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 
Abstract—This paper presents a comprehensive survey of recent 

source camera identification (SCI) systems. Then, the performance of 
various sensor pattern noise (SPN) estimators was experimentally 
assessed, under common photo response non-uniformity (PRNU) 
frameworks. The experiments used 1350 natural and 900 flat-field 
images, captured by 18 individual cameras. 12 different experiments, 
grouped into three sets, were conducted. The results were analyzed 
using the receiver operator characteristic (ROC) curves. The 
experimental results demonstrated that combining the basic SPN 
estimator with a wavelet-based filtering scheme provides promising 
results. However, the phase SPN estimator fits better with both patch-
based (BM3D) and anisotropic diffusion (AD) filtering schemes.  

 
Keywords—Sensor pattern noise, source camera identification, 

photo response non-uniformity, anisotropic diffusion, peak to 
correlation energy ratio. 

I. INTRODUCTION 

CI has become an important topic for digital forensics due 
to the increase in use of digital media. Its importance is 

reflected within forensics on the need to confidently verify 
whether an image came from a particular camera or not. With 
the accessibility of digital image technology, the potential of 
forgery or falsely linking a picture to a camera are sever 
threats, which need to be reliably and consistently resolved. 
Examples of such cases include: Using images as evidence of 
a crime, child pornography, or movie piracy. 

The use of PRNU for identifying images to cameras has 
become a rich field of research for establishing SCI. It makes 
use of sensor defects inherent to any device used for capturing 
digital images, which have been shown to be unique to any 
particular device. This technique is analogous to the use of 
human fingerprints for identification purposes. In practice, it 
showed reliable and consistent results for images across 
similar brands and models and varying conditions, like 
compression and size, showing its potential for study. 

The process of SCI can be broken down into four basic 
stages: PRNU extraction using denoising filters, reference 
SPN estimation, enhancement of the PRNU and SPN signals 
using pre-processing operations, and finally a classification 
stage, Fig. 1. Estimation of the reference SPN (which is in 
essence the camera's fingerprint) is accomplished by using the 
PRNU residuals that are extracted from a set of images from 
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the camera. In practice, they are normally taken as flat-field or 
blue sky images to obtain the strongest possible PRNU 
signals, as suggested by Fridrich [1]. It is then compared to the 
SPN extracted from the image in question to determine its 
correlation with the given camera. 

 

 

Fig. 1 The block diagram of the SCI system  
 
PRNU extraction is generally performed by using a 

denoising filtering scheme to smooth away the noise from an 
image. Afterwards, the denoised image is subtracted from the 
original, thus obtaining the noise residual. The goal is to 
ensure that the noise residual contains as much of the PRNU 
noise, and at the same time, as little other signals from other 
sources as possible. As studied by Fridrich [1], scene details, 
such as textures and dark regions, corrupt the PRNU signal 
since it is modelled as a multiplicative factor with light 
intensity. The majority of work, found in literature, focuses on 
creating better filters from which the noise can be extracted 
[1]. 

The PRNU extraction stage is followed in one of two ways; 
either the residual is enhanced and compared to the reference 
SPN or they are used to construct the reference SPN. 
Reference SPN estimation is accomplished by performing an 
estimation procedure on a set of noise residuals gathered from 
the camera. Using a set of images maximizes the likelihood 
that the true fingerprint is “averaged” out of the residuals, thus 
providing a close estimation of the camera's fingerprint noise 
[1].  

The accuracy of extracting the PRNU signals and 
estimating the SPN is dependent upon the capability of the 
used technique to filter out the non-unique patterns imparted 
onto the images by their respective cameras. A specific 
method can obtain good results under two conditions. First, it 
should be capable of separating the unique SPN from the 
image without imparting artifacts of its own onto the image. 
Second, it should shape the SPN to be as Gaussian as possible. 
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Due to the underlying assumption that the PRNU follows a 
Gaussian distribution, the closer the noise approaches this 
distribution, the more likely it contains only the PRNU signal 
[1]. 

Across all stages of the SCI framework described, artifacts 
imprinted on the noise residuals and on the reference SPN will 
hinder detection once they reach the final stage. This fact 
justifies the enhancement stage just before detection. In most 
image capture devices, there are a host of known artifacts 
which leave distinct imprints on any given image. These 
causes can be resulted from the colour filter array (CFA) 
interpolation [2], [3], JPEG compression [4], [5], or of 
unknown origin [6]. Since these artifacts, along with the those 
introduced by filtering, leave recognizable traces, methods can 
be implemented to specifically target and remove these traces, 
and thus enhancing the reference SPN or the image PRNU 
before detection. 

Once the reference SPN and the residual of the image in 
question have been enhanced, the next and final step of the 
SCI process is the classification stage. This is accomplished 
by employing a classification scheme that compares the 
similarity of the pixels within the residual of the image in 
question to the pixels of the reference SPN. Statistical 
classifiers are commonly used in SCI systems. A statistical 
value is obtained, and if this value exceeds a user defined 
threshold, the image in question is deemed to be captured by 
the reference camera. 

Standing as among the best denoising filters for SCI, [7] 
developed a wavelet-based scheme, which had, for the first 
time, become practical for real world applications. It is 
composed a wavelet transformation combined with a 
minimum square error (MMSE) and a maximum likelihood 
estimation procedure to suppress periodic noise in the 
frequency domain. Under the assumption that the image is 
corrupted by white Gaussian noise, the goal is to find an 
estimate of the uncorrupted variance field of the wavelet 
coefficients. This goal is achieved by employing a maximum 
likelihood estimator, together with a Bootstrap method to 
approximate the estimated distribution. Finally, the 
uncorrupted image is constructed using its variance field and 
the MMSE procedure. 

Lukas et al. [8] proposed a basic SPN estimation procedure 
by simply taking the average of the noise residuals. Their 
work showed proof of concept, providing a framework that 
showed a successful SCI system. Along with the basic SPN 
estimator, the correlation coefficient between the reference 
SPN and the noise residual was employed during the 
classification stage. This provides the ability to measure the 
similarity between the images, under investigations, and a 
source camera using its SPN. Experimental results show that 
this framework is robust across different JPEG compression 
levels and gamma corrections. Moreover, it can distinguish 
between cameras of the same model. However, its 
performance deteriorates on images under geometric 
transformations. This might be a resulted from the 
desynchronization of the PRNU signal with respect to the 
camera. 

Taking into consideration the possibility of the presence of 
a geometric transformation of the noise residual with respect 
to the reference SPN, the normalized cross correlation (NCC) 
was explored by [9]. It can be considered as a simplification to 
the energy model derived by [10]. While the computational 
complexity of the energy model [10] is too high to be used in 
practical applications, the NCC [9] provides an acceptable 
approximation with low computational complexity. The idea 
is to maximize the NCC over all possible spatial shifts 
between the residual and the SPN. Then, the peak to 
correlation energy (PCE) ratio is computed, by taking the ratio 
of the square of the NCC at peak spatial shifts to the average 
of the square of the NCC values within some neighbourhood 
around these peak spatial shifts. It acted as a normalization of 
the NCC statistic that reduces the probability of false alarms 
during the classification stage. In their experiments, the PCE 
was shown to be superior to correlation and had become the 
norm for executing the classification stage. 

Chen et al. [11] developed the basic method [8] further by 
applying the maximum likelihood approach to estimate the 
noise residuals. The log likelihood estimate was found and 
differentiated, thus providing an estimate of the reference SPN 
in the form of a weighted average: the maximum likelihood 
estimate (MLE). The MLE method was shown to provide 
better use of data for forgery detection and allowed for better 
error estimates. However, the experiments conducted by [11], 
did not contain explicit comparisons to the basic SPN 
estimation method [8]. Along with the MLE SPN estimator, 
[11] proposed the enhancement of the residual and the SPN 
using both the Wiener and the Zero Meaning filtering 
schemes. They were used to suppress both periodic artifacts 
and linear patterns from the reference SPN and the image 
PRNU. While the Wiener filter suppresses the low frequency 
components, the Zero meaning filter subtracts the means of 
the rows and columns from each pixel of the noise. This 
approach improves the source camera detection, particularly 
when dealing with similar cameras (the same model or 
manufacturer). It has been shown that combining the Zero 
Meaning and Wiener Filtering with the MLE provides a 
reliable forgery detection scheme. 

To improve upon the wavelet-based scheme [7], an adaptive 
spatial (AS) filtering approach was introduced by [12]. It is a 
spatial filtering scheme that aims at isolating regions with 
stronger PRNU signals. The algorithm creates an index map 
by extracting regions, which are deemed to be the least dark 
and textured. Then, the selected regions are denoised using a 
median filter followed by an adaptive Wiener filter. Only the 
selected regions from both the reference SPN and noise 
residual of the image under investigation are compared. As a 
result, the proposed approach avoids the use of less than ideal 
regions in the identification process. Cooper et al. [12] 
experimentally showed that their proposed approach is robust 
with respect to variable JPEG compression ratios.  

Taking into consideration both the frequency and the spatial 
domains, [13] used the sparse 3-D transform-domain 
collaborative block-matching (BM3D) filtering scheme, as 
introduced by [14], to denoise images for forgery detection. 
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The idea is to search for similar blocks within the image, 
based on a given similarity measure. When two blocks are 
similar, their center pixels are said to be matched. Then, the 
matching pixels are linearly transformed into a higher 
dimension in the spatial domain, where shrinkage is applied to 
these pixels, using hard thresholding. The output from this 
step is followed by a weighted average of overlapping pixels 
in the different blocks, producing an estimate of the original 
image. This process is repeated between the estimated image 
and the noisy one, where similar blocks are grouped together 
from both images. It is worth mentioning that during the 
second iteration, Wiener filter is used instead of hard 
thresholding to shrink the linearly transformed coefficients. 
This process is repeated, based on a pre-set convergence 
criteria. Then, the final estimated image is considered the final 
filtered output image. As a BM3D filtering approach, the 
BM3D filter shows superior performance compared to pixel-
based filters, particularly when dealing with fine details. 
Dabov et al. [14] demonstrated the BM3D filter produces 
higher peak signal-to-noise ratios, when compared to the 
spatially adaptive Wavelet filter [7]. Experimental studies, 
conducted by [13], showed that employing the BM3D filter 
into SCI systems is a promising direction. However, more 
experiments are still needed to verify its effectiveness in SCI 
systems under challenging conditions (e.g. variable image 
sizes, JPEG compression, and various SPN estimators). 

Houten et al. [15] used the AD filter for image denoising 
[16]. Their experimental work shows that the AD filtering 
scheme provides more accurate results when employed in an 
SCI system, compared to the wavelet filtering scheme 
proposed by [7]. 

Similar to the AD filter, [17] introduced a simplified total 
variation model (TVM), known as the first step total variation 
(FSTV). The filtering process is modeled as an energy 
minimization problem, which is iteratively solved. Similar to 
the AD filter [15], the FSTV emerged as a simple and 
computationally efficient approach to removing noise from an 
image. While it provides minimal denoising, FSTV extracts 
enough information to successfully complete the SCI process. 
It was experimentally compared to the AS [12], the AD [15], 
and the wavelet [7] filtering approaches over variable SPN 
estimators and JPEG compression ratios. The experiments 
reported the FSTV filter as the winner in terms of both 
accuracy and computational time. 

In our project, we aim at experimentally checking the 
performance of the SCI system under varying choices for 
stages 1, 2 and 3 of Fig. 1. Our goal is to find the best 
combination among the common existing schemes found in 
literature. 

The rest of this paper is organized as follows. Sections II 
and III present the experimental setup and the obtained results, 
respectively. Then, Section IV offers the conclusions of this 
paper. Finally, Section V highlights the major directions to 
extend this research in future. 

II. EXPERIMENTAL SETUP 

The images used in these experiments were downloaded 
from the Dresden Image Database [18]. A group of 75 natural 
images and 50 flat-field color images were collected from 18 
different devices. This resulted in 1350 natural and 900 flat-
field images in total. The selected 18 individual cameras 
spanned four manufacturers and six models as follows: 
- Canon Ixus 70: three cameras 
- Ixus 55: One camera 
- Olympus MJU: five cameras 
- Praktica DCZ 5.9: five cameras 
- Samsung NV15: three camers 
- Samsung SGH-S730M: one camera 

MATLAB was used to implement a prototype of the SCI 
system, described in Fig. 1. In order to check the interaction 
between the PRNU extraction and the SPN estimation stages 
alone, we set the third stage of Fig. 1 to null (i.e. there is no 
enhancement step). The classification stage employs the PCE 
ratio, as described in [9]. For the PRNU extraction stage, we 
experimented the wavelet [7], the BM3D [14], and the AD 
[15] approaches. For the SPN estimation stage, we 
experimented the basic [8], the MLE [11], the phase [19], and 
the phase MLE methods. This resulted in twelve different 
experiments, grouped into three different sets.  

For each camera, its 50 flat-field images were used to 
construct the reference SPN, using the PRNU extraction and 
SPN estimation procedures (stages 1 and 2 of Fig. 1). Then, 
for any given camera, the noise residual of each of the 2000 
natural images were extracted and compared to the reference 
SPN using the PCE ratio, generating a “PCE value” for each 
image. The PCE values were divided into two separate 
categories; if the natural image originated from the same 
source as the reference SPN, it was regarded as a true PCE 
value, and if the natural image originated from a different 
source from the reference SPN, it was regarded as a false PCE 
value. This approach sets up a binary hypothesis test, where a 
threshold was set and compared to the PCE values. If a true 
PCE value is above the threshold, it is a true detection 
otherwise it is a false rejection. Similarly, If a false PCE value 
is above the threshold, it is a false detection otherwise it is a 
true rejection. The number of true and false positives, as well 
as the number of true and false negatives, was counted. Then, 
the true positive (TPR) and the false positive (FPR) rates were 
calculated as: 
 

TPR NT

LT
, and FPR NF

LF
 

 
where, LT and LF are the total number of true and false 
images respectively, and NT and NF are the total number of 
true positives and false positives respectively. These values 
were used to build ROC curves, where the TPR was plotted 
against the FPR for each individual case. 

III. RESULTS/DISCUSSION 

Fig. 2 shows the ROC curves for the first set of 
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experiments, where the wavelet approach [7] was employed in 
the first stage of Fig. 1 together with the various SPN 
estimators described in Section II. 

The analysis of Fig. 2 reveals that the basic SPN estimator 
[8] achieves the highest performance for false positive rates 
less than 0.001. It shows an increase in the area under its ROC 
curve over the curves of the MLE [11], the phase [19], and the 
phase MLE SPN estimators by 14%, 16%, and 34% 
respectively. However, for false positive rates higher than 
0.001, it has the same performance as the MLE SPN estimator. 
Similarly, the phase SPN estimator yields higher performance 
compared to the phase MLE SPN estimator for false positive 
rates lower than 0.002. Finally, this set of ROC curves 
suggests that for false positive rates higher than 0.002, both 
the basic and the MLE estimators outperform both the phase 
and the phase MLE estimators by approximately 28% increase 
under their corresponding ROC curves. 

 

 

Fig. 2 ROC curves for the first set of experiments: Wavelet approach 
[7] with various SPN estimators 

 

 

Fig. 3 ROC curves for the second set of experiments: BM3D 
approach [14] with various SPN estimators. 

 
Fig. 3 shows the ROC curves for the second set of 

experiments, where the BM3D approach [14] was employed in 
the first stage of Fig. 1 together with the various SPN 

estimators described in Section II. 
The analysis of Fig. 3 reveals that the there is no significant 

difference between the curves for false positive rates higher 
than 0.01. However, the phase SPN estimator outperforms the 
other three estimators for lower false positive rates. The area 
under the ROC curve for the phase SPN estimator shows an 
increase of 34%, 11%, and 9.5% compared to the MLE, the 
phase MLE, and the basic SPN estimators, respectively. The 
analysis also revealed that the phase MLE SPN estimator 
yields the worst performance, compared to the other 
estimators, when used with the BM3D approach. 

Fig. 4 shows the ROC curves for the third set of 
experiments, where the AD approach [14] was employed in 
the first stage of Fig. 1 together with the various SPN 
estimators described in Section II. 

The analysis of Fig. 4 shows very little discrimination 
between the ROC curves for false positive rates higher than 
0.002. However, for false positive rates lower than 0.002, the 
phase SPN estimator outperforms all other estimators. 
Whereas, the MLE SPN estimator yields the worst 
performance, compared to the other estimators, when used 
with the AD approach (the area under its ROC curve is 13% 
less than the area under the ROC of the phase SPN estimator). 

 

 

Fig. 4 ROC curves for the third set of experiments: AD approach [15] 
with various SPN estimators. 

IV. CONCLUSION 

In this paper, we experimentally checked the performance 
of various common SPN estimators under different PRNU 
extraction approaches. We run three different sets of 
experiments using a database of 1350 natural and 900 flat-
field images, captured by 18 individual cameras. The ROC 
curves were employed to assess the performance of each SPN 
estimator. The statistical analysis revealed that the basic SPN 
estimator outperforms the other candidates when the wavelet 
approach is used for PRNU extraction. However, the phase 
SPN estimator outperforms all other estimators when used 
with either the BM3D or the AD extraction stages.  
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V.  FUTURE WORK 

In future, we plan to conduct more experiments to check the 
impact of various enhancement approaches (stage 3 in Fig. 1) 
on the overall performance of the identification system. Upon 
completing all experiments, a comprehensive statistical 
analysis will be employed to recommend the optimum 
configuration of a SCI system. 
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