
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

836

Abstract—Set covering problem is a classical problem in

computer science and complexity theory. It has many applications,
such as airline crew scheduling problem, facilities location problem,
vehicle routing, assignment problem, etc. In this paper, three
different techniques are applied to solve set covering problem.
Firstly, a mathematical model of set covering problem is introduced
and solved by using optimization solver, LINGO. Secondly, the
Genetic Algorithm Toolbox available in MATLAB is used to solve
set covering problem. And lastly, an ant colony optimization method
is programmed in MATLAB programming language. Results
obtained from these methods are presented in tables. In order to
assess the performance of the techniques used in this project, the
benchmark problems available in open literature are used.

Keywords—Set covering problem, genetic algorithm, ant colony

optimization, LINGO.

I. INTRODUCTION
ET covering problem is a classical problem in computer
science and complexity theory. Set covering problem is

one of most important discrete optimization problem because
it serves as a model for real world problems. Real world
problems that can be modeled as set covering problem include
facility location problem, airline crew scheduling, nurse
scheduling problem, resource allocation, assembly line
balancing, vehicle routing, etc. Set covering problem is a
problem of covering the rows of an m-row/n-column zero-one
matrix with a subset of columns at minimal cost [1]. Set
covering problem can be formulated as follows:

1

1

 (1)

 1, 1,..., (2)

 (0,1) 1,..., (3

n

j j
j

n

ij j
j

j

Min c x

subject to a x i m

x j n

=

=

≥ =

∈ =

∑

∑
)

Equation (1) is the objective function of set covering
problem, where cj is refer to weight or cost of covering j-
column and xj is decision variable. Equation (2) is a constraint
to ensure that each row is covered by at least one column

Darwin Gouwanda is with School of Engineering, Monash University

Sunway Campus, 46150, Bandar Sunway, Malaysia (e-mail:
darwin_gouwanda@yahoo.com).

S. G. Ponnambalam is with School of Engineering, Monash University
Sunway Campus, 46150, Bandar Sunway, Malaysia (phone: +60-3-55146203;
e-mail: sgponnambalam@eng.monash.edu.my).

where aij is constraint coefficient matrix of size m x n whose
elements comprise of either ‘1’ or ‘0’. Lastly, equation (3) is
the integrality constraint in which the value is represented as
in (4).

1 if j S,
 (4)

0 otherwise,jx
∈⎧

= ⎨
⎩

Even though it may seem to be a simple problem by judging
from the objective functions and constraints of the problem,
set covering problem is a combinational optimization problem.
It has been proven to be NP-Complete decision problem [2].

A number of heuristic algorithms for set covering problem
have been reported in the literature. Beasley, as one of main
researcher in set covering problem had implemented several
algorithms in order to solve set covering problem. Beasley
presented an algorithm that combines problem reduction tests
with dual ascent, sub-gradient optimization and linear
programming. This algorithm had performed well in solving
set covering problem [2]. It was able to find feasible optimal
solutions for all set covering problem sets. In a different
literature, Beasley presented a paper which used Lagrangian
relaxation and sub-gradient optimization approach to solve set
covering problem [3]. But this method did not perform well
compared to his previous method. It was unable to find
optimal solutions for several set covering problems such as
SCP-4.4, SCP-4.6, SCP-5.1, SCP-5.2, SCP-5.7, SCP-6.1,
SCP-6.5, etc. Haddadi presented a simple Lagrangian heuristic
to solve set covering problem [4]. The method is based on
Lagrangian duality, greedy heuristic for set covering problem,
sub-gradient optimization and redundant covers. This method
had turn out to be efficient for low density set covering
problem with a large number of variables with average
deviation of 0.35%.

Beasley and Chu presented genetic algorithm for set
covering problem [5]. They presented a new crossover-fusion
operator, a variable mutation rate and a heuristic feasibility
operator to improve the performance of genetic algorithm.
This method performs well, for most of problems. Aickelin
proposed an indirect genetic algorithm [5]. The indirect
genetic algorithm comprises of three phases. In the first phase,
genetic algorithm finds good permutation of the rows to be
covered. In second phase, a decoder build a solution from the
permutations using the parameter provided. And lastly, in the
third phase, a hill-climber optimization method is used.
Indirect genetic algorithm is able to solve the set covering
problem in shorter computational time. Monfroglio proposed a
linear programming relaxation model and improvement
techniques based on simulated neural network [6]. This

Evolutionary Search Techniques to Solve Set
Covering Problems

Darwin Gouwanda, and S. G. Ponnambalam

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

837

method is able to find solutions within 0.2% of optimal
solution and increase the overall computational time. Vasko
and Wolf adapted heuristic concentration approach to solve
the weighted (non-unicost) set covering problem [7]. Their
method is able to solve set covering problem and find solution
with deviation of maximum of 3.27% from optimum solution.

In this paper, an attempt has been made to propose Genetic
Algorithm (GA) and Ant Colony Optimization (ACO)
technique and the performance of them are evaluated with an
optimization solver LINGO. Matlab GA Toolbox is used in
this paper.

II. BENCHMARK PROBLEM SETS
The benchmark problem sets are publicly available in OR-

Library [8]. The problem sets had been widely used by many
researchers to verify their methods effectiveness in solving set
covering problem. There are a total of eight problem sets
considered in this paper for evaluation. The details of these
problem sets are shown in Table I.

TABLE I

DETAILS OF BENCHMARK PROBLEM SETS

SCP-4, SCP-5 and SCP-6 are test problems produced by

using scheme of Balas and Ho [9] while problem set SCP-A,
SCP-B, SCP-C and SCP-D is randomly generated test
problems. SCP-4 and SCP-5 has 10 datasets and the rest of
problem sets i.e. SCP-6, SCP-A, SCP-B, SCP-C and SCP-D
has 5 datasets. SCP-4, SCP-5, SCP-6, SCP-A, SCP-B, SCP-C
and SCP-D are a non-unicost set covering problems. Non-
unicost set covering problem, which also called weighted set
covering problem, has various costs for each column. Density
is the total number of integer ‘1’ in the aij matrix. For
example, problem set SCP-4 has a total of 4000 ‘1’s in the aij
matrix

Conversion of Problem Set
Datasets that are downloaded from OR-Library has

information on size of aij matrix, the cost of each column,
number of column in row and list of columns that cover row.
The format of dataset is shown in Fig. 1.

Fig. 1 Format of downloaded datasets

Adjustments/ conversions made are:
1) Separating the cost of each column from dataset manually

and saving it under different file name (*.txt).
2) Arranging the columns that cover each row in one line

based on total number of columns in that row and saving it
under different file name as well (*.txt). (Please refer to
Fig. 2).

3) Converting the previous file into excel format (*.txt is
converted to *.xls)

4) Converting the columns that cover each row into zero one
matrix (aij). (Please refer to Fig. 3).

Fig. 2 Outcome of dataset arrangement

Fig. 3 Outcome of dataset conversion

III. MODELS USED TO SOLVE SET COVERING PROBLEMS

A. LINGO
One of LINGO powerful features is its mathematical

modeling language [10]. Its modeling language enables users
to express their problems in a natural manner that is very
similar to standard mathematical notation. Another powerful
feature is data section. Data section enables users to isolate
model’s data from formulation. This features offers flexibility
to users to decrease or increase the data’s size.

For set covering problem, LINGO categorizes it under PLIP
(Pure Linear Integer Program) class. It solves set covering
problem by using branch and bound manager

LINGO optimization model has following attributes:
1) Sets, which comprise of objects or variables in

programming model.
2) Objective function of problem
3) Constraints of problem
4) Input data

Therefore by referring to properties of set covering problem
which has one objective function, two sets, which are rows
and columns, two constraints and a decision variable, xj, a

Problem
Set

Problem
type

Size of aij
Matrix Density No. of

datasets

SCP-4 Non-unicost 200 x 1000 2% 10
SCP-5 Non-unicost 200 x 2000 2% 10
SCP-6 Non-unicost 200 x 1000 5% 5
SCP-A Non-unicost 300 x 3000 2% 5
SCP-B Non-unicost 300 x 3000 5% 5
SCP-C Non-unicost 400 x 4000 2% 5
SCP-D Non-unicost 400 x 4000 5% 5

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

838

model of set covering problem is expressed as follow, in
LINGO.

Fig. 4 A model of set covering problem in Lingo

Fig. 4 shows that a model has to be specified first by stating

“model: “on first line and end it with “end” on the last line of
the model. On next line, Line3, sets, which comprises of
variables and their respective sizes are specified. Sets are
initialized within “sets” and “endsets”. The objective function
of set covering problem is specified on Line9. The objective
function can be specified by stating “min” for minimization
problem or “max” for maximization problem. After stating the
objective function, constraints of the set covering problem are
specified on next lines, Line11 and Line12. Line11 states the
constraint to ensure that each row is covered at by at least one
column. Line12 states the integrality constraint. Lastly, data is
inserted within “data” and “enddata”. These data are the cost
of columns (cj) and aij matrix.

B. MATLAB’s Genetic Algorithm Tool
Due to its superiority in solving problems which have

complex fitness landscape and large search space, genetic
algorithm was selected to solve set covering problem. And
MATLAB Genetic Algorithm Tool (GA Tool) is selected to
perform genetic algorithm [11]. In this section, the features of
MATLAB GA Tool and its implementation to solve the set
covering problem are discussed.

1) Representation scheme
Representation scheme is very important step in designing

genetic algorithm for a particular problem. There are two
possible representation schemes for set covering problem:
column-based representation scheme and row-based
representation scheme [12].

Due to nature of the benchmark problem sets, where the
total number of rows of problem sets are smaller than total
number of columns, row-based representation is chosen on the
expectation that the computational time could be reduced. For
example, problem set SCP4 has size of 200 x 1000. If column-
based representation scheme is used, the length of solution
will be 1000 bits. If row-based representation scheme is used,
the length of solution will be 200.

2) Probabilistic Heuristic Initial Population
In this approach, genes for each chromosome are selected

based on probability of coverage and cost. For each row, the
total number of coverage and cost of each column are

identified. Total number of coverage is total number of rows
that is able to be covered by a specific column

3) Crossover
Scattered crossover is used in this paper [11]. Scattered

crossover creates a random binary vector and selects the genes
where the vector is a 1 from the first parent and the genes
where the vector is a 0 from the second parent, and combines
the genes to form the child. An example is presented in Fig. 5.

Fig. 5 Scattered crossover

The performance of scattered crossover is compared with

single point and two point crossover for all the dataset
considered in this study. It is observed that scattered crossover
performs better in solving set covering problem. It enables the
genetic algorithm to converge faster and produce better
solution.

4) Mutation
Random mutation is used in this paper. Initially a gene is

selected randomly. This gene will correspond to the row
number of a particular dataset. In this row, a column that
covers the row is selected randomly. An illustration of random
mutation is presented in Fig. 6.

Fig. 6 Random mutation

From Fig.6, it can be seen that

1) Ninth gene of parent chromosome (which is equal to 8) is
selected for mutation. Ninth gene is corresponding to ninth
row of data.

2) In ninth row, a column that covers the row is randomly
selected to replace the parent’s gene. Column number 9 is
selected.

3) Mutation of ninth gene in the parent, which has initial value
of 8, is changed to 9.
Apart from normal mutation operator, variable mutation

rate had been introduced It is able to introduce more diverse
individuals in population which may lead to better solution
when GA converges and when the crossover operator
becomes less productive.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

839

Initially constant mutation rate of 10 genes/chromosome is
used. As genetic algorithm starts to converge, normally it
occurs after 60th generation, an increase in mutation rate is
introduced. The mutation rate is gradually increased by factor
of 0.1. And from 150th generation onward, constant mutation
rate of 20 genes/ chromosome is used because from this point
onward, increase in mutation rate may degenerate the
solutions due to high diversity in population

5) Stopping criteria
Stopping criteria chosen for solving set covering problem is

200 generation. It is observed that 200 generations is
sufficient to produce optimal solutions for set covering
problem.

The summary of optimal GA parameter set identified after
extensive analysis is presented in Table II.

TABLE II
 SUMMARY OF GA PARAMETERS USED TO SOLVE SET COVERING PROBLEM

Parameters Description

Population size SCP-4 : 2000

 SCP-5 : 2000

 SCP-6 : 6000

 SCP-A : 6000

 SCP-B : 8000

 SCP-C : 8000

 SCP-D : 10000

Chromosome length SCP-4 : 200

 SCP-5 : 200

 SCP-6 : 200

 SCP-A : 300

 SCP-B : 300

 SCP-C : 400

 SCP-D : 400

Fitness scaling Top fitness scaling

Selection Tournament selection

Crossover fraction 0.8

Crossover Scattered crossover

Mutation Random mutation

Elite 5% of Population size

Migration -

Algorithm settings -

Hybrid function -

Stopping criteria 200 generations

In order to provide a reliable computational results
produced by MATLAB GA Tool, genetic algorithm was run
ten times for each problem sets.

C. Ant Colony Optimization
Ant colony optimization is a probabilistic construction

heuristic that generates solutions iteratively, taking into
account accumulated past search experiences: pheromone
trails and heuristic information [13]. The search for solution
composes of several iterations. Initially pheromone is
initialized for first iteration. In next step, column is added into
the solution according to its probability. The addition of

column to the solution will continue until all rows in problems
are covered.

The probability of each column to be chosen as ant path and
added to solution is formulated as follows [14]:

jk k

j ii = 1..n

j jPhero H
 if j S (5)

Phero H
P

α β

α β×
∉

×
=

∑

Sk is set of columns belonging to the partial solution of kth
ant. Pheroj is pheromone intensity or pheromone trail of
column j. Hj is a greedy heuristic ratio of cover value divided
by cost [14]

j

(j)

j

j i cov(j,s)

cov_val
H = (6)

cost

cov_ val min _cost(i) (7)
∈

= ∑

cov(j,s) is the set of lines which are covered by the column j
and not covered by the solution S, and min_cost(i) is the
minimum cost of the columns that cover the line i. α and β are
parameters which determine the relative influence of the
pheromone trail and heuristic information. The parameters α
and β can be varied accordingly in order to get an optimal
result.

In next step, after all ants in colony construct feasible
solutions, pheromone intensity is updated as follow [14]:

j (1) j (1) ()ki = 1..m j

k
j

Phero = (1-) Phero (8)Phero

where
1/fitness value , if j S

 Phero =
0 , otherwise

t t tρ+ +× + Δ

∈⎧
Δ ⎨

⎩

∑

ρ is pheromone evaporation coefficient. It determines the
decreasing rate of pheromone (0< ρ< 1). In this project, the
evaporation coefficient is set to 0.9.

Total number of iteration and number of ants are varied
according to the problem size. Details of total number of
iterations and ants used are shown in Table III.

TABLE III

 NUMBER OF ITERATION AND NUMBER OF ANTS USED FOR THE BENCHMARK
PROBLEMS

Problem Set No. of ants No. of iteration

SCP-4 2 5
SCP-5 4 5
SCP-6 4 5
SCP-A 6 7
SCP-B 6 7
SCP-C 7 8

SCP-D 7 8

Initial pheromone (τ0) is used to start first iteration. Initial

pheromone is calculated by following these steps:
1) Randomly construct a feasible solution
2) Calculate the fitness value of the solution
3) Determine the maximum cost of the columns
4) Calculate the ration of Lnn based on (9)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

840

fitness value of solution + max cost of columns
 (9)

2
Lnn =

5) Calculate the initial pheromone τ0 based on (10)

0

1
 , m = total number of rows (10)where

m Lnn
τ =

×

Ants will find columns that are able to cover all the rows in

each iteration. Before ants select a column as partial solution,
Hj will be calculated first. By having value of Hj, the
probability of each column to be selected as partial solution is
calculated by using (5). In the next step, a random number is
generated. Based on the random number and probability, a
column is selected as partial solution (roulette wheel
principle). Calculation of Hj and column selections will
continue until all the rows in set covering problem are
covered. Once rows in set covering problem are covered,
fitness value of ant path will be calculated by using (1). When
all ants have found the solution, the pheromone intensity is
updated according to (7) and next iteration starts.

D. Performance of the Models
The results obtained using LINGO, genetic algorithm and

ant colony optimization are presented in Table IV. The
objective function value (OFV) and the computational runtime
are reported in the Table IV. It is observed that LINGO being
an optimization solver performs better than the proposed GA
and ACO. Between GA and ACO, ACO performs better
except for the problem set SCP-4 with reference to OFV and
GA performs better with reference to runtime.

IV. CONCLUSION
In this paper, three techniques are used to solve set covering

problem: LINGO, genetic algorithm and ant colony
optimization. In order to assess the performance of these
techniques in solving set covering problem, a set of
benchmark set covering problems are used. The problem size
ranges from 200 x 1000 to 400 x 4000 with density of 2% and
5%.

From computational results, it is observed that LINGO as
an optimization tool had performed well in solving set
covering problem. It is able to find the optimal solution for
benchmark problem sets that were tested in shorter run time
compared with other techniques considered in this paper.

As second technique, genetic algorithm is a method that is
based on natural selection which is a process that drives
biological evolution. In this paper, genetic algorithm is
performed by using MATLAB Genetic Algorithm Tool.
MATLAB Genetic Algorithm Tool is a flexible tool. It
provides various features that may assist users in solving
various optimization problems.

Despite of its flexibility, genetic algorithm does not perform
well in solving problems that have larger search space. GA
Tool failed to find optimal or near to optimal solution for set
covering problems that have larger problem size i.e. SCP-B,
SCP-C and SCP-D.

Third technique considered is ant colony optimization. This
is a method that imitates the behavior of ant colony in

bringing their food from source to their nest. Ant colony
optimization is able to find near to optimal solution based on
the past experiences: pheromone trails and heuristic
information. In this study, ant colony optimization is
successfully coded and executed in MATLAB programming
platform.

To conclude, LINGO being an optimization tool is able to
obtain the optimal solution for all benchmark problem
considered in this paper. Ant colony optimization has
performed better than genetic algorithm. This method is able
to find near to optimal solution for all benchmark set covering
problems used in this project regardless of problem size.
Despite of its superiority in solving set covering problem, ant
colony optimization needs longer computational time in order
to solve set covering problem.

REFERENCES
[1] J.E. Beasley and P.C. Chu, “A genetic algorithm for the set covering

problem”, European Journal of Operational Research, vol. 94, 1996, pp.
392-404

[2] J.E. Beasley, “An algorithm for set covering problem”, European
Journal of Operational Research, vol. 31, 1987, pp 85-93

[3] J.E. Beasley, “A Lagrangian heuristic for set covering problems”, Naval
Research Logistics, Vol. 37, 1990, pp. 151-164

[4] S. Haddadi, “Simple Lagrangian heuristic for the set covering problem”,
European Journal of Operational Research, vol. 97, 1997, pp 200-204

[5] U. Aickelin, “An indirect genetic algorithm for set covering problem”
Journal of Operational Research Society, vol. 53, 2002, pp. 1118-1126

[6] A. Monfroglio, “Hybrid heuristic algorithm for set covering”,
Computers Operational Research, vol. 25, 1998, pp. 441-445

[7] J.F. Vasko and F.E. Wolf, “ A heuristic concentration approach for
weighted set covering problems”, Locator: ePublication of Location
Analysis, vol. 2, 2001, no. 1, pp. 1-14

[8] OR-Library: http://people.brunel.ac.uk/~mastjjb/jeb/orlib/scpinfo.html
[9] E. Balas, and A. Ho, “Set covering algorithms: using cutting planes,

heuristics and subgradient optimization: a computational study”,
Mathematical Programming Study, vol. 12, 1980, pp. 300-304.

[10] Lindo System, Lingo 8.0 user’s manual, 2003
[11] The Mathworks, Matlab’s Genetic Algorithm and Direct Search Toolbox

User’s Guide, The Matworks, 2005, Massachusetts
[12] M. Gen, R. Cheng, Genetic Algorithms and Engineering Optimization,

John Wiley & Sons, 2000, Canada
[13] L. Lessing, I. Dumitrescu, and T. Stutzle, “A comparison between ACO

algorithms for the set covering problem”, ANTS 2004, LNCS 3172, 2004,
pp. 1-12

[14] M. Rahoual, R. Hadji, and V. Bachelet, “Parallel ant system for the set
covering problem” ANTS 2002, LNCS 2463, 2002 pp. 262 – 267.

Darwin Gouwanda received his degree in mechatronics engineering from

Monash University Sunway Campus, Malaysia in 2006. The author is
currently pursuing his Masters of Engineering Science (Research). His
research areas include artificial intelligence, robotics, and biomechanics.

S. G. Ponnambalam is an Associate Professor in the School of

Engineering at Monash University, Sunway Campus, Malaysia. He has a Ph.D
in Computer Integrated Manufacturing form Bharathiar University,
Coimbatore, India. He is teaching undergraduate and graduate courses in the
areas of Mechatronics, manufacturing and manufacturing management and
supervising number of doctoral students in the area of manufacturing
automation and application of evolutionary optimization. He is the chair of
IEEE-RAS, Malaysia Section.

He has published over 170 articles that include 42 referred journal
publications and 128 refereed conference publications. His articles are
published in different peer-reviewed journals that include International
Journal of Operations & Production Management, Production Planning and
Control, International Journal of Advanced Manufacturing Technology,
International Journal of Industrial Engineering, Robotics and Computer-
Integrated Manufacturing, and Computers & Industrial engineering.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

841

TABLE IV
COMPUTATIONAL RESULTS OF THE MODELS

 LINGO GA ACO

Problem Optimal value OFV Run time OFV Run time OFV Run time

SCP-4.1 429 429 < 1 446 76.07 486 11024.8

SCP-4.2 512 512 < 1 549 75.78 556 405.12

SCP-4.3 516 516 < 1 554 75.84 591 80.5

SCP-4.4 494 494 < 1 551 77.64 577 69.53

SCP-4.5 512 512 < 1 531 74.65 545 52.79

SCP-4.6 560 560 < 1 574 76.1 620 66633.8

SCP-4.7 430 430 < 1 458 75.42 483 1519.63

SCP-4.8 492 492 < 1 522 75 540 1358.73

SCP-4.9 641 641 < 1 700 77.34 763 1568.72

SCP-4.10 514 514 < 1 548 76.04 596 128.7

SCP-5.1 253 253 ≈ 2 295 89.89 284 1707.16

SCP-5.2 302 302 ≈ 2 353 87.85 335 3259.46

SCP-5.3 226 226 ≈ 2 264 90.59 245 7389.53

SCP-5.4 242 242 ≈ 2 281 87.24 265 7389.53

SCP-5.5 211 211 ≈ 2 245 87.91 230 4749.6

SCP-5.6 213 213 ≈ 2 243 86.28 224 343.38

SCP-5.7 293 293 ≈ 2 328 87.23 314 3165.61

SCP-5.8 288 288 ≈ 2 326 88.77 315 4037.87

SCP-5.9 279 279 ≈ 2 325 90.81 285 818.46

SCP-5.10 265 265 ≈ 2 292 88.18 280 250.99

SCP-6.1 138 138 ≈ 2 150 223.6 154 247.18

SCP-6.2 146 146 ≈ 2 160 220.53 160 269.93

SCP-6.3 145 145 ≈ 2 167 221.69 153 309.04

SCP-6.4 131 131 ≈ 2 145 219.8 138 217.95

SCP-6.5 161 161 ≈ 2 183 224.95 181 172.73

SCP-A.1 253 253 ≈ 15 275 384.88 261 1317.89

SCP-A.2 252 252 ≈ 15 289 370.67 266 1593.74

SCP-A.3 232 232 ≈ 13 267 368.29 261 1689.36

SCP-A.4 234 234 ≈ 8 257 377.4 257 1815.37

SCP-A.5 236 236 ≈ 7 262 364.17 247 1465.29

SCP-B.1 69 69 ≈ 26 107 538.1 74 1483.07

SCP-B.2 76 76 ≈ 271 118 542.23 84 1626.83

SCP-B.3 80 80 ≈ 56 119 552.46 87 2200.79

SCP-B.4 79 79 ≈ 416 123 531.94 89 1956.24

SCP-B.5 72 72 ≈ 38 106 528.72 79 1462.46

SCP-C.1 227 227 ≈ 19 282 647.87 239 3994.02

SCP-C.2 219 219 ≈ 59 281 692.86 241 4501.89

SCP-C.3 243 243 ≈ 261 302 723.67 270 8443

SCP-C.4 219 219 ≈ 46 265 664.86 240 3638.29

SCP-C.5 215 215 ≈ 26 271 655.4 233 7558.4

SCP-D.1 60 60 ≈ 415 139 952.63 69 4256.12

SCP-D.2 66 66 ≈ 1071 157 933.78 69 3454.91

SCP-D.3 72 72 ≈ 513 149 922.02 78 3837.55

SCP-D.4 62 62 ≈ 853 151 948.31 68 4551.76

SCP-D.5 61 61 ≈ 698 151 970.27 65 3481.71

