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 
Abstract—In this paper, we are interested to determine the 

carbon dioxide pressure in the arterial blood through radial velocity 
difference. The blood was modeled as a two phase mixture (an 
aqueous carbon dioxide solution with carbon dioxide gas) by Drift 
flux model and the Young-Laplace equation. The distributions of 
mixture velocities determined from the considered model permitted 
the calculation of the radial velocity distributions with different 
values of mean mixture pressure and the calculation of the mean 
carbon dioxide pressure knowing the mean mixture pressure. The 
radial velocity distributions are used to deduce a calculation method 
of the mean mixture pressure through the radial velocity difference 
between two positions which is measured by ultrasound. The mean 
carbon dioxide pressure is then deduced from the mean mixture 
pressure. 

 
Keywords—Mean carbon dioxide pressure, mean mixture 

pressure, mixture velocity, radial velocity difference. 

I. INTRODUCTION 

HE arterial blood gas (ABG) analysis consists of a blood 
sampling by a puncture of the radial artery (systemic 

artery bringing the oxygenated blood to the hand) and a 
measurement of three vital parameters which are partial 
pressure of oxygen PO2, partial pressure of carbon dioxide 
PCO2 and arterial pH. This allows the evaluation of 
haemostasis, the confirmation of the respiratory failure 
diagnosis, and the monitoring of a treatment’s effectiveness in 
the intensive care unit (ICU), pneumology and operating room 
[1]. The sample Blood is analyzed by electrometric procedures 
to determine arterial blood pH and PCO2 [2].  

ABG analysis is needed for monitoring the respiration of 
patients under artificial respiration in ICU. Without this 
information, it becomes hard to physicians to control perfectly 
the mechanical ventilation. Knowing that the classical 
sampling process of the arterial blood using a syringe is not 
only painful for the patient but mostly cannot be repeated 
frequently. However, frequent blood sampling can cause 
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anemia, due to the relatively excessive amount of collected 
blood (usually 5 to 6 mL per sample including losses), 
infections and contaminations. Also, it can occasionally cause 
necrosis due to a decrease or local blockage of blood flow [3]. 
For all these reasons, a non-invasive method is required to 
take real time measurements of arterial blood pH and PCO2. 
This requires necessarily an ex-situ measurement procedure. 
When it is question to measure a pressure quantity, 
ultrasounds can be exploited as a safe gas pressures 
measurement method. The work described in this paper, is 
interested to procedure determination of the carbon dioxide 
pressure.  

The setting of the measurement procedure firstly needs a 
mathematical modeling of the arterial blood. In this case, the 
blood solution is modeled as an incompressible Newtonian 
mixture of two phases. Mainly, it is about an aqueous carbon 
dioxide solution with carbon dioxide gas. The suitable model 
to describe the flow of this mixture is Drift flux model. The 
Drift flux and the Young-Laplace equations are used to 
simulate the fluid flow and to deduce the carbon dioxide 
pressure when calculating the mixture radial velocity [4]. In 
this paper, the method used for the assessment of mean carbon 
dioxide pressure is based on the determination of radial 
velocity distributions. 

II. METHODS AND MATERIALS 

A. Mathematical Model 

The arterial blood contains various cells in plasma solution 
(water) which are red blood cells, white blood cells and 
platelets as well as gases including carbon dioxide and 
oxygen. Since the work is interested to determine the carbon 
dioxide pressure, the considered fluid is modeled as a two 
phase mixture flowing in a rigid canalization by the Drift flux 
model. It is about a gas phase (microbubbles of carbon 
dioxide) and a liquid phase (aqueous carbon dioxide solution) 
[4].  

The drift flux model considers the whole mixture taking 
into account a drift velocity between the gas phase (dispersed 
phase) and the liquid phase (continuous phase). 
Experimentally, the measurement of the mixture velocity 
permits to deduce another characteristic of the two phases 
especially the gas phase. Both phases are considered to be 
incompressible. The first three equations of the considered 
model are used to express the mass and momentum 
conservations as  
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1) Mixture continuity equation 
 
.׏																															 ሺߩ௠ܷ௠ሻ ൌ 0                                    (1) 

 
2) Continuity equation for dispersed phase 
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3) Mixture momentum equation 
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where, Um: mixture velocity, ρm: mixture density, ρ1: liquid 
density, ρ2: gas density, α2: volumetric fraction of gas, pm: 
mixture pressure, τ: viscous stress, gm: gravitational 
acceleration vector, V2j: drift velocity vector of the gas phase 
[5]. 

The mixture pressure is expressed by the liquid pressure and 
the gas pressure as: 

 
௠݌																				           ൌ ଵ݌ଵߙ ൅  ଶ                                 (4)݌ଶߙ
 

α1 presents volumetric fraction of liquid phase, p1 presents 
liquid pressure, and p2 presents gas pressure.  

Equations (1)-(3) permit to determine distributions of 
mixture velocities, the volumetric fraction of gas, and mixture 
pressure [4]. Equation (4) allows to relate pressures of gas and 
liquid phases to the mixture pressure but it is not sufficient to 
calculate the carbon dioxide pressure. To evaluate the gas 
pressure distribution, it is necessary to use a fifth equation. 
This equation is needed to determine the mentioned pressure 
distribution, knowing the mixture pressure distribution and the 
phase fractions. Then, the Young- Laplace equation is used to 
correlate the pressures of the two phases (5). The considered 
equation is written as: 

 

ଶ݌																																									 െ ଵ݌ ൌ
ଶఙ		

ோ
																																										(5) 

 
The term σ presents the surface tension and the term R 

presents the radius of the microbubble of the gas [6], [7]. 
Then, the use of the two later equations (4) and (5) allows 

the assessment of gas pressure distribution through the 
mixture pressure and velocities. 

B. Calculation Method 

For a given fixed initial conditions, the resolution and the 
numerical simulations of (1)-(5) permit to calculate the spatial 
distribution of the three velocity's components Uxm, Uym, and 
Uzm respectively along x axis (flow axis), y axis, and z axis, as 
well as the spatial distribution of the mixture pressure pm and 
carbon dioxide pressure p2. This constitutes the first step of the 
study [4]. 

The theoretical results allow understanding of the behavior 
and the characteristics of the considered mixture. Through 

these results, a calculation method is established to determine 
the mean gas pressure in the mixture knowing the mean 
mixture pressure. The later parameter is deduced from the 
mixture radial velocity distribution.  

The blood sampling is done orthogonally to the flow axis, 
to avoid the effect of the heart pressure. Inspired by this 
technique, the mean carbon dioxide pressure is calculated by 
the radial velocity distribution values. Practically, mean gas 
pressure is determined through mean mixture pressure. 
According to (3), the mixture velocity values (Uzm, Uym, and 
Uxm) depend on mixture pressure pm. Thus, several 
distributions of Uzm in (x,z) plan are calculated for different 
values of mean mixture pressure. These later values are 
calculated by the integration of pressure values in all 
canalization's cells. 

In practice, ultrasound is exploited in Doppler technique for 
measurement of linear blood flow. In this case, it is 
concevable to use two ultrasonic probes fixed on the 
canalization perpondicularly to the flow direction. Both probes 
must be relatively one far from the other to avoid 
measurement errors. In these positions, probes are able to 
measure the radial velocity of the mixture in each point on the 
probes fields of view. This method permits to deduce the mean 
mixture pressure knowing the radial velocity difference values 
between the two considered directions as 

 
                                    ௠ܲ௢௬ ൌ ݂ሺ∆ ௭ܷ௠ሻ                            (6) 

C. Calculation 

The numerical simulations of the mixture parameters are 
made by MATLAB. Therefore, the calculation permits the 
assessment of the mean mixture pressure and the mean carbon 
dioxide pressure through the differences of radial velocity 
distributions.  

III. RESULTS AND DISCUSSION 

The fluid moves horizontally through a cylindrical rigid 
canalization with constant cross-section (4mm radius and 
10cm length). Samples of the velocities Uzm, Uym, and Uxm are 
chosen respectively as 9x9x10, 9x10x9, and 10x9x9 in the xyz 
space. Numerical simulations of the mixture allowed to 
calculate the distribution of radial velocity Uzm for different 
values of mean mixture pressure Pmoy.  

The calculation of velocity distributions Uzm along x axis for 
different values of z between 2 and 9 and different values of 
mean mixture pressure between 3.2 and 8.8 kPa, gives 
families of curves (Fig. 1) that changes remarkably with z 
position, but they are also shown coherence in the x interval 
between 3 and 8. In fact, in this interval, all the curves are 
continuous and differentiable. Then, from the curve families 
presented in Fig. 1, new curve families are deduced expressing 
the mean mixture pressure through the velocity distribution 
Uzm (Fig. 2). 
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Fig. 1 Distribution of Uzm with different values of Pmoy at different z positions 
 
Contrary to the first families of curves (Fig. 1), the second 

families show independent and generally linear curves which 
can give options to deduce calculation methods of mean 

mixture pressure by ultrasound measurement of radial velocity 
Uzm. Practically, it is not suitable to do simultaneous 
measurements of velocities in all considered positions along 
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the x axis (from the first position to the ninth last position) 
because of confusion in ultrasound detection when two probes 
are nearby. This can constitute a source of measurement 
errors. To circumvent this difficulty, it is advisable to calculate 

the mean mixture pressure by the measurement of radial 
velocities differences between just two important positions 
along the x axis chosen according to results, as shown in Fig. 
1.  

 

  

  

  

Fig. 2 Distribution of Uzm with Pmoy for different x positions 
 
Then, the radial velocities differences are calculated 

between positions 3 and 8 on the x axis for the z positions (z 
axis presents the radial axis) from 2 to 9 (Fig. 3). Thus, it is 

possible to use two ultrasonic probes put on the two 
considered x positions and measure radial velocity. 

The radial velocity's differences calculated between these 
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curves are chosen to determine the mean mixture pressure at 
z=2 and z=3. The fitting of these curves are realized as 
Pmoy=aΔUzm+b. Then, these functions are used to determine 
Pmoy through measured radial velocity differences and 
consequently to deduce the mean carbon dioxide pressure.  
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