
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

891

Abstract—We present a hybrid architecture of recurrent neural

networks (RNNs) inspired by hidden Markov models (HMMs). We
train the hybrid architecture using genetic algorithms to learn and
represent dynamical systems. We train the hybrid architecture on a
set of deterministic finite-state automata strings and observe the
generalization performance of the hybrid architecture when presented
with a new set of strings which were not present in the training data
set. In this way, we show that the hybrid system of HMM and RNN
can learn and represent deterministic finite-state automata. We ran
experiments with different sets of population sizes in the genetic
algorithm; we also ran experiments to find out which weight
initializations were best for training the hybrid architecture. The
results show that the hybrid architecture of recurrent neural networks
inspired by hidden Markov models can train and represent dynamical
systems. The best training and generalization performance is
achieved when the hybrid architecture is initialized with random real
weight values of range -15 to 15.

Keywords—Deterministic finite-state automata, genetic
algorithm, hidden Markov models, hybrid systems and recurrent
neural networks.

I. INTRODUCTION
ECURRENT neural networks have been an important
focus of research as they can be applied to difficult

problems involving time-varying patterns. Their applications
range from speech recognition and financial prediction to
gesture recognition [1]-[3]. They have the ability to provide
good generalization performance on unseen data but are
difficult to train. Hidden Markov models, on the other hand,
have also been applied to solve difficult real world problems
[4],[5]; for decades, they have been very popular in areas of
speech recognition [6]. Training hidden Markov models is
easy but their generalization performance may not perform

Manuscript received August 31st 2006. This work was supported in part

while the first author was a student at the University of the South Pacific. The
authors thank the Faculty of Science and Technology of the University of the
South Pacific for funding the research for this paper. The first author also
thanks the University of Fiji for showing their interest in the research work.

R. Chandra is currently a postgraduate research student working in the
field of machine learning and pattern recognition at the School of Science and
Technology, The University of Fiji, Lautoka, Fiji Islands. (phone: 00679-
9307666; e-mail: rohitashc@unifiji.ac.fj).

C. W. Omlin is a professor in computing science at the School of
Computing, Information and Mathematical Science, University of the South
Pacific, Suva, Fiji Islands (e-mail: omlin_c@usp.ac.fj).

satisfactorily when compared to the performance of recurrent
neural networks.

The structural similarities between hidden Markov models
and recurrent neural networks is the basis for mapping HMMs
into RNNs. The recurrence equation in the recurrent neural
network resembles the equation in the forward algorithm in
the hidden Markov models [7]. The combination of the two
paradigms into a hybrid system may provide better
generalization and training performance which would be a
useful contribution to the field of machine learning and
pattern recognition ; in this paper, however we are only going
to show that the hybrid system of RNN/HMM can learn and
represent deterministic finite-state automata. We will show
that the hybrid system may obtain better generalization or
training performance in future research studies.

Evolutionary training methods like genetic algorithms have
been popular for training neural networks other than gradient
decent learning [8]. It has been observed that genetic
algorithms overcome the problem of local minima whereas in
gradient descent search for the optimal solution, it may be
difficult to drive the network out of the local minima which in
turn prove costly in terms of training time. Evolutionary
neural learning has been successfully applied to many real
world problems (e.g. [9]). In the neural network training
process, genetic algorithms are used to optimize the weights
which represent the knowledge learnt in the training process.
Usually, the crossover and the mutation operators are altered
in genetic algorithms to represent real numbered weight
values of the network. In this paper, we are going to show
how genetic algorithms can be applied to training hybrid
systems of hidden Markov models and recurrent neural
networks.

Recurrent neural networks are dynamical systems and it has
shown been that they can represent deterministic finite-state
automata in their internal weight representations [10]. In this
paper we are also going to show that deterministic finite-state
automata can be also be trained and represented by hybrid
system of RNN / HMM.

II. DEFINITIONS AND METHODS
A. Recurrent Neural Networks
Recurrent neural networks contain feedback connections.

They are composed of an input layer, a context layer which
provides state information, a hidden layer and an output layer.

Rohitash Chandra, and Christian W. Omlin

Evolutionary Training of Hybrid Systems of
Recurrent Neural Networks and Hidden Markov

Models

R

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

892

Each layer contains one or more processing units called
neurons which propagate information from one layer to the
next by computing a non-linear function of their weighted
sum of inputs. Recurrent neural networks maintain
information about their past states for the computation of
future states and outputs. They are nonlinear dynamical
systems and it has been previously shown that RNN’s can
represent DFA states [10]. Popular architectures of recurrent
neural networks include first-order recurrent networks [11],
second-order recurrent networks [12], NARX networks [13]
and LSTM recurrent networks [14]. A detailed study about the
vast variety of recurrent neural networks is beyond the scope
of this paper. We will map hidden Markov models into first –
order recurrent neural networks and show that the hybrid
architecture can learn deterministic finite-state automata. Fig.
1 is a diagram for first order recurrent neural networks
showing the recurrence from the hidden to the context layer.

Fig. 1 Recurrent neural network architecture

B. Hidden Markov Models
In a first order Markov model, the state at time t+1 depends

only on state at time t, regardless of the states in the previous
times [15]. Fig. 2 shows an example of a Markov model
containing three states in a stochastic automaton. Пi is the
probability that the system will start in state Si and aij is the
probability that the system will move from state Si to state Sj.

1 2

3

П
1 П

2

П
3

a13

a11

a21

a12

Fig. 2 A Markov model

A hidden Markov model (HMM) describes a process which
goes through a finite number of non-observable states whilst

generating a signal of either discrete or continuous in nature.
The model probabilistically links the observed signal to the
state transitions in the system. The theory provides a means by
which:

• the probability P(O|λ) can be calculated for a HMM
with parameter set λ, generating a particular
observation sequence O, through what is called the
Forward algorithm.

• the most likely state sequence the system went

through in generating the observed signal through the
Viterbi algorithm.

• a set of re-estimation for iteratively updating the

HMM parameters given an observation sequence as
training data. These formulas strive to maximize the
probability of the sequence being generated by the
model. The algorithm is known as the Baum-Welch
of Forward- backward procedure.

The term “hidden” hints at the process’ state transition

sequence which is hidden from the observer. The process
reveals itself to the observer only through the generated
observable signal. A HMM is parameterized through a matrix
of transition probabilities between states and output
probability distributions for observed signal frames given the
internal process state. The probabilities are used in the
mentioned algorithm for achieving the desired results.

C. Finite-State Automata as Test Beds for Training
A finite-state automaton is a device that can be in one of a
finite number of states. In certain conditions, it can switch to
another state; this is called a transition. When the automaton
starts processing input, it can be in one of its initial states.
There is also another important subset of states of the
automaton: the final states. If the automaton is in a final state
after processing an input sequence, it is said to accept its
input. Finite-state automata are used as test beds for training
recurrent neural networks. Presumably, strings used for
training do not need to undergo any feature extraction. They
are used to show that recurrent neural networks can represent
dynamical systems.

D. Deterministic Finite-State Automata
A language is a set of strings over a finite alphabet

{ }1 2 | |, ,,σ σ σ ∑∑ = . The length of a string ω will be

denoted |ω|. A deterministic finite-state automata (DFA) is
defined as a 5-tuple M = (Q, ∑, δ, q1 ,F), where Q is a finite
number of states, ∑ is the input alphabet, δ is the next state
function δ : Q × ∑ →Q which defines which state q’ = δ(q,σ)
is reached by an automaton after reading symbol σ when in
state q, q1 Є Q is the initial state of the automaton (before
reading any string) and F ⊆ Q is the set of accepting states of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

893

the automaton. The language L(M) accepted by the automaton
contains all the strings that bring the automaton to an
accepting state. The languages accepted by DFAs are called
regular languages. Fig. 3 shows the DFA which will be used
for training the hybrid system of RNN and HMM. State 1 is
the automaton’s start state; accepting states are drawn with
double circles.

Fig. 3 Deterministic finite-state automata

E. Evolutionary Training of Recurrent Neural Networks
Recurrent neural networks have been trained by

evolutionary computation methods such as genetic algorithms
which optimize the weights in the network architecture for a
particular problem. Compared to gradient descent learning,
genetic algorithms can help the network to escape from the
local minima. Genetic algorithms rely on the reproduction
heuristic of crossover operator which forms offspring’s by
recombining representational components of two members of
the population without regard to their content [16]. This
approach of creating population members assumes that
components of all parent representations may be freely
exchanged without altering the search process. Usually, the
crossover and mutation operators are altered in genetic
algorithm for training neural networks; this is done to
represent the real number values of the weights in the
network.

F. Mapping Hidden Markov Models into Recurrent Neural
Networks

As stated earlier, the structural similarities of hidden
Markov models and recurrent neural networks form the basis
for combining the two paradigms in a hybrid architecture.
Why is it a good idea? Most often, first order HMMs are
deployed in practice which means that state transition
probabilities are dependent only on the previous state. This
assumption is unrealistic for many real world applications of
HMMs. It has been shown that RNNs can learn higher-order
dependencies from training data [17]. Furthermore, the
number of states in the HMM needs to be fixed beforehand for
a particular application. In the past, artificial neural networks
have been pruned or extended during training to achieve

higher discriminative and training performance [18]. The
theory on RNNs and HMMs suggest that the combination of
the two paradigms may provide better generalization and
training performance. The hybrid system may also have the
capability of learning higher order dependencies. In the hybrid
system, there may not be any requirements of fixing the
number of states for HMM prior to training in a real world
application. Next we will study the structural similarities of
the two paradigms and design a hybrid architecture.

Consider the equation of the forward algorithm for the
calculation of P(O|λ) in “equation (1)”.

()1 1
N

t t t
j i ij j

i

a b O j Nα α −⎛ ⎞= ≤ ≤⎜ ⎟
⎝ ⎠
∑ (1)

where N is the number of hidden states in the HMM, ija is the

probability of making a transition from state i to j and

()t
jb O is the probability of generating symbol tO when in

state i. The calculation in “equation (2)” is inherently
recurrent and bares resemblance to the recursion of RNN
shown in Fig. 1.

1 1
N

t t
j i ij

i

x f x w i N−⎛ ⎞
= ≤ ≤⎜ ⎟

⎝ ⎠
∑ (2)

where f() is a non-linearity as sigmoid, N the number of
hidden neurons and wij the weights connecting the neurons
with each other and with the input nodes.

∑

∑

∏

∏

∑

P(O|λ)

Output
Layer

Hidden
Layer

Input
layer

Context
layer

O t

αj
t

bj (O t)

netj
t

netj
t

αj
t

bj (O t)aij

Z-1

Fig. 4 The hybrid recurrent neural network architecture inspired

by hidden Markov models

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

894

Fig. 4 shows how HMM is mapped into the RNN by tying
the output of the HMM, P(O|λ) together by means of a
trainable weight leading to an output layer.

The output of the Gaussian function solely depends on the
two input parameters which are the mean and the variance.
These are parameters that observe the sequence of the input
data in the hybrid architecture which may be DFA strings or
data from any real-world time series. These parameters will
also be represented in the chromosomes together with the
weights and biases and will be trained by genetic algorithm.
We used a univariate Gaussian for one dimensional input of
DFA training strings. For real world applications where
multiple dimensions are involved, multivariate Gaussian
function would be used instead. The univariate Gaussian
function used in this hybrid architecture is given by “equation
(3)”.

() ()2

2

1 1e x p 22

t
it

i
ii

O
b O

μ

σπ σ

⎡ ⎤−
⎢ ⎥= −
⎢ ⎥
⎣ ⎦

 (3)

where ()t

ib O is the Gaussian function, tO is the observation at

time t, μ is the mean and 2
iσ is the variance. The

observation sequences for training a DFA are the DFA strings
which are the inputs to the hybrid architecture.

G. Evolutionary Training of the Hybrid System
In the hybrid system of hidden Markov models and

recurrent neural networks, the neurons in the hidden layer
compute the weighted sum of their inputs only without further
computing the nonlinear sigmoidal function of the output. The
outputs of the corresponding neurons in the hidden layer are
further multiplied with the output of the corresponding
Gaussian function. The product of the neuron and the output
of the Gaussian function are then propagated from the hidden
layer to the output layer as shown in Fig. 4.

We altered the crossover and mutation operators in genetic
algorithms so that the genes could represent real numbered
weight values in the hybrid architecture. Prior to the training
process, a population size is defined and then the algorithm
randomly chooses two parent chromosomes; they are
combined into a child chromosome using the crossover
operator. The child chromosome is further mutated according
to a mutation probability. The mutation operator adds a small
real random number to a random gene in the child
chromosome. The child chromosome then becomes part of the
new generation. A chromosome represents the weights, biases,
mean and variance as parameters of the hybrid system of
HMM and RNN. The fitness function computes the reciprocal
of the squared error for each chromosome; thus, genetic
algorithm is used for reducing the squared error. The
chromosome with the least squared error from the hybrid
architecture then slowly begins to affect the entire population
until a solution is reached. Evolutionary computation such as
genetic algorithm thus finds the best chromosomes

representing the weights, biases and other parameters of the
hybrid system.

H. Experimentation
We generated a training set of strings from the DFA shown

in Fig. 2 consisting of all strings of lengths 1-10 and a testing
set of 1-15. We ran experiments of the evolutionary processes
of training genetic algorithms with population sizes of 60, 80
and 100 chromosomes. We used the crossover operator
probability as 0.7 and mutation probability as 0.01. We used
different weight initialization ranges to observe which weight
initialization ranges are best for training the hybrid
architecture. We used a training bound of 50 generations; if
the hybrid system could be trained within 50 generations, we
stopped. We ran two major experiments as follows:

Experiment 1: We trained all the parameters of the hybrid
architecture, i.e. the weights connecting input to hidden layer,
weights connecting hidden to output layer and weights
connecting the context to hidden layer. We also trained the
bias weights and the mean and the variance as parameters of
the univariate Gaussian function along the hidden layer. The
network topology used for this experiment was as follows: we
used one neuron in the input layer for string input, 5 neurons
in the context and hidden layer and one output neuron in the
output layer.

Experiment 2: We trained only the weights connecting the
context layer to the hidden layer and used a constant value of
1 for the weights that connected the input layer to the hidden
layer and those weights that connected the hidden to the
output layer. We did not train the latter weights to investigate
if deterministic finite-state automata can be represented by the
context and hidden weight layers alone. We trained the mean
and variance as parameters of the univariate Gaussian function
in the hidden layer. The network topology used for this
experiment is as follows: we used one neuron in the input
layer for string input, 10 neurons in the context and hidden
layer and one output neuron in the output layer. The results of
these experiments are shown in the following section.

III. RESULTS AND DISCUSSION
The results for both experiments show that evolutionary

training for hybrid system of RNN and HMM can be difficult
if the weights, biases, and parameters of the Gaussian are
initialized with random real number values from -1 to 1. Both
experiments reveal that deterministic finite-state can be
learned and be represented by the hybrid system of HMM and
RNN. Table I shows the results for experiment 1, where all
parameters in the hybrid system are trained.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

895

TABLE I
RESULTS FOR EXPERIMENT 1

Population
size

Weight
range

Training
performance

Generalization
performance

training
time

60 -1 to 1 0.05% 0.05% max
80 -1 to 1 0.05% 0.05% max

100 -1 to 1 0.05% 0.05% max
60 -3 to 3 100% 100% 3
80 -3 to 3 100% 100% 2

100 -3 to 3 100% 100% 2
60 -15to 15 100% 100% 2
80 -15to 15 100% 100% 2

100 -15to 15 100% 100% 2
60 -30 to 30 100% 100% 2
80 -30 to 30 100% 100% 2

100 -30 to 30 100% 100% 2

The training and generalization performance show the percentage of strings
correctly classified by the hybrid system of HMM and RNN. The training time
is given by ‘generations’. The maximum training time used was 50
generations which is denoted by the word ‘max’ in the table.

It can be seen from Table I that deterministic finite-state
automata can be trained and represented by the hybrid
architecture; the results show 100% training and
generalization performance. There is no significant difference
for different population sizes. The best weight value
initializations for faster training performance are real weight
values within a range of -15 to 15. Other weight initializations
also show satisfactorily performance except for small random
values for weight initializations.

TABLE II
RESULTS FOR EXPERIMENT 2

The training and generalization performance show the percentage of strings
correctly classified by the hybrid system of HMM and RNN. The training time
is given by ‘generations’. The maximum training time used was 50
generations which is denoted by the word ‘max’ in the table.

Table II shows the results for experiment 2 which reveal
that deterministic finite-state can be represented by only
training the context weights and Gaussian parameters of the
hybrid architecture. The experiment shows a 100% training
and generalization performance. The system does not perform
satisfactorily when initialized with small random weights.

IV. CONCLUSION
We have successfully mapped hidden Markov models into

recurrent neural networks. The structural similarities between
hidden Markov models and recurrent neural networks have
been the basis for the successful mapping in the hybrid
architecture. We have used genetic algorithms to train the
hybrid system of hidden Markov models and recurrent neural
networks. We altered the crossover and mutation operators in
genetic algorithms to represent real numbered weight values
of the hybrid architecture. We used genetic algorithms to train
the parameters in the hybrid architecture which were the
weights, biases, the mean and the variance of the univariate
Gaussian function. We used deterministic finite state automata
for training to show that the hybrid architecture can represent
dynamical systems. We ran two major experiments which
show that deterministic finite automata can be trained and
represented by hybrid systems of HMM and RNN. Both
experiments had a difficulty in training when initialized with
small random weight values. It is shown that the hybrid
architecture can train and represent dynamical systems with
one dimensional input. In the future, we will investigate if
successful training can be done for real world application
problems where the data sets are multi-dimensional.

REFERENCES
[1] A.J Robinson, An application of recurrent nets to phone probability

estimation, IEEE transactions on Neural Networks, vol.5, no.2 , 1994,
pp. 298-305.

[2] C.L. Giles, S. Lawrence and A.C. Tsoi, Rule inference for financial
prediction using recurrent neural networks, Proc. of the IEEE/IAFE
Computational Intelligence for Financial Engineering, New York City,
USA, 1997, pp. 253-259

[3] K. Marakami and H Taguchi, Gesture recognition using recurrent neural
networks, Proc. of the SIGCHI conference on Human factors in
computing systems: Reaching through technology, Louisiana, USA,
1991, pp. 237-242.

[4] T. Kobayashi, S. Haruyama, Partly-Hidden Markov Model and its
Application to Gesture Recognition, Proc. of IEEE International
Conference on Acoustics, Speech, and Signal Processing , vol. 4, 1997,
pp.3081.

[5] P.A Stoll, J. Ohya, Applications of HMM modeling to recognizing
human gestures in image sequences for a man-machine interface, Proc.
of the 4th IEEE International Workshop on Robot and Human
Communication, Tokyo, 1995, pp. 129-134.

[6] M. J. F. Gales, Maximum likelihood linear transformations for HMM-
based speech recognition, Computer Speech and Language, vol. 12,
1998, pp. 75-98.

[7] T. Wessels, C.W. Omlin, Refining Hidden Markov Models with
Recurrent Neural Networks, Proc. of the IEEE-INNS-ENNS
International Joint Conference on Neural Networks, vol. 2, 2000, pp.
2271.

[8] Kim Wing C. Ku, Man Wai Mak, and Wan Chi Siu. Adding learning to
cellular genetic algorithms for training recurrent neural networks. IEEE
Transactions on Neural Networks, vol. 10, no.2, 1999, pp. 239-252.

[9] Abbass Hussein, An evolutionary artificial neural network approach for
breast cancer diagnosis. Artificial Intelligence in Medicine, vol. 25, no.
3, 2002, pp.265-281.

[10] Lee Giles, C.W Omlin and K. Thornber, Equivalence in Knowledge
Representation: Automata, Recurrent Neural Networks, and dynamical
Systems, Proc. of the IEEE, vol. 87, no. 9, 1999, pp.1623-1640

[11] P. Manolios and R. Fanelli, First order recurrent neural networks and
deterministic finite state automata. Neural Computation, vol. 6, no. 6,
1994, pp.1154-1172.

Population
size

Weight
range

Training
performance

Generalization
performance

training
time

60 -1 to 1 0.05% 0.05% max
80 -1 to 1 0.05% 0.05% max
100 -1 to 1 0.05% 0.05% max
60 -3 to 3 100% 100% 2
80 -3 to 3 100% 100% 5
100 -3 to 3 100% 100% 2
60 -15to 15 100% 100% 2
80 -15to 15 100% 100% 2
100 -15to 15 100% 100% 2
60 -30 to 30 100% 100% 3
80 -30 to 30 100% 100% 2
100 -30 to 30 100% 100% 8

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

896

[12] R. L. Watrous and G. M. Kuhn, Induction of finite-state languages using
second-order recurrent networks, Proc. of Advances in Neural
Information Systems, California, USA, 1992, pp. 309-316.

[13] T. Lin, B.G. Horne, P. Tino, & C.L. Giles, Learning long-term
dependencies in NARX recurrent neural networks. IEEE Transactions
on Neural Networks, vol. 7, no. 6, 1996, pp. 1329-1338.

[14] S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural
Computation, vol. 9, no. 8, 1997, pp. 1735-1780.

[15] E. Alpaydin, Introduction to Machine Learning, The MIT Press,
London, 2004, pp. 306-311.

[16] P. J. Angeline, G. M. Sauders, and J. B. Pollack, An evolutionary
algorithm that constructs recurrent neural networks, IEEE Trans. Neural
Networks, vol. 5, 1994, pp. 54-65.

[17] Y. Bengio, Neural Networks for Speech and Sequence Recognition.
London UK, International Thompson Computer Press, 1996.

[18] Y. LeCun, J. Denker and S. Solla, Optimal Brain Damage, Advances in
Neural Information Processing Systems 2, Morgan Kaufman Publishers,
San Mateo, CA, 1990.

