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Abstract—In this work, a special case of the image super-

resolution problem where the only type of motion is global 
translational motion and the blurs are shift-invariant is investigated. 
The necessary conditions for exact reconstruction of the original 
image by using finite impulse-response reconstruction filters are 
developed. Given that the conditions are satisfied, a method for exact 
super-resolution is presented and some simulation results are shown. 
 

Keywords—Image processing, image super-resolution, finite 
impulse-response filters, existence-uniqueness conditions.  

I. INTRODUCTION 
UPER-RESOLUTION image reconstruction can be 
defined as the process of constructing a high-quality and 

high-resolution image from several shifted, degraded, and 
under-sampled ones. In areas such as medical imaging and 
satellite imaging, where multiple frames of the same scene can 
be obtained, super-resolution is proven to be useful. Also, 
multiple frames in a video sequence can be utilized to improve 
the resolution for frame-freeze or zooming purposes. 

In the literature, super-resolution is treated as an inverse 
problem, where the high-quality and high-resolution image to 
be obtained is linked to the under-sampled images by a series 
of operators such as warping, blur, decimation and additive 
noise. Some notable super-resolution studies include 
stochastic reconstruction methods, projection onto convex sets 
(POCS) approach, iterative back-projection, and others. 
Excellent tutorials about the subject with emphasis on 
difficulties and future directions can be found in [1] and [2]. 
Also a number of special journal issues on super-resolution 
image reconstruction provide collections of recent work on the 
topic [3], [4]. 

In some applications, where the motion is controlled and 
there is no local movement, the only type of motion within the 
low-resolution image sequences is translational motion. For 
example, the scanner resolution can be increased by scanning 
the document more than once with slightly changed initial 
points. Also in some video sequences, the scene is static and 
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image sequences are obtained by translational motion of the 
video camera. There are works in the literature which consider 
this special super-resolution case [5], [6]. 

In this work, the conditions for the existence and 
uniqueness of finite-impulse response restoration filters for 
exact reconstruction of the high-resolution image in case of 
pure translational motion (or no motion) and shift-invariant 
blur are derived. If the number of the low-resolution images is 
larger than a threshold and the blur functions meet a certain 
property, then a set of restoration filters can be constructed for 
exact high-resolution image reconstruction even in the 
absence of motion. 

The paper is organized as follows: In Section 2, the 
conditions for the existence and uniqueness of perfect 
restoration filters are derived. In Section 3, given that the 
conditions are met, a perfect reconstruction method is 
presented. In Section 4, some simulation results are shown in 
order to validate the propositions and some conclusions are 
drawn in Section 5.  

II. EXISTENCE AND UNIQUENESS CONDITIONS FOR 2D FIR 
RECONSTRUCTION FILTERS 

Fig. 1 shows the observation model that relates the 
observed low-resolution images to the original high-resolution 
image [7]. The desired image, f(n1,n2), and the observed 
images, gk(n1,n2) (k = 1, …, K), are linked through linear 
operations such as geometric warp, blur, sub-sampling, and 
additive noise (not shown in the figure). K is the number of 
observed low-resolution images. The geometric warp 
operator, which is denoted by Wk, is the representation of the 
motion that occurs during the image acquisition process. It 
may consist of global or local translation, rotation, etc. The 
second linear operation is the blurring process. It results from 
factors such as relative motion between the imaging system 
and the scene, out of focus, point-spread function of the 
sensor, and so on. It is generally modelled as a linear shift-
invariant finite impulse-response (FIR) two dimensional filter, 
hk(n1,n2). The aliased low-resolution image is then generated 
by sub-sampling the warped and blurred high-resolution 
image. 

To recover the high-resolution and blur-free image, a set of 
finite impulse-response reconstruction filters, wk(n1,n2), is 
applied to the low-resolution images as in Fig. 2. In this section 
of the paper, we will investigate and determine the conditions 
that lead to the existence of such restoration filters. 
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The following assumptions and notation are used 
throughout the paper: 

 

 
Fig. 1 Observation model 

 
- Additive noise is ignored. 
- The only type of motion is global translational motion 

and it is merged into the blur function as described in 
[6]. 

- The size of each one of the blur kernels is AxA, the size 
of each restoration filter is BxB, and the down-
sampling rate is Ds for both horizontal and vertical 
directions. It is straightforward to extend the following 
discussion to more general cases (rectangular blurs and 
restoration filters, etc.). 

- hk
ij = hk(i, j)  (0 ≤ i, j < A, 1 ≤ k ≤ K) represents the blur 

coefficients. 
- wk

ij = wk(i, j)  (0 ≤ i, j < A, 1 ≤ k ≤ K) represents the 
restoration filter coefficients. 

To determine the existence and uniqueness conditions for 
the restoration filters, the low-resolution images must be 
expressed in terms of the original image, the blur operators 
and the sub-sampling operator, and the estimated image must 
be expressed in terms of the low-resolution images and the 
restoration filters, both in vector-matrix notation. Let us define 
the input vector f(n1,n2) as the lexicographically ordered 
(A+B-1)x(A+B-1) portion of the original image that is 
centered at (n1,n2) such as: 
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The input vector is a row vector and its length is (A+B-1)2. 

The data vector, g(n1,n2), can be defined as the concatenation 
of the K data sub-vectors gk(n1,n2) that are obtained from the 
degraded images where each sub-vector is formed by 
lexicographically ordering BxB portion of the corresponding 
degraded image centered at (n1,n2) such as: 
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Fig. 2 Reconstruction stage 

 
where k = 1, …, K. The data vector is a row vector and its 
length is KB2. 

The blur matrix H is constructed from the coefficients of 
the blur functions. It is defined as: 
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where i=1, …, A, k=1, …, K, the size of Hi

k is (A+B-1)xB, the 
size of Hk is (A+B-1)2xB2, and the size of H is (A+B-1)2xKB2. 
0  represents a properly-sized zero-matrix. 

The sub-sampling matrix S can be defined as 
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where the size of Sxxx is DsxDs, the size of Sxx is BxB, the size 
of Sx is B2xB2, and the size of S is KB2xKB2. The rate of Sxx’s 
that appear on the main diagonal of Sx is 1/Ds. Note that the 
sub-sampling matrix described here does not reduce the size 
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of the image, rather it leaves the relevant pixels as they are 
and makes the others zero. 

Based on the definitions above, the input-output 
relationship of the degradation model described in Fig. 1 in 
vector-matrix notation is as follows: 

 

( ) ( ) SHfg ⋅⋅= 2121 ,, nnnn               (1) 

To reconstruct the original image, a set of FIR filters are 
applied on the degraded (blurred and sub-sampled) images as 
shown in Fig. 2. Let us define the restoration filter vector w as 
the concatenation of K vectors that are formed by the 
coefficients of the corresponding adaptive filters such that: 
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wk is a column vector of size B2, and w is a column vector of 
size KB2. The reconstructed image can be expressed as 
follows: 

 

( ) ( ) wg ⋅= 2121 ,,ˆ nnnnf             (2) 
 

For perfect image reconstruction, the reconstructed image 
must be equal to a shifted version of the original image, i.e. 

 

( ) ( )βα −−= 2121 ,,ˆ nnfnnf  
 

for all (n1,n2) possibly with the exception of image borders 
that can’t be reconstructed because of the involvement of the 
convolution operator. Here, the shift is represented by (α, β). 
Combining (1) and (2), the following condition must be 
satisfied for perfect reconstruction: 
 

βα ,ewSH =⋅⋅                  (3) 
 

where eα,β is defined as a column vector of length (A+B-1)2 
whose only non-zero element is determined by the shift (α, β). 
For the system in (3) to be consistent, i.e. for the existence of 
a restoration filter vector that satisfies (3), H·S must be full 
row-rank. Recall that the size of H·S is (A+B-1)2xKB2. To 
determine the conditions that lead to system consistency, first 
consider the case where Ds=1, i.e. no sub-sampling. In this 
situation, S is the unity matrix of size KB2xKB2 and the 
problem reduces to the multi-channel deconvolution task. The 
full row-rank conditions for Ds=1 are stated as follows [8]: 
 

- The 2-D Z-transforms of h1(n1,n2), h2(n1,n2), …, hK(n1,n2) 
must be co-prime. (For the definition and consequences of co-
primeness, please refer to [8].) 

- H must have more columns than rows, i.e. KB2 ≥ (A+B-
1)2. 

Returning to our case where Ds > 1, we can use the 
inequality about the rank of multiplication of matrices: 

 

( ) ( ) ( ){ }SHSH rank,rankminrank ≤⋅            (4) 

The inequality in Eq. (4) states that for H·S to be full row-
rank, the rank of S must be at least equal to the rank of H, i.e. 
(A+B-1)2. Considering the fact that S is a diagonal matrix 
whose non-zero entries appear only on the main diagonal as 
1’s, its rank is equal to the number of 1’s that it contains. 

 
      rank(S) = (# of 1’s in Sxxx) x (# of Sxxx’s in Sxx) x 
                      (# of Sxx’s in Sx) x (# of Sx’s in S) 
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where ⎣x⎦ denotes the smallest integer larger than x. As a 
result, the existence condition for Ds > 1 case turns out to be 
as follows: 
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Some direct consequences of the inequality in (5) can be 
stated as follows: 

• The uniqueness of the solution is satisfied when 
the inequality in (5) becomes equality. 

• K must be at least Ds
2+1. 

• Motionless super-resolution is possible as long as 
the co-primeness condition and the inequality in 
(5) are satisfied. 

III. AN EXACT SUPER-RESOLUTION ALGORITHM 
From (3), the restoration filter vector can be found as 

follows: 
 

( ) βα ,pinv eSHw ⋅⋅=            (6) 
 

where pinv(X) represents the pseudo-inverse of matrix X. Let 
us denote w that is obtained in (6) as wα,β  to indicate that it is 
determined by the shifted version of the original image. The 
estimated image can be written as follows: 
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where * denotes the 2-D convolution operator and wk
α,β (n1,n2)  

denotes the restoration filters in rectangular form. The 
following theorem will be given without proof: 
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if the existence conditions are satisfied and ( )21,ˆ nnf  is 
obtained by (7). 

Theorem 1 states that by using wα,β, only a portion of the 
(shifted) original image can be reconstructed. The proof 
resides in the relationship between the sub-sampling matrix 
and the low-resolution images. A method to reconstruct the 
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full original image (excluding the borders) is given below: 
 

• Given A and K, find B using Eq. (5). 
• Construct H and S. 
• For all 0 ≤ α, β < Ds-1, find wα,β using Eq. (6). 
• For all α and β, find ( )21, ,ˆ nnf βα  using Eq. (7). 

• For all α and β, shift ( )21, ,ˆ nnf βα  by (-α, - β). 

• Construct ( ) ( )2121 ,,ˆ nnfnnf =  by using 
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IV. SIMULATION RESULTS 
To validate the discussion above, a number of computer 

simulations are performed on a 512x512 Lena image. The 
image is first blurred, then sub-sampled. Motion is not 
considered (note that motion is not necessary as long as the 
conditions are satisfied). Blurring and sub-sampling of the 
original image is repeated several times to obtain a number of 
low-resolution images. The parameters of the blur functions 
are chosen randomly. Different simulations are performed for 
different blur kernel sizes, down-sampling factors and 
different number of low-resolution images. For each case, we 
tried to reconstruct the original image by using the method 
described in the previous section. 

 
TABLE I 

RESULTS FOR DS=3 
K A B MSE 

5 n.e
. n.a. 

8 
7 n.e

. n.a. 

5 n.e
. n.a. 

9 
7 n.e

. n.a. 

5 37 0 10 
7 73 0 
5 19 0 11 
7 37 0 
5 13 0 12 
7 25 0 

 
Some results for Ds = 3 are given in Table I. The first 

column of the table is the number of low-resolution images, 
and the second column is the blur kernel size (assumed to be 

the same for all blurs). The third column is the size of each 
restoration filter obtained by (5), and the last column is the 
mean-square error between the original image and the 
reconstructed image for the corresponding case. In the table, 
“n.e.” denotes for “non-existent”, and “n.a.” denotes for “not 
applicable”. It is demonstrated that as long as the number of 
low-resolution images exceeds the square of the down-
sampling rate (9 in this case), a set of 2-D FIR restoration 
filters can be constructed such that exact super-resolution is 
possible. From the table, it can be deduced that if the number 
of low-resolution images increases, then the minimum length 
of restoration filters for exact super-resolution decreases, as 
expected. Visual results are not necessary to be shown, 
because when the existence conditions are satisfied, exact 
reconstruction occurs, when they are not satisfied, no image 
can be constructed at all. Similar results were obtained for 
other down-sampling rates, and also when different original 
images were used. 
 

 
V. CONCLUSION 

In this work, the existence and uniqueness conditions for 
finite impulse-response restoration filters for exact image 
super-resolution in the case of pure translational motion and 
shift-invariant blur are derived. If the conditions are satisfied, 
a method for exact reconstruction is proposed. Simulation 
results demonstrate that as long as the conditions are met, 
exact super-resolution is possible even in the case of non-
existent motion. 

REFERENCES   
[1] S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image 

reconstruction - a technical overview”, IEEE Signal Processing 
Magazine, vol. 20, pp. 21-36, May 2003. 

[2] S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Advances and 
challenges in super-resolution”, International Journal of Imaging 
Systems and Technology, vol. 14, pp. 47-57, 2004. 

[3] Special issue on high resolution image reconstruction, International 
Journal of Imaging Systems and Technology, vol. 14, 2004. 

[4] Special issue on super-resolution imaging: analysis, algorithms, and 
applications, EURASIP Journal on Applied Signal Processing, 2006. 

[5] M. Elad and Y. Hel-Or, “A fast super-resolution reconstruction 
algorithm for pure translational motion and common space-invariant 
blur”, IEEE Trans. on Image Processing, vol. 10, pp. 1187-1193, Mar. 
1999. 

[6] F. Kara and C. Vural, “Blind image resolution enhancement based on a 
2D constant modulus algorithm”, Inverse Problems, vol. 24, doi: 
10.1088/0266-5611/24/ 015010, Feb. 2008. 

[7] M. Elad and A. Feuer, “Restoration of a single superresolution image 
from several blurred, noisy, and undersampled measured images”, IEEE 
Trans. on Image Processing, vol. 6, pp. 1646-1658, Dec. 1997. 

[8] G. B. Giannakis and R. W. Heath, Jr., “Blind identification of 
multichannel FIR blurs and perfect image restoration”, IEEE Trans. on 
Image Processing, vol. 9, pp. 1877-1896, Nov. 2000. 

 


