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Abstract—Recently, genetic algorithms (GA) and particle swarm 

optimization (PSO) technique have attracted considerable attention 
among various modern heuristic optimization techniques. The GA 
has been popular in academia and the industry mainly because of its 
intuitiveness, ease of implementation, and the ability to effectively 
solve highly non-linear, mixed integer optimization problems that are 
typical of complex engineering systems. PSO technique is a relatively 
recent heuristic search method whose mechanics are inspired by the 
swarming or collaborative behavior of biological populations. In this 
paper both PSO and GA optimization are employed for finding stable 
reduced order models of single-input- single-output large-scale linear 
systems. Both the techniques guarantee stability of reduced order 
model if the original high order model is stable. PSO method is based 
on the minimization of the Integral Squared Error (ISE) between the 
transient responses of original higher order model and the reduced 
order model pertaining to a unit step input. Both the methods are 
illustrated through numerical example from literature and the results 
are compared with recently published conventional model reduction 
technique. 

 
Keywords—Genetic Algorithm, Particle Swarm Optimization, 

Order Reduction, Stability, Transfer Function, Integral Squared 
Error. 

I. INTRODUCTION 

HE exact analysis of high order systems (HOS) is both 
tedious and costly as HOS are often too complicated to be 

used in real problems. Hence simplification procedures based 
on physical considerations or using mathematical approaches 
are generally employed to realize simple models for the 
original HOS. The problem of reducing a high order system to 
its lower order system is considered important in analysis, 
synthesis and simulation of practical systems. Bosley and Lees 
[1] and others have proposed a method of reduction based on 
the fitting of the time moments of the system and its reduced 
model, but these methods have a serious disadvantage that the 
 

 
S. Panda is working as Professor in the Department of Electrical and 

Electronics Engineering, National Institute of Science and Technology, 
Berhampur, Orissa, INDIA. (e-mail: panda_sidhartha@rediffmail.com ). 

J.S.Yadav is working as Assistant Professor in Electronics and 
Communication Engg. Department, MANIT Bhopal, India (e-mail: 
jsy1@rediffmail.com) 

aculty N.P.patidar is working as a Senior Lecturer in Electrical 
Engineering Department, MANIT, Bhopal, India. (e-mail: 
nppatidar@yahoo.com) 

C. Ardil is with National Academy of Aviation, AZ1045, Baku, 
Azerbaijan, Bina, 25th km, NAA (e-mail: cemalardil@gmail.com). 
 

reduced order model may be unstable even though the original 
high order system is stable. 

To overcome the stability problem, Hutton and Friedland 
[2], Appiah [3] and Chen et. al. [4] gave different methods, 
called stability based reduction methods which make use of 
some stability criterion. Other approaches in this direction 
include the methods such as Shamash [5] and Gutman et. al. 
[6]. These methods do not make use of any stability criterion 
but always lead to the stable reduced order models for stable 
systems. 

Some combined methods are also given for example 
Shamash [7], Chen et. al. [8] and Wan [9]. In these methods 
the denominator of the reduced order model is derived by 
some stability criterion method while the numerator of the 
reduced model is obtained by some other methods [6, 8, 10]. 

In recent years, one of the most promising research fields 
has been “Evolutionary Techniques”, an area utilizing 
analogies with nature or social systems. Evolutionary 
techniques are finding popularity within research community 
as design tools and problem solvers because of their versatility 
and ability to optimize in complex multimodal search spaces 
applied to non-differentiable objective functions. Recently, 
Genetic Algorithm (GA) and Particle Swarm Optimization 
(PSO) techniques appeared as a promising algorithm for 
handling the optimization problems. GA can be viewed as a 
general-purpose search method, an optimization method, or a 
learning mechanism, based loosely on Darwinian principles of 
biological evolution, reproduction and ‘‘the survival of the 
fittest’’ [11]. GA maintains a set of candidate solutions called 
population and repeatedly modifies them. At each step, the 
GA selects individuals from the current population to be 
parents and uses them to produce the children for the next 
generation. In general, the fittest individuals of any population 
tend to reproduce and survive to the next generation, thus 
improving successive generations. However, inferior 
individuals can, by chance, survive and also reproduce. GA is 
well suited to and has been extensively applied to solve 
complex design optimization problems because it can handle 
both discrete and continuous variables, non-linear objective 
and constrain functions without requiring gradient information 
[12–16]. 

PSO is inspired by the ability of flocks of birds, schools of 
fish, and herds of animals to adapt to their environment, find 
rich sources of food, and avoid predators by implementing an 
information sharing approach. PSO technique was invented in 
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the mid 1990s while attempting to simulate the 
choreographed, graceful motion of swarms of birds as part of a 
sociocognitive study investigating the notion of collective 
intelligence in biological populations [17]. In PSO, a set of 
randomly generated solutions propagates in the design space 
towards the optimal solution over a number of iterations based 
on large amount of information about the design space that is 
assimilated and shared by all members of the swarm [12, 18-
20]. Both GA and PSO are similar in the sense that these two 
techniques are population-based search methods and they 
search for the optimal solution by updating generations. Since 
the two approaches are supposed to find a solution to a given 
objective function but employ different strategies and 
computational effort, it is appropriate to compare their 
performance. 

In this paper, two evolutionary methods for order reduction 
of large scale linear systems are presented. In both the 
methods, evolutionary optimization techniques are employed 
for the order reduction where both the numerator and 
denominator coefficients of ROM by minimizing an Integral 
Squared Error (ISE) criterion. The obtained results are 
compared with a recently published conventional method to 
show their superiority. 

II. STATEMENT OF THE PROBLEM 

The Let the thn order system and its reduced model 
( nr < ) be given by the transfer functions: 
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where ia , jb , id , je , are scalar constants.  

The objective is to find a reduced thr order reduced model 
)(sR  such that it retains the important properties of )(sG for 

the same types of inputs. 

III. OVERVIEW OF GENETIC ALGORITHM (GA) 

Genetic algorithm (GA) has been used to solve difficult 
engineering problems that are complex and difficult to solve 
by conventional optimization methods. GA maintains and 
manipulates a population of solutions and implements a 
survival of the fittest  strategy in their search for better 
solutions. The fittest individuals of any population tend to 
reproduce and survive to the next generation thus improving 

successive generations. The inferior individuals can also 
survive and reproduce. 

Implementation of GA requires the determination of six 
fundamental issues: chromosome representation, selection 
function, the genetic operators, initialization, termination and 
evaluation function. Brief descriptions about these issues are 
provided in the following sections. 

A. Chromosome representation   

Chromosome representation scheme determines how the 
problem is structured in the GA and also determines the 
genetic operators that are used. Each individual or 
chromosome is made up of a sequence of genes. Various types 
of representations of an individual or chromosome are: binary 
digits, floating point numbers, integers, real values, matrices, 
etc. Generally natural representations are more efficient and 
produce better solutions. Real-coded representation is more 
efficient in terms of CPU time and offers higher precision with 
more consistent results. 

B. Selection function   

To produce successive generations, selection of individuals 
plays a very significant role in a genetic algorithm. The 
selection function determines which of the individuals will 
survive and move on to the next generation. A probabilistic 
selection is performed based upon the individual’s fitness such 
that the superior individuals have more chance of being 
selected. There are several schemes for the selection process: 
roulette wheel selection and its extensions, scaling techniques, 
tournament, normal geometric, elitist models and ranking 
methods. 

The selection approach assigns a probability of selection Pj 
to each individuals based on its fitness value. In the present 
study, normalized geometric selection function has been used. 
In normalized geometric ranking, the probability of selecting 
an individual Pi is defined as: 

 
( ) 1' 1 −−= rqqPi                    (3) 
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'
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where,  
q = probability of selecting the best individual 

r  = rank of the individual (with best equals 1) 

P = population size 

C. Genetic operators 

The basic search mechanism of the GA is provided by the 
genetic operators. There are two basic types of operators: 
crossover and mutation. These operators are used to produce 
new solutions based on existing solutions in the population. 
Crossover takes two individuals to be parents and produces 
two new individuals while mutation alters one individual to 
produce a single new solution. The following genetic 
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operators are usually employed: simple crossover, arithmetic 
crossover and heuristic crossover as crossover operator and 
uniform mutation, non-uniform mutation, multi-non-uniform 
mutation, boundary mutation as mutation operator. Arithmetic 
crossover and non-uniform mutation are employed in the 
present study as genetic operators. Crossover generates a 
random number r  from a uniform distribution from 1 to m and 
creates two new individuals by using equations: 
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Arithmetic crossover produces two complimentary linear 

combinations of the parents, where r = U (0, 1): 
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Non-uniform mutation randomly selects one variable j and 
sets it equal to an non-uniform random number. 
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b
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r1, r2 = uniform random nos. between 0 to 1. 

G = current generation. 

Gmax = maximum no. of generations. 

b = shape parameter.  

D. Initialization, termination and evaluation function 

An initial population is needed to start the genetic algorithm 
procedure.  The initial population can be randomly generated 
or can be taken from other methods. 

The GA moves from generation to generation until a 
stopping criterion is met. The stopping criterion could be 
maximum number of generations, population convergence 
criteria, lack of improvement in the best solution over a 
specified number of generations or target value for the 
objective function. 
Evaluation functions or objective functions of many forms can 
be used in a GA so that the function can map the population 
into a partially ordered set. The computational flowchart of the 
GA optimization process employed in the present study is 
given in Fig. 1. 

Start

Specify the parameters for GA

Generate initial  population

Find the fitness of each individual
in the current population

Gen. > Max. Gen.? Stop

Apply GA operators:
selection,crossover and mutation

Gen.=1

Gen.=Gen.+1
Yes

No

 
Fig. 1. Flowchart of genetic algorithm 

IV. PARTICLE SWARM OPTIMIZATION METHOD  

 In conventional mathematical optimization techniques, 
problem formulation must satisfy mathematical restrictions 
with advanced computer algorithm requirement, and may 
suffer from numerical problems. Further, in a complex system 
consisting of number of controllers, the optimization of 
several controller parameters using the conventional 
optimization is very complicated process and sometimes gets 
struck at local minima resulting in sub-optimal controller 
parameters. In recent years, one of the most promising 
research field has been “Heuristics from Nature”, an area 
utilizing analogies with nature or social systems. Application 
of these heuristic optimization methods a) may find a global 
optimum, b) can produce a number of alternative solutions, c) 
no mathematical restrictions on the problem formulation, d) 
relatively easy to implement and e) numerically robust. 
Several modern heuristic tools have evolved in the last two 
decades that facilitates solving optimization problems that 
were previously difficult or impossible to solve. These tools 
include evolutionary computation, simulated annealing, tabu 
search, genetic algorithm, particle swarm optimization, etc. 
Among these heuristic techniques, Genetic Algorithm (GA) 
and Particle Swarm Optimization (PSO) techniques appeared 
as promising algorithms for handling the optimization 
problems. These techniques are finding popularity within 
research community as design tools and problem solvers 
because of their versatility and ability to optimize in complex 
multimodal search spaces applied to non-differentiable 
objective functions. 

The PSO method is a member of wide category of swarm 
intelligence methods for solving the optimization problems. It 
is a population based search algorithm where each individual 
is referred to as particle and represents a candidate solution. 
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Each particle in PSO flies through the search space with an 
adaptable velocity that is dynamically modified according to 
its own flying experience and also to the flying experience of 
the other particles. In PSO each particles strive to improve 
themselves by imitating traits from their successful peers. 
Further, each particle has a memory and hence it is capable of 
remembering the best position in the search space ever visited 
by it. The position corresponding to the best fitness is known 
as pbest and the overall best out of all the particles in the 
population is called gbest [12]. 

The modified velocity and position of each particle can be 
calculated using the current velocity and the distances from 
the pbestj,g to gbestg as shown in the following formulas 
[12,17-20]: 

 

)(*)(*

)(*)(**

)(
,22

)(
,,11

)(
,

)1(
,

t
gjg

t
gjgj

t
gj

t
gj

xgbestrc

xpbestrcvwv

−+

−+=+

 (11) 

)1(
,

)(
,

)1(
,

++ += t
gj

t
gj

t
gj vxx                       (12) 

 With nj ,...,2,1=   and mg ,...,2,1=  

Where, 

 n = number of particles in the swarm 

 m  = number of components for the vectors vj and xj  

 t  = number of iterations (generations) 

    )(
,
t
gjv = the g-th component of the velocity of particle j at 

iteration t  , max)(
,

min
g

t
gjg vvv ≤≤ ; 

 w  = inertia weight factor 

     21, cc = cognitive and social acceleration factors 

respectively 

21, rr = random numbers uniformly distributed in the 

range (0, 1) 

)(
,
t
gjx  = the g-th component of the position of particle j at 

iteration t 
 jpbest  = pbest of particle j 

 gbest  = gbest of the group 

 
The j-th particle in the swarm is represented by a d-

dimensional vector xj = (xj,1, xj,2, ……,xj,d) and its rate of 
position change (velocity) is denoted by another d-
dimensional vector vj = (vj,1, vj,2, ……, vj,d). The best previous 
position of the j-th particle is represented as pbestj =(pbestj,1, 
pbestj,2, ……, pbestj,d). The index of best particle among all of 
the particles in the swarm is represented by the gbestg. In PSO, 
each particle moves in the search space with a velocity 
according to its own previous best solution and its group’s 

previous best solution. The velocity update in a PSO consists 
of three parts; namely momentum, cognitive and social parts. 
The balance among these parts determines the performance of 
a PSO algorithm. The parameters c1 and c2 determine the 
relative pull of pbest and gbest and the parameters r1 and r2 
help in stochastically varying these pulls. In the above 
equations, superscripts denote the iteration number. Fig.2. 
shows the velocity and position updates of a particle for a two-
dimensional parameter space. The computational flow chart of 
PSO algorithm employed in the present study for the model 
reduction is shown in Fig. 3. 
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Fig. 2. Description of velocity and position updates in particle swarm 
optimization for a two dimensional parameter space 
 
 
 

Start

Specify the parameters for PSO

Generate initial  population

Find the fitness of each particle
in the current population

Gen. > max Gen ? Stop

Update the particle position and
velocity using Eqns. (19) and (20)

Gen.=1

Gen.=Gen.+1
Yes

No

 
 

Fig. 3. Flowchart of PSO for order reduction 
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V. NUMERICAL EXAMPLES 

Let us consider the system described by the transfer 
function described by transfer function [21, 22]: 

)4s)(3s)(2s)(1s(
24s24s7s)s(G

23

++++
+++

=                  (13) 

For which a second order reduced model )(2 sR is desired. 

A. Application of PSO and GA 

While applying PSO and GA, a number of parameters are 
required to be specified. An appropriate choice of the 
parameters affects the speed of convergence of the algorithm. 

Implementation of PSO, several parameters are required to 
be specified, such as 1c and 2c  (cognitive and social 
acceleration factors, respectively), initial inertia weights, 
swarm size, and stopping criteria. These parameters should be 
selected carefully for efficient performance of PSO. The 
constants 1c and 2c  represent the weighting of the stochastic 
acceleration terms that pull each particle toward pbest and 
gbest positions. Low values allow particles to roam far from 
the target regions before being tugged back. On the other 
hand, high values result in abrupt movement toward, or past, 
target regions. Hence, the acceleration constants were often set 
to be 2.0 according to past experiences. Suitable selection of 
inertia weight, w , provides a balance between global and 
local explorations, thus requiring less iteration on average to 
find a sufficiently optimal solution. As originally developed, 
w  often decreases linearly from about 0.9 to 0.4 during a run 
[17, 18]. One more important point that more or less affects 
the optimal solution is the range for unknowns. For the very 
first execution of the program, wider solution space can be 
given, and after getting the solution, one can shorten the 
solution space nearer to the values obtained in the previous 
iterations. 

Implementation of GA normal geometric selection is 
employed which is a ranking selection function based on the 
normalized geometric distribution. Arithmetic crossover takes 
two parents and performs an interpolation along the line 
formed by the two parents. Non-uniform mutation changes 
one of the parameters of the parent based on a non-uniform 
probability distribution. This Gaussian distribution starts wide, 
and narrows to a point distribution as the current generation 
approaches the maximum generation. 

The objective function J is defined as an integral squared 
error of difference between the responses given by the 
expression: 

 

∫ −=
∞t

r dttytyJ
0
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Where  
)(ty and )(tyr  are the unit step responses of  original and 

reduced order systems. 

B. Results 

The reduced 2nd order model employing PSO technique is 
obtained as follows: 

 

8849.7s4839.11s8849.3
8849.7s9319.2)s(R 22

++

+
=           (15) 

The reduced 2nd order model employing GA technique is 
obtained as follows: 

 

989.8s8941.146076.6
989.8s2054.5)s(R 22

++

+
=               (16) 

The convergence of objective function with the number of 
generations for both PSO and GA is shown in Fig. 4. The unit 
step responses of original and reduced systems by both the 
methods are shown in Figs. 5 and 6 for PSO and GA method 
respectively. For comparison, the unit step response of a 
recently published ROM obtained by conventional Routh 
Approximation method [21] is also shown in Figs. 5 and 6.  
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Fig. 4. Flowchart of PSO for order reduction 
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Fig. 5. Step Responses of original model and ROM by PSO 
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Fig. 6. Step Responses of original model and ROM by GA 

 
It can be seen that the steady state responses of both the 
proposed reduced order models are exactly matching with that 
of the original model. Also, compared to conventional method 
of reduced models, the transient response of evolutionary 
reduced model by PSO and GA is very close to that of original 
model. 

VI. COMPARISON OF METHODS 

The performance comparison of both the proposed algorithm 
for order reduction techniques is given in Table I. The 
comparison is made by computing the error index known as 
integral square error ISE [23, 24] in between the transient 
parts of the original and reduced order model, is calculated to 
measure the goodness/quality of the [i.e. the smaller the ISE, 
the closer is )(sR to )(sG , which is given by:  

∫ −=
∞t

r dttytyISE
0

2)]()([               (17) 

Where )(ty and )(tyr  are the unit step responses of 
original and reduced order systems for a second- order 
reduced respectively. This error index is calculated for various 
reduced order models which are obtained by us and compared 
with the other well known order reduction methods available 
in the literature. 

VI.   CONCLUSION 

In this paper, two evolutionary methods for reducing a high 
order large scale linear system into a lower order system have 
been proposed. Particle swarm optimization and genetic 
algorithm methods based evolutionary optimization techniques 
are employed for the order reduction where both the 
numerator and denominator coefficients of reduced order 
model are obtained by minimizing an Integral Squared Error 
(ISE) criterion. The obtained results are compared with a 
recently published conventional method and other existing 
well known methods of model order reduction to show their 
superiority. It is clear from results presented in Table 1 that 
both the proposed methods give minimum ISE error compared 
to any other order reduction technique. 

 
TABLE I: COMPARISON OF METHODS 

 Method  Reduced model ISE 
Proposed 

evolutionary 
method: 

PSO 
8849.7s4839.11s8849.3

8849.7s9319.2
2 ++

+  
8.2316x10-5 

 

Proposed 
conventional 
method: GA 989.8s8941.146076.6

989.8s2054.5
2 ++

+  
8.6581x10-5 

 

Routh 
Approx. [21] 2ss76187.44713.4

s189762.04713.4
++

−  0.008 

Parthasarath
y et al. [25] 

 
2ss45771.16997.0

s6997.0
++

+  0.0303 

Shieh and 
Wei [26] 

 
2ss7946.53014.2

s3014.2
++

+  
0.1454 

Prasad and 
Pal [27] 

 
2ss8082.2392465.34

s2465.34
++

+  1.6885 

J Pal [28] 
 2s30s4224

s0008.1624
++

+  0.0118 
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