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Abstract—This paper deals with the helical flow of a Newtonian 

fluid in an infinite circular cylinder, due to both longitudinal and 

rotational shear stress. The velocity field and the resulting shear 

stress are determined by means of the Laplace and finite Hankel 

transforms and satisfy all imposed initial and boundary conditions. 

For large times, these solutions reduce to the well-known steady-state 

solutions.

Keywords—Newtonian fluids, Velocity field, Exact solutions, 

Shear stress, Cylindrical domains. 

I.  INTRODUCTION

 HE study on the flow of an incompressible Newtonian 

fluid in an infinite circular cylinder is not only of 

fundamental theoretical interest but it also occurs in many 

applied problems. The flow in an infinite circular cylinder, 

starting from rest, has applications in the food industry. The 

starting solutions for the motion of the second grade fluids due 

to longitudinal and torsional oscillations of a circular cylinder 

have been established in [1]. Other recent results regarding 

helical flows of non-Newtonian fluids have been obtained 

Fetecau et al [2]. Vieru et al [3], by means of the Laplace 

transform and Cauchy's residue theorem, have determined the 

starting solutions for the oscillating motion of a Maxwell fluid. 

    The corresponding solutions for a Newtonian fluid, 

performing the same motion, are obtained from the general 

solutions as a particular case. Other interesting solutions for 

different oscillating motions of non-Newtonian fluids have 

also been obtained by Hayat et al [4,5]. 

    The aim of this paper is to study the flow of a Newtonian 

fluid in an infinite circular cylinder of radius R. The motion is 

produced by the cylinder that at the initial moment is subjected 

to both longitudinal and torsional time dependent shear 

stresses. The exact solutions of the problems with initial and 

boundary conditions are determined by means of the finite 

Hankel and Laplace transforms. The solutions obtained in this 

paper can be used to make a comparison between the flows of 

Newtonian and non-Newtonian fluids. 

I. GOVERNING EQUATIONS

    Let us consider an incompressible Newtonian fluid at rest is 

situated in an infinite circular cylinder of radius R . We 

consider the helical flow of the fluid and assume that the 

velocity field, in a system of cylindrical coordinates 

( r , , z ), is of the form [6] 

, , ( , ) , 1zv v r t v r t e r t e

where ze  and e  are the unit vectors in the z and

directions respectively. 

    The constitutive equations and the governing equations 

are [2,3] 
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where  is the kinematic viscosity of the fluid,  is the 

dynamic viscosity of the fluid,  is the constant density of the 

fluid, 1 , ( , )rzr t S r t and 2 , ( , )rr t S r t are the 

shear stresses which are different from zero. 

The appropriate initial and boundary conditions are 
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where f  is a constant and 0a .

II. CALCULATION OF THE VELOCITY FIELD

    In order to determine the exact solutions of the problems 

(2)--(8), the Laplace and finite Hankel transform method is 

used. Applying the Laplace transform [7,8] to  (2)--(8) and 

using the initial conditions (6) we obtain the following 

problems: 

Exact Solution of Some Helical Flows of 

Newtonian Fluids 

Imran Siddique 

T



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:7, 2008

435

2

2

1
( , ) ( , ), 9qv r q v r q

r r r

1

1

( , ) ( 1)
, 10

a

fv R q a

r q
2

2 2

1 1
( , ) ( , ), 11q r q r q

r r r r

2

1

( , ) ( , ) ( 1)
, 12

a

fR q R q a

r R q

where
0

( , ) ( , ) ,qtv r q v r t e dt  and 

0
( , ) ( , ) ,qtr q r t e dt are the Laplace transforms of 

the functions ( , )v r t , respectively ( , )r t .

We define the following finite Hankel transforms of functions 

( , )v r q respectively ( , )r q  [7] 

0 0 0
0

, ( , ) ( ) , 13
R

H n nv r q rv r q J rr dr

where 0 , 1, 2,3,nr n  are the positive roots of the 

transcendental equation 1 0,J Rr  respectively 

1 1 1
0

, , , 14
R
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where 1 , 1, 2,3,nr n are the positive roots of the 

transcendental equation 2 0J Rr .

In the above relations J is the first-kind, order Bessel 

function.  

Using the following formulae [7--10] 
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 Applying the Hankel transform to (9), (11) and using the boundary 

conditions (10), (12) and (16), (17) we find that 
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Now, for a more suitable presentation of the final results, we 

rewrite (18) and (19) in the equivalent forms 
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Using (13) and (14), after a straightforward calculation we 

obtain the following function-Hankel transform pairs: 
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The inverse Hankel transforms of functions 2 0 ,H nv r q  and 

2 1 ,H nr q are [7] 
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Applying the inverse Hankel transform to (20)--(23), using 

(24)-(27) we obtain the following expressions for the Laplace 

transforms of functions ,v r t  and ,r t :
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To obtain the velocity fields 
1, { ( , )}v r t L v r q  and 

1, { ( , )}r t L r q we introduce the following 

notations: 
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The inverse Laplace transforms of the above functions are [9] 
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Applying the inverse Laplace transform to (28) and (29), using (31) 

and the convolution theorem we get: 
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Where  

0 0

t t

a t b t a t b t d a t b t d

represents the convolution product of functions a and b. 
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IV. CALCULATION OF THE SHEAR STRESS 

Applying the Laplace transform to  (3) and (5) we find that 
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Differentiating (28) and (29) with respect to r  we find that 
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Introducing (38) and (39) into (36) and (37) we get 
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Using (31) and the convolution theorem, we find the shear 

stress 1 2, , ,r t r t  under the forms 

If 0a then 
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Iit is important to point out that from (42)--(45), we have 

1 1, aR t f t  respectively 2 2, .aR t f t

For 1a , from  (32), (33), (42) and (43) we get the 

following results: 
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IV. CONCLUSIONS 

In this paper, the velocity fields and the associated shear 

stresses corresponding to the helical flow induced by an 

infinite circular cylinder in an incompressible Newtonian 

fluid, have been determined using Hankel and Laplace 

transforms. The solutions that have been obtained, written in 

terms of the Bessel functions, satisfy all imposed initial and 

boundary conditions and can be used to make a comparison 

between flows of Newtonian and non-Newtonian fluids. For 

t  the solutions (30), (31) and (40)--(45) reduce to the 

steady-state solutions: 
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