ≠ψγ  
We study these two cases separately as follows. 
 

Case-I 
 

When ( ) ba +== ψψγψγ ,)('' 0 . Equation (125) is identically 
satisfied. The viscosity function μ   is arbitrary and the 

generalized energy function  L  turns out to be constant. 
The solution of (123), for any value of λ , is given by  
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where  65432,1 m,m,m,m,mm  are all non-zero arbitrary 
constants. 
 
Case-II 
 
When 0≠)('' ψγ , the function X  in (124) can either be 
considered constant or non-constant. When, =X constant =  7m  
(say), the equation is identically satisfied and therefore  
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Equation (123), employing (127), yields  
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whose solution is 

(129)                                                                                     
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where  10987 mmmm ,,,   are all non zero arbitrary constants. We 
note that in this case the function )(ψγ  is arbitrary.  The 
generalized energy function  L  can easily be determined from 
(121) and (122). 
When X is not a constant, the solution of (125) is  
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where  131211 mmm ,,   are non-zero arbitrary constants. The 
viscosity  μ   is given by  
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Equation (123), in this case becomes. 
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The two solutions of  (132) are obtained and these are 

(114) 
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(ii)  and  
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 134) 
For solution given by (133), the function  γ  is arbitrary, and 
for (134) it is given by  
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The constants  212919181716 mmmmmm ,,,,,   are all non zero arbitrary 
constants. In (131) and (132)   X1(ψ)  is given by  
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The generalized energy function L can easily be determined 
in this case in the same manner as in examples 1 and 2. 

V. CONCLUSION 
Labropulu and Chandna approach is extended to study the 

steady plane flows of an incompressible fluid of variable 
viscosity for arbitrary state equation. The exact solutions to 
flow equations are determined. The solutions involve arbitrary 
function(s) indicating that flow equations possess an infinite 
set of solutions. 

APPENDIX A 
Martin’s [2] introduced curvilinear coordinates ψφ ,   in 

which curves  =ψ  constant are the streamlines and the curves 
φ  = constant are left arbitrary so that the physical coordinates 
can be replaced by  ψφ ,   
Martin assumed that 
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define a system of curvilinear coordinates in ),( yx  – plane such 

that the Jacobian, 
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yxJ  of the transformation (A.1) is 

non-zero and finite. The first fundamental form of differential 
element is defined by  
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Differentiating (A.1) with respect to x  and y  and solving the 
resulting equations for  yxyx φφψψ ,,,   yields 
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wherein 
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Let α  be the angle between the tangent vector at the point 
),( yxp  [ see Fig.1] to the coordinate line ψ  = constant and the 

axisx − ,  
Fig. 1 ( ψφ , ) coordinate system 

then  

φ

φα
x
y

Tan =                   (A.6) 

Equation (A.4), on utilizing (A.3, A.6), gives  
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The integrability conditions 
ψφφψψφφψ yyxx == ,              (A.8) 

for variables x  and y ,  yield 
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Equation (A.9), on employing integrability condition for 
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wherein K  is called the Gaussian Curvature and (A.11) is 
called the Gauss equations. This equation represents a 
necessary and sufficient condition that E, F, G, are coefficient 
of the first fundamental form in (A.2). 

APPENDIX B 
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