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Abstract—Set covering problem is a classical problem in 

computer science and complexity theory. It has many applications, 
such as airline crew scheduling problem, facilities location problem, 
vehicle routing, assignment problem, etc.  In this paper, three 
different techniques are applied to solve set covering problem. 
Firstly, a mathematical model of set covering problem is introduced 
and solved by using optimization solver, LINGO. Secondly, the 
Genetic Algorithm Toolbox available in MATLAB is used to solve 
set covering problem. And lastly, an ant colony optimization method 
is programmed in MATLAB programming language. Results 
obtained from these methods are presented in tables. In order to 
assess the performance of the techniques used in this project, the 
benchmark problems available in open literature are used. 

 
Keywords—Set covering problem, genetic algorithm, ant colony 

optimization, LINGO. 

I. INTRODUCTION 
ET covering problem is a classical problem in computer 
science and complexity theory. Set covering problem is 

one of most important discrete optimization problem because 
it serves as a model for real world problems. Real world 
problems that can be modeled as set covering problem include 
facility location problem, airline crew scheduling, nurse 
scheduling problem, resource allocation, assembly line 
balancing, vehicle routing, etc. Set covering problem is a 
problem of covering the rows of an m-row/n-column zero-one 
matrix with a subset of columns at minimal cost [1]. Set 
covering problem can be formulated as follows: 
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Equation (1) is the objective function of set covering 
problem, where cj is refer to weight or cost of covering j-
column and xj is decision variable. Equation (2) is a constraint 
to ensure that each row is covered by at least one column 
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where aij is constraint coefficient matrix of size m x n whose 
elements comprise of either ‘1’ or ‘0’. Lastly, equation (3) is 
the integrality constraint in which the value is represented as 
in (4).  

1   if   j  S,
                              (4)

0  otherwise,jx
∈⎧

= ⎨
⎩

 

Even though it may seem to be a simple problem by judging 
from the objective functions and constraints of the problem, 
set covering problem is a combinational optimization problem. 
It has been proven to be NP-Complete decision problem [2]. 

A number of heuristic algorithms for set covering problem 
have been reported in the literature. Beasley, as one of main 
researcher in set covering problem had implemented several 
algorithms in order to solve set covering problem. Beasley 
presented an algorithm that combines problem reduction tests 
with dual ascent, sub-gradient optimization and linear 
programming. This algorithm had performed well in solving 
set covering problem [2]. It was able to find feasible optimal 
solutions for all set covering problem sets. In a different 
literature, Beasley presented a paper which used Lagrangian 
relaxation and sub-gradient optimization approach to solve set 
covering problem [3]. But this method did not perform well 
compared to his previous method. It was unable to find 
optimal solutions for several set covering problems such as 
SCP-4.4, SCP-4.6, SCP-5.1, SCP-5.2, SCP-5.7, SCP-6.1, 
SCP-6.5, etc. Haddadi presented a simple Lagrangian heuristic 
to solve set covering problem [4]. The method is based on 
Lagrangian duality, greedy heuristic for set covering problem, 
sub-gradient optimization and redundant covers. This method 
had turn out to be efficient for low density set covering 
problem with a large number of variables with average 
deviation of 0.35%.  

Beasley and Chu presented genetic algorithm for set 
covering problem [5]. They presented a new crossover-fusion 
operator, a variable mutation rate and a heuristic feasibility 
operator to improve the performance of genetic algorithm. 
This method performs well, for most of problems. Aickelin 
proposed an indirect genetic algorithm [5]. The indirect 
genetic algorithm comprises of three phases. In the first phase, 
genetic algorithm finds good permutation of the rows to be 
covered. In second phase, a decoder build a solution from the 
permutations using the parameter provided. And lastly, in the 
third phase, a hill-climber optimization method is used. 
Indirect genetic algorithm is able to solve the set covering 
problem in shorter computational time. Monfroglio proposed a 
linear programming relaxation model and improvement 
techniques based on simulated neural network [6]. This 
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method is able to find solutions within 0.2% of optimal 
solution and increase the overall computational time. Vasko 
and Wolf adapted heuristic concentration approach to solve 
the weighted (non-unicost) set covering problem [7]. Their 
method is able to solve set covering problem and find solution 
with deviation of maximum of 3.27% from optimum solution. 

In this paper, an attempt has been made to propose Genetic 
Algorithm (GA) and Ant Colony Optimization (ACO) 
technique and the performance of them are evaluated with an 
optimization solver LINGO. Matlab GA Toolbox is used in 
this paper.  

II. BENCHMARK PROBLEM SETS 
The benchmark problem sets are publicly available in OR-

Library [8]. The problem sets had been widely used by many 
researchers to verify their methods effectiveness in solving set 
covering problem. There are a total of eight problem sets 
considered in this paper for evaluation. The details of these 
problem sets are shown in Table I.  

 
TABLE I  

DETAILS OF BENCHMARK PROBLEM SETS 

 
SCP-4, SCP-5 and SCP-6 are test problems produced by 

using scheme of Balas and Ho [9] while problem set SCP-A, 
SCP-B, SCP-C and SCP-D is randomly generated test 
problems. SCP-4 and SCP-5 has 10 datasets and the rest of 
problem sets i.e. SCP-6, SCP-A, SCP-B, SCP-C and SCP-D 
has 5 datasets. SCP-4, SCP-5, SCP-6, SCP-A, SCP-B, SCP-C 
and SCP-D are a non-unicost set covering problems. Non-
unicost set covering problem, which also called weighted set 
covering problem, has various costs for each column. Density 
is the total number of integer ‘1’ in the aij matrix. For 
example, problem set SCP-4 has a total of 4000 ‘1’s in the aij 
matrix 

Conversion of Problem Set 
Datasets that are downloaded from OR-Library has 

information on size of aij matrix, the cost of each column, 
number of column in row and list of columns that cover row. 
The format of dataset is shown in Fig. 1.  

 
Fig. 1 Format of downloaded datasets 

 
Adjustments/ conversions made are: 
1) Separating the cost of each column from dataset manually 

and saving it under different file name (*.txt).  
2) Arranging the columns that cover each row in one line 

based on total number of columns in that row and saving it 
under different file name as well (*.txt). (Please refer to 
Fig. 2).  

3) Converting the previous file into excel format (*.txt is 
converted to *.xls) 

4) Converting the columns that cover each row into zero one 
matrix (aij). (Please refer to Fig. 3).  

 

 
Fig. 2 Outcome of dataset arrangement 

 

 
Fig. 3 Outcome of dataset conversion 

III. MODELS USED TO SOLVE SET COVERING PROBLEMS 

A. LINGO 
One of LINGO powerful features is its mathematical 

modeling language [10]. Its modeling language enables users 
to express their problems in a natural manner that is very 
similar to standard mathematical notation.  Another powerful 
feature is data section. Data section enables users to isolate 
model’s data from formulation. This features offers flexibility 
to users to decrease or increase the data’s size. 

For set covering problem, LINGO categorizes it under PLIP 
(Pure Linear Integer Program) class. It solves set covering 
problem by using branch and bound manager  

LINGO optimization model has following attributes:  
1) Sets, which comprise of objects or variables in 

programming model. 
2) Objective function of problem 
3) Constraints of problem  
4) Input data 

Therefore by referring to properties of set covering problem 
which has one objective function, two sets, which are rows 
and columns, two constraints and a decision variable, xj, a 

Problem 
Set 

Problem 
type 

Size of aij 
Matrix Density No. of 

datasets 

SCP-4 Non-unicost 200 x 1000 2% 10 
SCP-5 Non-unicost 200 x 2000 2% 10 
SCP-6 Non-unicost 200 x 1000 5% 5 
SCP-A Non-unicost 300 x 3000 2% 5 
SCP-B Non-unicost 300 x 3000 5% 5 
SCP-C Non-unicost 400 x 4000 2% 5 
SCP-D Non-unicost 400 x 4000 5% 5 
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model of set covering problem is expressed as follow, in 
LINGO. 
   

 
Fig. 4 A model of set covering problem in Lingo 

 
Fig. 4 shows that a model has to be specified first by stating 

“model: “on first line and end it with “end” on the last line of 
the model. On next line, Line3, sets, which comprises of 
variables and their respective sizes are specified. Sets are 
initialized within “sets” and “endsets”. The objective function 
of set covering problem is specified on Line9. The objective 
function can be specified by stating “min” for minimization 
problem or “max” for maximization problem. After stating the 
objective function, constraints of the set covering problem are 
specified on next lines, Line11 and Line12. Line11 states the 
constraint to ensure that each row is covered at by at least one 
column. Line12 states the integrality constraint. Lastly, data is 
inserted within “data” and “enddata”. These data are the cost 
of columns (cj) and aij matrix.   

B. MATLAB’s Genetic Algorithm Tool  
Due to its superiority in solving problems which have 

complex fitness landscape and large search space, genetic 
algorithm was selected to solve set covering problem. And 
MATLAB Genetic Algorithm Tool (GA Tool) is selected to 
perform genetic algorithm [11]. In this section, the features of 
MATLAB GA Tool and its implementation to solve the set 
covering problem are discussed.  

1) Representation scheme 
Representation scheme is very important step in designing 

genetic algorithm for a particular problem. There are two 
possible representation schemes for set covering problem: 
column-based representation scheme and row-based 
representation scheme [12]. 

Due to nature of the benchmark problem sets, where the 
total number of rows of problem sets are smaller than total 
number of columns, row-based representation is chosen on the 
expectation that the computational time could be reduced. For 
example, problem set SCP4 has size of 200 x 1000. If column-
based representation scheme is used, the length of solution 
will be 1000 bits. If row-based representation scheme is used, 
the length of solution will be 200.      

2) Probabilistic Heuristic Initial Population 
In this approach, genes for each chromosome are selected 

based on probability of coverage and cost. For each row, the 
total number of coverage and cost of each column are 

identified. Total number of coverage is total number of rows 
that is able to be covered by a specific column  

3) Crossover 
Scattered crossover is used in this paper [11]. Scattered 

crossover creates a random binary vector and selects the genes 
where the vector is a 1 from the first parent and the genes 
where the vector is a 0 from the second parent, and combines 
the genes to form the child. An example is presented in Fig. 5. 
 

 
Fig. 5 Scattered crossover 

 
The performance of scattered crossover is compared with 

single point and two point crossover for all the dataset 
considered in this study. It is observed that scattered crossover 
performs better in solving set covering problem. It enables the 
genetic algorithm to converge faster and produce better 
solution.  

4) Mutation  
Random mutation is used in this paper. Initially a gene is 

selected randomly. This gene will correspond to the row 
number of a particular dataset. In this row, a column that 
covers the row is selected randomly. An illustration of random 
mutation is presented in Fig. 6.  
 

 
Fig. 6 Random mutation 

 
From Fig.6, it can be seen that 

1) Ninth gene of parent chromosome (which is equal to 8) is 
selected for mutation. Ninth gene is corresponding to ninth 
row of data.  

2) In ninth row, a column that covers the row is randomly 
selected to replace the parent’s gene. Column number 9 is 
selected.  

3) Mutation of ninth gene in the parent, which has initial value 
of 8, is changed to 9.  
Apart from normal mutation operator, variable mutation 

rate had been introduced It is able to introduce more diverse 
individuals in population which may lead to better solution 
when GA converges and when the crossover operator 
becomes less productive. 
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Initially constant mutation rate of 10 genes/chromosome is 
used. As genetic algorithm starts to converge, normally it 
occurs after 60th generation, an increase in mutation rate is 
introduced. The mutation rate is gradually increased by factor 
of 0.1. And from 150th generation onward, constant mutation 
rate of 20 genes/ chromosome is used because from this point 
onward, increase in mutation rate may degenerate the 
solutions due to high diversity in population 

5) Stopping criteria 
Stopping criteria chosen for solving set covering problem is 

200 generation. It is observed that 200 generations is 
sufficient to produce optimal solutions for set covering 
problem.  

The summary of optimal GA parameter set identified after 
extensive analysis is presented in Table II. 
 

TABLE II 
 SUMMARY OF GA PARAMETERS USED TO SOLVE SET COVERING PROBLEM 

Parameters Description 

Population size SCP-4 : 2000 

 SCP-5 : 2000 

 SCP-6 : 6000 

 SCP-A : 6000 

 SCP-B : 8000 

 SCP-C : 8000 

 SCP-D : 10000 

Chromosome length SCP-4 : 200 

 SCP-5 : 200 

 SCP-6 : 200 

 SCP-A : 300 

 SCP-B : 300 

 SCP-C : 400 

 SCP-D : 400 

Fitness scaling Top fitness scaling 

Selection Tournament selection 

Crossover fraction 0.8 

Crossover Scattered crossover 

Mutation  Random mutation  

Elite 5% of Population size 

Migration - 

Algorithm settings - 

Hybrid function - 

Stopping criteria 200 generations 
 

In order to provide a reliable computational results 
produced by MATLAB GA Tool, genetic algorithm was run 
ten times for each problem sets.  

C. Ant Colony Optimization 
Ant colony optimization is a probabilistic construction 

heuristic that generates solutions iteratively, taking into 
account accumulated past search experiences: pheromone 
trails and heuristic information [13].  The search for solution 
composes of several iterations. Initially pheromone is 
initialized for first iteration. In next step, column is added into 
the solution according to its probability. The addition of 

column to the solution will continue until all rows in problems 
are covered.  

The probability of each column to be chosen as ant path and 
added to solution is formulated as follows [14]: 

jk k

j ii = 1..n

j jPhero H
     if  j S                            (5)

Phero H
P

α β

α β×
∉

×
=

∑
 

Sk is set of columns belonging to the partial solution of kth 
ant. Pheroj is pheromone intensity or pheromone trail of 
column j. Hj is a greedy heuristic ratio of cover value divided 
by cost [14]  

j

(j)

j

j i cov(j,s)

cov_val
H  =                                                         (6)

cost

cov_ val min _cost(i)                            (7)
∈

= ∑
 

cov(j,s) is the set of lines which are covered by the column j 
and not covered by the solution S, and min_cost(i) is the 
minimum cost of the columns that cover the line i. α and β are 
parameters which determine the relative influence of the 
pheromone trail and heuristic information. The parameters α 
and β can be varied accordingly in order to get an optimal 
result. 

In next step, after all ants in colony construct feasible 
solutions, pheromone intensity is updated as follow [14]: 

j ( 1) j ( 1) ( )ki = 1..m j

k
j

Phero  = (1- ) Phero             (8)Phero

where
1/fitness value , if  j S

             Phero  =  
0 , otherwise

t t tρ+ +× + Δ

∈⎧
Δ ⎨

⎩

∑
 

ρ is pheromone evaporation coefficient. It determines the 
decreasing rate of pheromone (0< ρ< 1). In this project, the 
evaporation coefficient is set to 0.9.  

Total number of iteration and number of ants are varied 
according to the problem size. Details of total number of 
iterations and ants used are shown in Table III.   

 
TABLE III 

 NUMBER OF ITERATION AND NUMBER OF ANTS USED FOR THE BENCHMARK 
PROBLEMS 

Problem Set No. of ants No. of iteration 

SCP-4 2 5 
SCP-5 4 5 
SCP-6 4 5 
SCP-A 6 7 
SCP-B 6 7 
SCP-C 7 8 

SCP-D 7 8 
  
Initial pheromone (τ0) is used to start first iteration. Initial 

pheromone is calculated by following these steps: 
1) Randomly construct a feasible solution 
2) Calculate the fitness value of the solution 
3) Determine the maximum cost of the columns 
4) Calculate the ration of Lnn based on (9) 
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fitness value of solution + max cost of columns
   (9)

2
Lnn =

5) Calculate the initial pheromone τ0 based on (10)  

0

1
  , m = total number of rows         (10)where

m Lnn
τ =

×  
 
Ants will find columns that are able to cover all the rows in 

each iteration. Before ants select a column as partial solution, 
Hj will be calculated first. By having value of Hj, the 
probability of each column to be selected as partial solution is 
calculated by using (5). In the next step, a random number is 
generated. Based on the random number and probability, a 
column is selected as partial solution (roulette wheel 
principle). Calculation of Hj and column selections will 
continue until all the rows in set covering problem are 
covered. Once rows in set covering problem are covered, 
fitness value of ant path will be calculated by using (1). When 
all ants have found the solution, the pheromone intensity is 
updated according to (7) and next iteration starts.  

D. Performance of the Models 
The results obtained using LINGO, genetic algorithm and 

ant colony optimization are presented in Table IV. The 
objective function value (OFV) and the computational runtime 
are reported in the Table IV. It is observed that LINGO being 
an optimization solver performs better than the proposed GA 
and ACO. Between GA and ACO, ACO performs better 
except for the problem set SCP-4 with reference to OFV and 
GA performs better with reference to runtime. 

IV. CONCLUSION 
In this paper, three techniques are used to solve set covering 

problem: LINGO, genetic algorithm and ant colony 
optimization. In order to assess the performance of these 
techniques in solving set covering problem, a set of 
benchmark set covering problems are used. The problem size 
ranges from 200 x 1000 to 400 x 4000 with density of 2% and 
5%.  

From computational results, it is observed that LINGO as 
an optimization tool had performed well in solving set 
covering problem. It is able to find the optimal solution for 
benchmark problem sets that were tested in shorter run time 
compared with other techniques considered in this paper. 

As second technique, genetic algorithm is a method that is 
based on natural selection which is a process that drives 
biological evolution. In this paper, genetic algorithm is 
performed by using MATLAB Genetic Algorithm Tool. 
MATLAB Genetic Algorithm Tool is a flexible tool. It 
provides various features that may assist users in solving 
various optimization problems.  

Despite of its flexibility, genetic algorithm does not perform 
well in solving problems that have larger search space. GA 
Tool failed to find optimal or near to optimal solution for set 
covering problems that have larger problem size i.e. SCP-B, 
SCP-C and SCP-D.  

Third technique considered is ant colony optimization. This 
is a method that imitates the behavior of ant colony in 

bringing their food from source to their nest. Ant colony 
optimization is able to find near to optimal solution based on 
the past experiences: pheromone trails and heuristic 
information. In this study, ant colony optimization is 
successfully coded and executed in MATLAB programming 
platform.  

To conclude, LINGO being an optimization tool is able to 
obtain the optimal solution for all benchmark problem 
considered in this paper. Ant colony optimization has 
performed better than genetic algorithm. This method is able 
to find near to optimal solution for all benchmark set covering 
problems used in this project regardless of problem size. 
Despite of its superiority in solving set covering problem, ant 
colony optimization needs longer computational time in order 
to solve set covering problem.  
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TABLE IV  
COMPUTATIONAL RESULTS OF THE MODELS  

  LINGO  GA  ACO 

Problem Optimal value OFV Run time OFV Run time OFV Run time 

SCP-4.1 429 429 < 1 446 76.07 486 11024.8 

SCP-4.2 512 512 < 1 549 75.78 556 405.12 

SCP-4.3 516 516 < 1 554 75.84 591 80.5 

SCP-4.4 494 494 < 1 551 77.64 577 69.53 

SCP-4.5 512 512 < 1 531 74.65 545 52.79 

SCP-4.6 560 560 < 1 574 76.1 620 66633.8 

SCP-4.7 430 430 < 1 458 75.42 483 1519.63 

SCP-4.8 492 492 < 1 522 75 540 1358.73 

SCP-4.9 641 641 < 1 700 77.34 763 1568.72 

SCP-4.10 514 514 < 1 548 76.04 596 128.7 

SCP-5.1 253 253  ≈ 2 295 89.89 284 1707.16 

SCP-5.2 302 302 ≈ 2 353 87.85 335 3259.46 

SCP-5.3 226 226 ≈ 2 264 90.59 245 7389.53 

SCP-5.4 242 242 ≈ 2 281 87.24 265 7389.53 

SCP-5.5 211 211 ≈ 2 245 87.91 230 4749.6 

SCP-5.6 213 213 ≈ 2 243 86.28 224 343.38 

SCP-5.7 293 293 ≈ 2 328 87.23 314 3165.61 

SCP-5.8 288 288 ≈ 2 326 88.77 315 4037.87 

SCP-5.9 279 279 ≈ 2 325 90.81 285 818.46 

SCP-5.10 265 265 ≈ 2 292 88.18 280 250.99 

SCP-6.1 138 138 ≈ 2 150 223.6 154 247.18 

SCP-6.2 146 146 ≈ 2 160 220.53 160 269.93 

SCP-6.3 145 145 ≈ 2 167 221.69 153 309.04 

SCP-6.4 131 131 ≈ 2 145 219.8 138 217.95 

SCP-6.5 161 161 ≈ 2 183 224.95 181 172.73 

SCP-A.1 253 253 ≈ 15 275 384.88 261 1317.89 

SCP-A.2 252 252 ≈ 15 289 370.67 266 1593.74 

SCP-A.3 232 232 ≈ 13 267 368.29 261 1689.36 

SCP-A.4 234 234 ≈ 8 257 377.4 257 1815.37 

SCP-A.5 236 236 ≈ 7 262 364.17 247 1465.29 

SCP-B.1 69 69 ≈ 26 107 538.1 74 1483.07 

SCP-B.2 76 76 ≈ 271 118 542.23 84 1626.83 

SCP-B.3 80 80 ≈ 56 119 552.46 87 2200.79 

SCP-B.4 79 79 ≈ 416 123 531.94 89 1956.24 

SCP-B.5 72 72 ≈ 38 106 528.72 79 1462.46 

SCP-C.1 227 227 ≈ 19 282 647.87 239 3994.02 

SCP-C.2 219 219 ≈ 59 281 692.86 241 4501.89 

SCP-C.3 243 243 ≈ 261 302 723.67 270 8443 

SCP-C.4 219 219 ≈ 46 265 664.86 240 3638.29 

SCP-C.5 215 215 ≈ 26 271 655.4 233 7558.4 

SCP-D.1 60 60 ≈ 415 139 952.63 69 4256.12 

SCP-D.2 66 66 ≈ 1071 157 933.78 69 3454.91 

SCP-D.3 72 72 ≈ 513 149 922.02 78 3837.55 

SCP-D.4 62 62 ≈ 853 151 948.31 68 4551.76 

SCP-D.5 61 61 ≈ 698 151 970.27 65 3481.71 
 


