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Abstract—Displacement measurement was conducted on 

compact normal and shear specimens made of acrylic homogeneous 
material subjected to mixed-mode loading by digital image 
correlation. The intelligent hybrid method proposed by Nishioka et 
al. was applied to the stress-strain analysis near the crack tip. The 
accuracy of stress-intensity factor at the free surface was discussed 
from the viewpoint of both the experiment and 3-D finite element 
analysis. The surface images before and after deformation were 
taken by a CMOS camera, and we developed the system which 
enabled the real time stress analysis based on digital image 
correlation and inverse problem analysis. The great portion of 
processing time of this system was spent on displacement analysis. 
Then, we tried improvement in speed of this portion. In the case of 
cracked body, it is also possible to evaluate fracture mechanics 
parameters such as the J integral, the strain energy release rate, and 
the stress-intensity factor of mixed-mode. The 9-points elliptic 
paraboloid approximation could not analyze the displacement of 
submicron order with high accuracy. The analysis accuracy of 
displacement was improved considerably by introducing the 
Newton-Raphson method in consideration of deformation of a 
subset. The stress-intensity factor was evaluated with high accuracy 
of less than 1% of the error.  
 

Keywords—Digital Image Correlation, Mixed Mode, Newton 
-Raphson Method, Stress Intensity Factor. 

I. INTRODUCTION 
HEN a structure was superannuated conventionally, 
newly remaking was almost the case. However, the 

industrial filed in the world has the idea in use of using it for a 
long time, by evaluating and diagnosing the soundness of a 
structure and repairing it selectively from fields, such as 
profitability, a resource, an environment, and energy. 
Although various sensors are developed for soundness 
assessment (health monitoring) of a structure in order to 
evaluate a stress and a strain quantitatively in a certain 
territory of an actual structure, there are many troubles which 
should be conquered, such as cost, time, and a labor. An 
actual structure is 3-D and opaque in many cases, and internal 
3-D displacement and stress measurement are considerably 
difficult. Then, the stress and the strain in the surface have 
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been measured mainly. Industrially, most strain gages are 
used. However, since it is point measurement, in order to 
carry out full field measurement in a certain territory, it needs 
many gages, an apparatus, and time. 

In this study, the hybrid stress-analysis method which 
enables the stress and the strain analyses from the 
experimental information on the surface obtained with digital 
image correlation method [1]-[6] was developed. Since the 
displacement data obtained from the experiment includes the 
error of measurement, it is almost impossible to analyze the 
stress and the strain from raw displacement data. Then, the 
intelligent hybrid method [7]-[9] which corrects the error of 
the experimental displacement data and makes a stress 
analysis possible was applied [10]-[12]. In order to build the 
system which combined digital image correlation method, 
and the 9-points elliptic paraboloid approximation and the 
intelligent hybrid method and to evaluate the availability of 
the system, the stress analysis of the acrylic specimen with a 
crack subjected to mixed-mode loading was conducted. The 
stress intensity factor of the mixed mode obtained from this 
has about 10 % of error, and sufficient accuracy was not 
acquired. Moreover, since it became clear that deformation of 
a subset must be taken into consideration from the result, the 
system which newly combined digital image correlation 
method using the Newton-Raphson method (NRM) [2], [3], 
[5] and the intelligent hybrid method was built. In order to 
evaluate the availability of this system, the mode I load was 
applied to the aluminum specimen with a crack, and the 
comparison with the 3-D finite element method (FEM) was 
performed. By this system, it became clear that the stress 
intensity factor is evaluated with high accuracy. 

II. PRINCIPLES 

A. Digital Image Correlation 
2-D digital image correlation allows the measurement of 

full-field, in-plane displacement from digital images before 
and after deformation. Two digital images of A {xi=1, 2, ….., 
N} and B {yi=1, 2, ……, N} were taken before and after 
loading. The correlation coefficient ρ is calculated by  
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where sx, sy are standard deviations of image A and image B, 
respectively, xi and yi are the averages of the gray level of 
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images. As ρ is higher, it can be said these two subsets 
resemble each other. Although the information on a pixel is 4 
bytes in colour, since analyses are possible enough with gray 
level values, only the intensity is used. Most digital image 
correlation algorithms work by searching the gray value 
pattern in small local neighborhoods commonly referred to as 
a subset. A similarity measure is employed to determine the 
displacement of the subset center in a second image (under 
loading).  

In the intelligent hybrid method, since the mesh by 8-nodes 
isoparametric element is adopted, the measuring points are 
first arranged so that they may correspond to the nodes of the 
mesh. Next, in order to measure displacement of each node, a 
certain territory (subset) is cut out from the image before 
deformation centering on a node. In order to calculate to 
which location of the image the subset moved after 
deformation, a correlation coefficient is calculated as a table 
of 3×3. The nine-points are taken focusing on the highest 
point in the table, and this process is continued until the 
center takes the highest correlation coefficient. It is 
considered that the location converged eventually is a result 
of coarse search. Only the movement magnitude in a pixel 
unit can be found in this phase. Therefore, many methods are 
developed to calculate sub-pixel order deformation. In these 
methods, we chose the nine-point elliptic paraboloid 
approximation by the least-squares method. Elliptic 
paraboloid shown in Fig. 1 is expressed by (2). 
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In this approximation, we can find the correct point of the 
displacement which is the lowest point in the surface. 
 

 
Fig. 1 Elliptic paraboloid 

 

B. Newton-Raphson Method 
Although the subset before deformation uses a rectangle in 

actual displacement analysis, since the image after 
deformation is transforming itself, we have to take this into 
consideration. Then, the deformation term of the subset is 
defined as follows as Pi. 
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If the coordinates after deformation of the point in this subset 
(x, y) are made into (x*, y*), (x*, y*) can be expressed by the 
following equations. 
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where ∆x and ∆y are the distances from a subset center to 
point (x, y), respectively. The coordinates (x*, y*) after 
deformation are not an integer overwhelmingly in many 
cases. Then, the gray level values between pixels after 
deformation were interpolated with the Lagrange 
interpolating polynomial of 3-th degree. The 
Newton-Raphson method is applied to these six deformation 
parameters.  

ii PHP ∇∗−=∆ −1            (5) 

The Hessian matrix H and the Jacobian matrix ∇Pi in (5) are 
expressed by the following equations. 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂

∂

⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂

∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂

∂

⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂

∂

∂⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂

∂

∂⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂

∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂

∂

⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂

∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂

∂

⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂

∂

∂⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂

∂

∂⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂

∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂

∂

⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂

∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂

∂

⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂

∂

∂⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂

∂

∂⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂

∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂

∂

⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂

∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂

∂

⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂

∂

∂⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂

∂

∂⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂

∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂∂

∂

⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂∂

∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂∂

∂

⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂∂

∂
∂∂

∂
∂∂

∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂∂

∂

⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂∂

∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂∂

∂

⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂∂

∂
∂∂

∂
∂∂

∂

=

y
v

y
v

x
v

y
v

y
u

y
v

x
u

y
v

v
y
v

u
y
v

y
v

x
v

x
v

x
v

y
u

x
v

x
u

x
v

v
x
v

u
x
v

y
v

y
u

x
v

y
u

y
u

y
u

x
u

y
u

v
y
u

u
y
u

y
v

x
u

x
v

x
u

y
u

x
u

x
u

x
u

v
x
u

u
x
u

y
v

v
x
v

v
y
u

v
x
u

vvvuv

y
v

u
x
v

u
y
u

u
x
u

uvuuu

H

ρρρρρρ

ρρρρρρ

ρρρρρρ

ρρρρρρ

ρρρρρρ

ρρρρρρ

222222

222222

222222

222222

222222

222222

   (6) 

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂

∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂

∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂

∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂

∂
∂
∂
∂
∂

=∇

y
v

x
v

y
u

x
u

v

u

Pi

ρ

ρ

ρ

ρ

ρ

ρ

           (7) 

The partial corrections are calculated using (5). Pi+1 after 
performing i+1 time calculation can be obtained from the 
following recurrence equation. 

iii PPP ∆+=+1           (8) 

This process is iterated until convergence is obtained. 

C. Intelligent Hybrid Method 
The 2-D intelligent hybrid method proposed by Nishioka 
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et al. was employed to evaluate the stress and the strain using 
displacement data. The intelligent hybrid method is 
formulized based on a variational principle which minimizes 
an experimental error. The variational principle is expressed 
as 

∫∫∫
∫

−+=
V ijijV iiS ii

V ijij

dVdVufdSut

dV

t

modexpmodmod

modmod

δεσδδ

δεσ           (9) 

where V is the hybrid analysis area. S means a boundary of 
the hybrid analysis area. σij

exp is the stress obtained by the 
experiment. ui

mod, σij
mod and εij mod are the displacement, the 

stress and the strain in the modifying field. 
_

it  and 
_

if  are 
traction and body forces, respectively. The hybrid analysis 
area is divided into some regions, and equation (9) is 
expressed by vector notation as 
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where n is the element number, Vn and Stn are the region and 
mechanical boundary of the n-th element, respectively. The 
displacement vector in the element is expressed as follows 

{ } { } { } [ ]{ } { }( )modexpmodexp qqNuuu +=+=            (11) 

where [N] denotes the shape function matrix, {qmod} and 
{qexp} are the nodal displacement vectors of the modifying 
and experimental fields in the element, respectively. The 
stress and the strain are similarly expressed by the following 
equation: 

{ } { } { } [ ] { } { }( )modexpmodexp qqB +=+= εεε              (12) 

{ } { } { } [ ][ ] { } { }( )modexpmodexp qqBD +=+= σσσ        (13) 

where [B] and [D] are strain-displacement and elastic 
coefficient matrices, respectively.  

From (10)-(13), one obtains the following finite element 
equation: 

[ ] { } { } [ ] { }expmod QKFQK −=                        (14) 

where {Qmod} and {Qexp} are the nodal displacement vectors 
of the modifying and experimental fields in the entire hybrid 
analysis region, respectively. [K] and {F} are the global 
stiffness matrix and the global nodal force vectors, 
respectively. Usually, the experimental displacement field 
contains measurement errors so that the right-hand side of 
(14) is not zero. 

{ } { } [ ] { } 0exp ≠−= QKFR                         (15) 

where {R} is the restoration force vectors. The modifying 
displacement field can be evaluated by solving the following  

equation. 

[ ] { } { }RQK =mod                                  (16) 

{Qmod} can be obtained from the 2-D FEM by putting R as the 
nodal load and constraining all nodes at the outer boundary in 
the x and y directions. Since the analysis accuracy is 
influenced by smoothing of the displacement on the outer 
boundary, we need to pay attention enough to smoothing 
[10]. Finally, the true displacement field is obtained by the 
following equation. 

{ } { } { }modexp QQQ +=                             (17) 

Thus, obtained displacement filed ui (=ui
exp + ui

mod) by the 
intelligent hybrid method satisfies the principle of minimum 
potential energy and the principle of virtual work, as well as 
the equilibrium equation. 

If an appropriate displacement filed can be obtained, from 
the following equation, the strain can be evaluated from the 
displacement of each node, and the stress can be evaluated 
from the strain. 

{ } [ ]{ }eB δε =                 (18) 

}]{[}{ εσ D=                   (19) 

where {δ}e is the nodal displacement vectors of an element. 

III. EXPERIMENT AND FEM MODEL 
The acrylic resin has a low Young's modulus and greatly 

deforms. Although an image is captured with low 
magnification, since deformation can be checked, it is 
advantageous when calculating with pixel unit. Then, we 
employed the acrylic resin as the material of the specimen. 
Young's modulus and Poisson’s ratio of acrylic resin were 
3.06 GPa and 0.38, respectively. The specimen configuration 
is shown in Fig. 2. α in the figure is a load application angle. 
The mixed-mode loading was applied to the specimen using a 
device proposed by Richard and Benitz [13] as shown in Fig. 
3. This device enables us to carry out the experiments under 
seven kinds of mixed-mode loading. The degree of load 
application angle was changed by a unit of 15 degrees from 0 
to 90 degrees, and the images before and after deformation 
were taken with the CMOS camera. Then, the intelligent 
hybrid method proposed by Nishioka et al. was applied to the 
stress-strain analysis. Consequently, the stress and the strain 
near the crack tip can be evaluated with high accuracy. The 
stress-intensity factors KI and KII were evaluated by the 
virtual crack extension method [14][15].  

To simplify the comparison between stress-intensity 
factors (KI, KII), the non-dimensional stress-intensity factors 
(FI, FII) were evaluated as follows: 

),( IIIj
a

WB
P

K
F j

j ==
π

                     (20) 

Here, P is the load, W and B are the width and thickness of the 
specimen, respectively, and a is a crack length. 
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Fig. 2 Specimen configuration 

 

 
Fig. 3 Mixed-mode device 

 

 
Fig. 4 3-D mesh of FEM 

 
Accuracy assessment was performed from the comparison 

with the result of 3-D FEM and the experimental result 
obtained by the 9-points elliptic paraboloid approximation 
and the intelligent hybrid method.  

The 3-D mesh of FEM is shown in Fig. 4. Next, the need 
for algorithm of taking deformation into consideration to 
pattern matching has been recognized from the analyses as 
the result of the above-mentioned mixed mode experiment. 
Then, the new system which combined the Newton-Raphson 
method which took deformation of the subset into 
consideration, and the intelligent hybrid method was 
developed. In order to evaluate this system, the experiment 

under mode I loading was conducted using the compact 
tension specimen of aluminum alloy A2017-T3. The 
specimen configuration is shown in Fig. 5. Young's modulus, 
Poisson's ratio and the yield stress are 70.3 GPa, 0.33 and 304 
MPa, respectively. Fig. 6 shows the 3-D mesh of FEM. 
 

 
Fig. 5 Specimen configuration 

 

 
Fig. 6 3-D mesh of FEM 

IV. RESULTS AND DISCUSSIONS 
As the example of mixed mode loading, the images of 

α=45 degrees used for displacement measurement are shown 
in Fig. 7. The size of this image is 500 [W] × 500 [H] pixels, 
magnification is 0.00425 mm/pixel, and the loads before and 
after loading are 21.0 N and 200.0 N, respectively. 

Fig. 8 shows the distribution of displacement obtained by 
the 9-points elliptic paraboloid approximation. A remarkable 
difference is shown in the x-direction displacement between 
FEM and the intelligent hybrid method. The amount of 
deformation which straddles a crack of the intelligent hybrid 
method is smaller than that of FEM. This originates in that 
there are few absolute values of deformation. It is 
theoretically difficult to calculate the amount of displacement 
of the sub-pixel in digital image correlation method. When 
analyzing especially actual deformation, a subset is extracted 
before deformation, but it is searched for where it moved 
after deformation. However, in order for the subset itself to 
change, accuracy falls. In the case of this analysis, it is 
completely in the range of the sub-pixel which is less than 0.5 
pixel at the point of largest displacement. As a result, it seems 
that a good result was not obtained since correlation was not 
able to be taken well. 

Next, although a good result is generally obtained, the 
displacement in the y direction is greatly dented in the upper 
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and the lower parts at the crack tip. There is a line of a 
longitudinal direction near the crack tip as shown in Fig. 7, 
but this is considered to be the cause of error. That is, the 
image which has a line perpendicularly is unsuitable to 
vertical displacement analyses, and considering a principle, 
we can understand this easily. The contour map of stress in 
the y direction in α=45 degrees is shown in Fig. 9. Although 
the good result is obtained near the crack, big turbulence can 
be seen near the outer boundary. Since the intelligent hybrid 
method constrains the outer boundary and calculates, the 
error of small displacement of the outer boundary causes a 
big stress concentration. This is a theoretic problem and 
needs to examine the method which will correct this error 
from now on.  

The variation of the non-dimensional stress intensity factor 
with a load application angle is shown in Fig. 10. Although 
there are a few points exceeding 10 %, the difference 
between both is less than 10 % at almost all angles. The 
absolute value of the difference is small and does not pose a 
big problem. The stress intensity factor obtained by both 
methods was in agreement in general. 

Although a mixed mode load is added to a test piece by the 
six pins of the upper and the lower sides, the holes of the both 
ends of loading device are the long circles to a transverse 
direction and the central holes are the long circles to a 
longitudinal direction, so that the contact condition with the 
holes of loading device and the pins varies delicately with the 
load application angle. Therefore, since the constraint 
conditions of FEM and experiment were not strictly in 
agreement, it is thought that the error arose. Although it was 
able to obtain the stress intensity factor with less than 10% of 
the error mostly by the old experiment approach, if 
deformation is taken into consideration, it will be thought that 
accuracy is raised more.  

Although the accuracy of the intelligent hybrid method is 
greatly influenced by the accuracy of the outer boundary of 
the analysis region, since the outer boundary of the analysis 
region is distant from the crack tip, its deformation is large 
and its error is large by an old approach. Since the actual 
deformation is not a rectangle and the subset itself deforms, it 
is considered that the analysis accuracy of the sub-pixel 
improves by taking this into consideration. Then, the 
experimental result using the Newton-Raphson method in 
consideration of deformation is shown below. 

The images actually used for analyses are shown in Fig. 11. 
The magnitude of an image is 500 [W]  500 [H] pixels, and 
the magnification is 0.02378 mm/pixel. The loads before and 
after deformation are 102.0 N and 499.5 N, respectively. The 
distribution of the displacement obtained by the Newton 
Raphson method is shown in Fig. 12. At the crack opening 
part of the left-hand side of the image, it is seen that the 
displacement in the x direction is slightly curving on 
left-hand side. It is considered that it is because the algorithm 
cannot respond to deformation of the subset completely. In 
this location, since the subset is close to a trapezoid, it is 
thought that such an error has come out. 

 
       (a) Before deformation                   (b) After deformation 

Fig. 7 Images of the displacement analysis 
 

 
 

(a) Result of FEM                (b) Result of hybrid method 
Fig. 8 Displacement distribution by 9-points elliptic 

paraboloid approximation 
 
 

 
(a) Result of FEM                   (b) Result of hybrid method 

Fig. 9 Contour map of σy in α=45 degrees 
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Fig. 10 Variation of non-dimensional stress intensity factors with a 

load application angle 
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The contour map of σy is shown in Fig. 13. First, if its 
attention is paid to the outer boundary, although turbulence 
has arisen like Fig. 9, the result whose distribution 
configuration is quite good is obtained. Although a thing like 
a big stress concentration can be seen at the upper part and 
the lower part of left-hand side, this is caused by the result in 
displacement analyses. 

About a crack problem, there is a stress intensity factor as a 
standard which evaluates analysis accuracy synthetically. 

Finally, this stress intensity factor is compared. As seen in 
Table I, as for the result of the Newton-Raphson method, the 
result better than the 9-points elliptic paraboloid 
approximation is obtained. Although the relative error with 
the result of FEM was quite as large as 6.4 % in the 9-points 
elliptic paraboloid approximation, the very good result was 
obtained with 0.8 % and less than 1 % of an error in the 
Newton-Raphson method. Also in the experimental result of 
other cases, 0.5 % of the error and the good result are 
obtained, and the effectiveness of this method was verified. 

 
TABLE I  

NON-DIMENSIONAL STRESS INTENSITY FACTOR FI 
Method 3-dimensional 

Finite Element 
Method 

Newton-Raphson 
Method 

9-points Elliptic 
Palaboloid 

Approximation 
S.I.F. 11.048 11.132 10.336 

 

V. CONCLUSION 
(1) The system using digital image correlation method, and 

the 9-points elliptic paraboloid approximation and the 
intelligent hybrid method enabled it to evaluate a mixed 
mode stress intensity factor by less than 10 % of error. 

(2) By introducing the algorithm in consideration of the 
deformation using the Newton-Raphson method, the 
accuracy of displacement analyses was considerably 
improved. 

(3) The system using digital image correlation method, the 
Newton-Raphson method, and the intelligent hybrid 
method enabled it to evaluate a stress intensity factor by 
less than 1 % of error. 
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