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 
Abstract—We evaluate the performance of a numerical method 

for global optimization of expensive functions. The method is using a 
response surface to guide the search for the global optimum. This 
metamodel could be based on radial basis functions, kriging, or a 
combination of different models. We discuss how to set the cyclic 
parameters of the optimization method to get a balance between local 
and global search. We also discuss the eventual problem with Runge 
oscillations in the response surface. 

 
Keywords—Expensive function, infill sampling criterion, 

kriging, global optimization, response surface, Runge phenomenon. 

I. INTRODUCTION 

N [1] we presented a new search heuristic for the solution of 
constrained global optimization problems. This method is 

using a response surface model to reduce the number of 
expensive function evaluations. Now we evaluate the 
performance of this method by investigating how quickly and 
accurately it solves a set of test problems. 

II. THE OPTIMIZATION PROBLEM 

The continuous constrained global optimization problem is 
to find the n-dimensional parameter combination, x, which 
minimizes the corresponding response function, ݂ሺݔሻ. That is, 
the problem is to find 

 
argmin ݂ሺݔሻ, ݔ ∈ ܦ ⊆ Թ௡ 

 
where ݂ሺݔሻ is a real valued black-box function and 
ܦ ൌ ሼݔ: ݈ ൑ ݔ ൑  ሽ is a hyper-rectangular set of feasible designݑ
states, defined by the component-wise lower and upper bounds 
on ݔ. It is assumed that it is costly to evaluate the objective 
function, making the time spent on the decision where to 
evaluate it negligible in the context. It is also assumed that the 
function is sufficiently smooth, so that it can be approximated 
accurately by a response function. Furthermore it is assumed 
that no information about the partial derivatives of ݂ is given 
by the black box. 

III. PREVIOUS RESEARCH 

For derivative free optimization there exist many numerical 
methods. To mention a few, the simplex method by [2], the 
DIRECT algorithm by [3], different evolutionary algorithms, 
such as genetic algorithms, [4], and particle swarm 
optimization, tabu search, simulated annealing, etc. According 
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to [5], the most successful variants of simulated annealing use 
non-monotonic cooling schedules with alternating phases of 
cooling and reheating, which provides an oscillating balance 
between global exploration and local exploitation. 

In common for the methods mentioned above are that they 
generally require a lot of function evaluations before an 
accurate solution can be obtained. When the objective function 
is smooth, but costly to evaluate, evaluation time can be saved 
by constructing an approximating function to guide the search 
for the global optimum. This approximating function is called 
a meta-model, a response surface model (RSM) or surrogate. 

When RSM was introduced by [6], the idea was to use 
linear or quadratic regression to guide the search for the 
optimum. Low order polynomials were used in the 
construction of the surrogate model. Later, researchers started 
to use multimodal functions, such as radial basis functions 
(RBF) or kriging, to build better RSM models. 

The EGO algorithm by [7], [8], fits a metamodel via 
kriging. The expected improvement function is used as the 
criterion to select the sampling points. The expected 
improvement function will be large in regions where the 
metamodel is forecasting an improved objective function 
value and in regions where there is high uncertainty in the 
predicted value itself. Since the estimation of the standard 
deviation is based on previously evaluated function values, 
there is a possibility that the estimated value will be too low. 
This will give a too low predicted uncertainty in regions where 
the global minimum may be hidden, and a potential resulting 
convergence problem. 

Together with the interpolation function, kriging also gives 
an error estimation function. Hertog, Kleijnen and Siem [9] 
show that in average, the traditional kriging uncertainty 
formula gives an under-prediction of the actual error of the 
function. The reason is that it neglects the fact that regression 
coefficients and correlation function parameters are estimated. 
In [10], Kleijnen, van Beers, and van Nieuwenhuyse show that 
the smaller the sample size is, the more the kriging variance 
formula underestimates the true predictor variance. 

In the RBF method of Gutmann, [11], new sample points 
are selected using a target value, which is varied in cycles in 
order to obtain both global and local search. The point which 
is selected maximizes the smoothness of the resulting response 
surface, which is formed by adding this target value to the 
current set of responses. 

The Constrained Optimization using Response Surfaces 
method (CORS-RBF) by [12], is based on a radial basis 
function model. In this algorithm, the next sampling point is 
the one that minimizes the value of the surrogate model, under 
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the restriction that the minimum distance between the new 
point and the previously evaluated points must be greater than 
a prescribed value. This prescribed minimum distance, which 
has the purpose of driving the method towards unexplored 
regions of the domain, is cycled during the iterations. The 
cycle starts with the highest distance possible (global search), 
then continues with successively smaller distances, until it 
ends with a value of zero (local search). 

In the Metric Stochastic Response Surface (MSRS) method 
by Regis and Shoemaker, [13], a large number of points is 
spread over the parameter domain. The next sampling point  is 
chosen via multiplication of the score from two criteria: 
normalized function value, and normalized minimum distance 
from previously evaluated points. The balance between local 
and global search is cycled during the iterations. 

It is a striking similarity between these two methods by 
Regis and Shoemaker. Whereas the CORS-RBF method is 
maximizing the score of the objective function under the 
restriction that the distance function must be greater than a 
prescribed value, the MSRS method searches for the 
maximum product of the score function and the distance 
function. 

The idea of the qualSolve method by [14], is to reduce the 
total uncertainty of the surrogate model in relevant areas when 
selecting the sampling points. A quality function is introduced, 
which measures the integral of a weighted uncertainty 
measure over the parameter domain. A cyclic parameter is 
introduced that periodically alters the local/global search focus 
of the method. Unfortunately, the numerical integration of the 
quality function is limiting the implementation to a six 
dimensional parameter space at most. 

The optimization method we are evaluating in this article, 
[1], was derived by mimicking the qualSolve method, after 
discussions with Wojciechowski about his thesis work, [15]. 
To overcome the problem with integral calculation of the 
uncertainty function in qualSolve, a simplification is made, 
and as the measure of uncertainty a simple distance function is 
chosen. A weight function is introduced to measure the 
attractivity of the function value in different parts of the 
domain, and finally the method searches for the maximum 
product of the weight and distance functions. As the weight 
function is based on normalized function values, the resulting 
method becomes similar to the MSRS method, [13]. 

Samad et al. show in [16] that the most accurate surrogate 
does not always lead to the best design. Hence, by using a 
number of different approximation models, the robustness of 
the optimization process can be improved. This is an idea that 
very well could be could be incorporated into our optimization 
method, [1]. 

In [17], Viana advocates to take advantage of multiple 
surrogates as an insurance against poorly fitted models. One 
possibility which is tested is to fit multiple surrogates and 
picking one. The selection is made by means of cross 
validation, where one of the data points at a time is left out in 
the construction of the response surface. Another tested 
possibility, is the use of a (weighted) average of the different 
surrogate models. Unfortunately Viana show that the potential 

gains of combination, via weighted average of multiple 
surrogates, diminish substantially in high dimensions. 

The idea of studying the average instead of individual 
predictions can also be found in social science. In [18], 
Surowiecki argues that large groups of people make better 
decisions than groups of just a few. Page introduces the 
diversity prediction theorem, [19], to show why diversified 
groups outperform groups of like-minded experts. Lorenz et 
al., [20], study the effect of social influence on crowd answers. 
They find that geometric mean and the median are far more 
robust than the arithmetic mean value. 

IV. THE NUMERICAL METHOD 

In the first step of the optimization method [1], information 
about the objective function is gathered by evaluating ݂ሺݔሻ at 
some design sites. The design space is the ݊-dimensional unit 
cube, after normalization of the input parameters. The optimal 
size for the initial design of experiments (DOE) is problem 
dependent, with a higher risk of missing the global optimum 
initially if the number of design sites in the DOE is small. To 
be able to compare the obtained results directly with those 
obtained by, [21], we start by evaluating the objective function 
at randomly generated Latin Hypercube Designs (LHD) 
consisting of ten points. Each numerical experiment is 
repeated ten times, to reduce the effect of the randomness in 
the initial design on the performance of the solution method. 

Kleijnen and van Beers, [22], notice that the accuracy of the 
kriging predictions will be worse when kriging is used for 
extrapolation. As a consequence they select the 2௡ vertices of 
the design space as a subset of the initial design. To this set, a 
small set of additional observations is added, using a standard 
space-filling design. 

The next step of the optimization algorithm [1] consists of 
constructing a function, መ݂ሺݔሻ, to approximate the objective 
function in the domain ܦ. It is possible to use any type of 
approximation for this purpose, for example any type of radial 
basis function (RBF), kriging, or neural network. Throughout 
this paper we use a Gaussian interpolating function, 

 
መ݂ሺݔሻ ൌ ߚ ൅ ∑ ௜ߛ

௠
௜ୀଵ ݁ି‖ఏ∙ሺ௫ି௫೔ሻ‖

మ
,                   (1) 

 
to interpolate the given set of ݉ ݊-dimensional parameter 
combinations and the corresponding one-dimensional 
responses. The approximating function is obtained by the 
DACE kriging toolbox by Lophaven, Nielsen, and 
Søndergaard, [23], choosing a constant regression function 
and a Gaussian correlation function. 

Franke tested different methods for scattered data 
interpolation in [24]. He found that it is possible to obtain 
good results with Gaussian RBF, but also that the results are 
quite sensitive for the choice of the ߠ-parameter in (1), and 
that the optimal choice of this ߠ-parameter is dependent both 
on the function values, and the position of the design points. In 
terms of fitting ability and visual smoothness, the best method 
included in the tests was the multiquadric RBF, with the basis-
function ඥ‖ݔ െ ௜‖ଶݔ ൅  ଶ. The interpolation is quite stable withݎ
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respect to the ݎ-parameter and yields consistently good results, 
often giving the most accurate results of all tested methods. 
Unfortunately for us, the multiquadratic model is not 
implemented in the DACE kriging toolbox. 

In kriging, the tuning parameters of the meta-model are 
determined by the maximum likelihood estimation, which 
aims to minimize the error of the predictor መ݂ሺݔሻ in least square 
sense. The underlying assumption in kriging is that the 
deviation from the value predicted by the regression model 
behaves like white noise for all ݔ ∈  with a mean value equal ,ܦ
to zero and an autocorrelation matrix equal to a diagonal 
matrix. For deterministic computer experiments this 
assumption is not true. Nevertheless, kriging often succeeds in 
producing good approximations of the underlying objective 
function. 

Unfortunately all radial basis functions (including kriging) 
are susceptible to the Runge phenomenon, as noted by e.g. 
[25]. The Runge phenomenon is a problem of oscillation, 
often found at the edges of the domain, which can occur for 
any smooth function to be interpolated. This type of 
oscillations near the edges can be reduced by using a 
Chebychev type of node distribution. Unfortunately, this 
remedy will not be possible to use when the node positions are 
given by an infill sampling criterion (ISC) guiding the search 
for a global optimum. 

As shown in [25], the Runge phenomenon arises when 
using flat basis functions, i.e. when ߠ ൎ 0 in (1). For flat basis 
functions, the magnitude of the expansion coefficients ߛ௜ in (1) 
will be orders of magnitude higher than the magnitude of ݂, 
due to the high condition number of the correlation matrix. As 
a consequence, the interpolation surface will be highly 
oscillating. 

On the other hand, choosing ߠ too large is not good either, 
since it causes the basic functions to be narrow, and the 
resulting interpolating function will not be smooth. If ߠ is very 
large, the resulting interpolating function will attain the value 
of the objective function at the evaluated design points, but 
will drop down to zero in between. 

To improve the matrix condition number of the correlation 
matrix, a small value is added to the diagonal elements, in the 
kriging package [23]. This technique gives a kriging model 
which no longer interpolates the observations. 

In [26], Boyd studies the question how to choose ߠ in (1) 
properly. For equidistant grids, with ܰ interpolation points, 
one way to overcome the Runge problem, when	ܰ → ∞, is to 
choose ߠ proportional to ܰଷ ସ⁄ . If ߠ is proportional to	ܰଵ, then 
the root-mean-square (RMS) of the approximation error will 
start to fall when ܰ is increased, but suddenly a saturation 
level is reached and the error will not decrease any further. On 
the other hand, if ߠ is proportional to ܰଵ ଶ⁄ , which corresponds 
to flatter basis functions when ܰ → ∞, then we get either 
convergence, or divergence due to Runge oscillations. The 
convergence rate will be geometric, proportional to ݁ି௤ே for 
some constant	ݍ. However: by choosing the exponent of ܰ in 
between, i.e. ߠ ∝ ܰଷ ସ⁄ , we can avoid the two problems above. 
The cost of doing so is that the convergence rate will only be 

sub-geometric, ݁ି௤√ே, and that the condition number of the 
interpolation matrix will grow as ݁௣√ே, for some ݌ ൐ 0. We 
follow Boyd’s advice, and set the following restriction on the 
݊ components of ߠ in (1) when we compute the interpolating 
function: 

 

√2
80

∙ ܰଷ ସ⁄ ൑ ߠ ൑
4√2
80

∙ ܰଷ ସ⁄ . 

 
In the third step of the optimization algorithm a series of 

infill points is adaptively sampled in the region of feasible 
design states. The question of how the optimization landscape 
is to be explored is determined by the infill sampling criterion, 
which sets the balance between global explorations versus 
local exploitations of promising regions. It has been shown by 
[27] that every global convergent optimization method must 
now and then pay attention to regions of the domain that are 
relatively unexplored. 

The shortest Euclidean distance to previously evaluated 
points, 

 
݀ሺݔሻ ൌ min௜‖ݔ െ  ,‖௜ݔ

 
is used to measure the uncertainty of the interpolation model. 
On the contrary, many methods based on kriging interpolation 
use the predicted value of the mean square error which is 
given by the kriging model. As already discussed, this 
prediction may be wrong, especially when the underlying 
assumption is not fulfilled. Since this problem is taken away 
with the shortest distance formulation of the uncertainty 
estimation, the resulting method may be less sensitive to noisy 
simulations. For optimization problems with many space 
dimensions it might be advantageous to measure distance, in 
the global exploration phase, with the metric ିܮஶ, instead of 
the Euclidean norm, to force the method to change more than 
just a few of the coordinates in the ݔ-vector. 

To find promising regions to exploit, the weight function ݓ 
is introduced, which is defined by 

 

ݓ ൌ ݁ିఙ௙ሚ
భ.ఱ
. 

 
Here 

ሚ݂ ൌ
መ݂ െ መ݂

௠௜௡

መ݂
௠௔௫ െ መ݂

௠௜௡
 

 
It is a normalization of the predicted function values given by 
the surrogate model መ݂, and ߪ is a positive parameter which 
defines the amount of reliability in the surrogate model. Large 
values of ߪ ሺߪ ൎ ∞ሻ corresponds to high reliability in the 
surrogate model. In this case the weight function is very small 
except in the neighbourhood of the smallest surrogate function 
value. On the other hand; for small values of ߪ, ሺߪ ൎ 0ሻ, the 
weight function is more or less constant. 

The selecting criterion for the search heuristic is to choose 
the point which maximizes the auxiliary function 

 
ሻݔሺݓ ∙ ݀ሺݔሻ௡ାଵ.	                               (2) 
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By maximizing this product, we get a location with both 
promising function value, and a relatively high interpolation 
uncertainty. By maximizing ݓሺݔሻ separately we obtain local 
search, and by maximizing ݀ሺݔሻ separately we get global 
search. Hence we can obtain both local and global search by 
combining these two factors. 

We use a list of varying ߪ to obtain a robust method with a 
good balance between global and local search for a wide class 
of objective functions. To adequately change search focus, 
ranging from global to local, in the iterative process, we 
change the size of ߪ from iteration to iteration. In the 
numerical experiments, ߪ is set to 10ஐ with Ω	taken from the 
set ሼെ4,െ2, 0, 2, 4, 40, െ3, െ1, 1, 3,െ3.5, െ1.5, 0.5, 2.5, … 
… ,െ2.5,െ0.5, 1.5, 3.5ሽ in order from left to right, and repeating, 
thus varying the size of ߪ over the iterations. There is a mix of 
different numbers in the list, as each number will set how far 
from existing points the new points will be positioned. Each 
mini-cycle e.g. ሼെ4,െ2, 0, 2, 4, 40ሽ, will guide the method to 
zoom in at the best optimum found so far, going from global 
search to local search. 

Sasena, concludes in his PhD thesis, [21], that there is an 
advantage to switch between local and global search, instead 
of compromising between the two goals at every iteration. In a 
way, the method we use is following his advice, as it from 
time to time changes focus between local and global search, 
but it could be that the length of the mini-cycles of ߪ are too 
long. Too much iteration may be spent on zooming in to a 
point that later turns up not being the global optimum. 

Another point of possible method improvement is the 
occurrence of ߪ ൌ 10ସ଴ in the ߪ-list, leading to a very narrow 
local search. If the surrogate function is relatively unchanged 
from time to time, this choice of ߪ will lead to clusters of 
sample points near the local optima. If a new point ends up 
really close to an already evaluated one, then there is no 
meaning of evaluating the objective function there again. 
Either this additional infill point could totally be skipped, or 
alternatively, a minimum distance factor could be introduced 
in the ISC, to keep the sample points a certain distance apart. 

When sample points cluster, the auxiliary function becomes 
locally extremely bumpy, and such a function is difficult to 
optimize. Another problem with clusters of points is that the 
kriging model can become numerically unstable. When 
observations cluster, the correlation matrix that is used to find 
the kriging interpolation will be ill-conditioned, and spurious 
oscillations might appear in the surrogate model. These 
oscillations will make it harder for the ISC function to find the 
local optima of the true objective function. In the numerical 
experiments, we have noticed that such oscillations can 
appear, but they usually die off after the infill of one or more 
design points. 

A remedy to overcome the problems with oscillating RBFs 
is to reduce the size of the data set when building the 
interpolation surface. One idea is to filter out data points that 
are redundant, by removing those that have neighboring 
sample points with better objective function value. Another 
idea is to use a moving search window. The practice in DACE 
modeling is to use the entire data set to construct a global 

model, but in geostatistics only the nearest data points are used 
in the kriging system. The search window determines how 
many neighbors to include and the maximum separation 
distance to these neighbors. There are also other methods for 
local approximation of scattered data, such as the moving least 
squares method. 

To solve the ISC sub-problem, we first evaluate the 
auxiliary function (2) at a grid of 400 points, covering the total 
search space. This way we get a first approximation of the 
maximum. We then repeatedly refine the search, until the 
resolution on the smallest grid is equal to 10ିହ times the size 
of the initial search space. We are aware of the fact that this 
process is a rather inefficient, but we wanted a robust process 
of solving the auxiliary problem. To save computational time 
in this step of the method, e.g. a genetic algorithm could be 
used instead. When the ISC sub-problem is focusing on local 
search, the auxiliary function will have a lot of local optima, 
and there is no guarantee that the global one will be found. 
This is particularly true when the evaluated design points 
cluster in the region close to the global optimum. 

V. TEST FUNCTIONS 

The following test functions are used for the evaluation of 
the optimization method. 

A. The Mystery Function 

The Mystery function, with its unknown origin, was so 
called by Sasena [21]. The function is defined by 

 
݂ ൌ 2 ൅ 0.01ሺݔଶ െ ଵݔ

ଶሻଶ ൅ ሺ1 െ ଵሻଶݔ ൅ 2ሺ2 െ ଶሻଶݔ

൅ 	7 sinሺ0.5ݔଵሻ sinሺ0.7ݔଵݔଶሻ, 
 
where ݔଵ, ଶݔ ∈ ሾ0, 5ሿ. The function has three local optima. The 
global solution at ݔ ൌ ሾ2.5044, 2.5778ሿ has a value of ݂ ൌ
െ1.4565. 

B. The Branin Function 

The Branin function is defined by 
 

݂ ൌ ቆݔଶ െ
ଵݔ5.1

ଶ

ଶߨ4
൅
ଵݔ5
ߨ

െ 6ቇ
ଶ

൅ 10 ൬1 െ
1
ߨ8
൰ cos ଵݔ ൅ 10 

 
where ݔଵ ∈ ሾെ5, 10ሿ and ݔଶ ∈ ሾ0, 15ሿ. The function has three 
global minima at ݔ ൌ ሾߨ, 2.275ሿ, ݔ ൌ ሾ3ߨ, 2.475ሿ, and 
ݔ ൌ ሾെߨ, 12.275ሿ, where it attains the value 5 ሺ4ߨሻ⁄ . 

C. The six Hump Camelback Function 

The six hump camelback function is defined by  
 

݂ ൌ ሺ4 െ ଵݔ2.1
ଶ ൅ ଵݔ

ସ 3⁄ ሻݔଵ
ଶ ൅ ଶݔଵݔ ൅ ሺെ4 ൅ ଶݔ4

ଶሻݔଶ
ଶ 

 
We follow [21], and solve the problem in the domain 

ଵݔ ∈ ሾെ2, 2ሿ, ݔଶ ∈ ሾെ1, 1ሿ, which includes all six local optima. 
Two of these are global: ݔ ൌ ሾെ0.089842, 0.712656ሿ and 
ݔ ൌ ሾ0.089842, െ0.712656ሿ, and the optimal function value is 
݂ ൌ െ1.031628. 
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D.  The Osio Amon Function 

This function, which is non-linear in the first dimension, 
and linear in the second, was introduced by Osio and Amon. 
The function is defined over the domain ݔଵ, ଶݔ ∈ ሾ0, 1ሿ, and is 
given by 
 

݂ ൌ cos൫6ሺݔଵ െ 0.5ሻ൯ ൅3.1 ∙ ଵݔ| െ 0.7| ൅ 2ሺݔଵ െ 0.5ሻ

൅ sin ൬
1

ଵݔ| െ 0.5| ൅ 0.31
൰ ൅ 0.5 ∙  .ଶݔ

 
The solution ݔ ൌ ሾ0, 0ሿ, with the optimal value 

݂ ൌ 1.1240132321107, is found at a corner of the domain. 

E. The Schoen Function 

The n-dimensional Shoen test functions, [28], are of the 
form 
 

݂ ൌ
∑ ௜݂ ∏ ฮݔ െ ௝ฮݖ

ଶ
௝ஷ௜

௞
௜ୀଵ

∑ ∏ ฮݔ െ ௝ฮݖ
ଶ

௝ஷ௜
௞
௜ୀଵ

, 

 
where ݔ ∈ ሾ0, 1ሿ௡, and ݖ௝ ∈ ሾ0, 1ሿ௡. We have used k=10. 

F. Rosenbrock's Banana Valley Function 

The banana valley function is defined by 
 

݂ ൌ ሺ1 െ ଵሻଶݔ ൅ 100ሺݔଶ െ ଵݔ
ଶሻଶ, 

 
where ݔଵ ∈ ሾ0, 4ሿ and ݔଶ ∈ ሾ0, 10ሿ. The optimum is found 
at ݔ ൌ ሾ1, 1ሿ, where ݂ ൌ 0. 

VI. NUMERICAL RESULTS 

In this section we investigate the performance of the 
optimization method [1] through a set of analytical benchmark 
functions. The results are then compared with those obtained 
by Sasena with the EGO algorithm in [21]. The algorithm [1] 
is run with the parameter settings specified in section IV, and 
the following metrics are computed: 
• ଵ݂%:       The number of iterations until ݂ሺݔ௜ሻ is 

     within 1% of the true solution. 
 :%ଵݔ •      The number of iterations until ݔ௜ is within a 

     box of ±1% of the design space.  
ݔ‖ • െ  :‖௜ݔ The Euclidean distance from the best sample 

     point to the global solution. 
• ฮ݂ െ መ݂ฮ:  The RMS of the response surface error. 

The metrics measure how fast and accurately the algorithm 
finds the solution. The last metric, which measures how 
accurately the final response surface approximates the 
objective function over the design space, is computed after 
100 function evaluations. It is taken as the RMS value of the 
function error on a regular grid of 900 points. 

To be able to compare the obtained results directly with 
those obtained by Sasena, [21], we start with a DOE which is 
a randomly generated LHD of ten points. For a real world 
application we would rather like to use a minimax or maximin 
design than taking one at random, [29]. The DOE is also rather 
small. Usually it is recommended to use at least 10݊ points in 
the DOE, which means 20 points for a 2D problem. 

After the initial DOE, we let the algorithm run for 90 
iterations, giving a number of 100 function evaluations in 
total. Each test problem is run ten times to reduce the effect of 
randomness in the initial DOE. The median values of the 
obtained performance metrics are shown in Table I. 

 
TABLE I  

MEDIAN VALUE OF PERFORMANCE METRICS FOR METHOD [1] 

Function ଵ݂% ݔଵ% ‖ݔ െ ௜‖ ฮ݂ݔ െ መ݂ฮ 

Mystery 41.5 41.5 0.00002 0.8 

Branin 42 38.5 0.0001 0.03 

Six hump camelback 23 23.5 0.00001 0.02 

Osio Amon 4 4 0 0.2 

Schoen 2D 68.5 50.5 0.004 0.1 

Rosenbrock * 42 0.002 0.5 
*As the optimal function value for Rosenbrock's banana valley function is 

zero, it is impossible to obtain a function value within 1% of the true solution. 
 

When comparing the results in Table I with those obtained 
by the EGO method in Table III, we see that it takes 
comparable time to find one of the solutions for the Branin 
problem. For the Mystery and Six hump test problems 
however, more iterations are required. The reason for this can 
be seen in Figs. 1 and 3, where the infill points are shown for 
two different test problems. The list of ߪ is set up for a rather 
robust global search, which on the other hand also gives more 
iterations for easily found optima. We have obtained faster 
rates of convergence for these test problems when the list of ߪ 
is more focused on local search. The results for the third 
metric in Table I are really good. The accuracy of all the 
solutions is much higher than that given by the EGO method. 
The cost of this may be seen in the fourth metric. The periodic 
local search results that are given by the method [1] with 
௠௔௫ߪ ൌ 10ସ଴ tend to pile up close to each other near the 
optima, and this may cause problems with the accuracy of the 
response surface. 

 
TABLE II 

MEDIAN VALUE OF PERFORMANCE METRICS FOR METHOD [1]** 

Function ଵ݂% ݔଵ% ‖ݔ െ ௜‖ ฮ݂ݔ െ መ݂ฮ 

Mystery 31.5 31.5 0.000004 1 

Branin 32 24 0.00006 0.08 

Six hump camelback 16 16 0.000009 0.09 

Osio Amon 2 2 0 0.1 

Schoen 2D 59 45.5 0.0008 0.1 

Rosenbrock * 28 0.0002 4 
**Obtained results with ߪ ൌ 10ஐ, where Ω ∈ ሼെ1, 0	1, 2, 3, 4, 5, 40ሽ. 

 
TABLE III 

MEDIAN VALUE OF PERFORMANCE METRICS FOR EGO 

Function ଵ݂% ݔଵ% ‖ݔ െ ௜‖ ฮ݂ݔ െ መ݂ฮ 

Mystery 16 16 0.02 0.03 

Branin 67.5 19.5 0.02 0.3 

Six hump camelback 6.5 6.5 0.2 0.006 

 
In Figs. 2 and 5 the error in the response surfaces are shown 

after the final iteration. We have seen that the level of 
accuracy can be varying drastically from iteration to iteration. 

Before we started to use the kriging package [23] for 
optimization purposes, we tested its rate of convergence for 
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scattered data interpolation of known analytic functions, for all 
choices of correlation functions given by the program 
package. The best results in these tests were obtained with the 
Gaussian correlation function. However, these tests were 
performed on rather homogenously distributed sets of data 
points. 

In Fig. 4 we zoom in at the global solution area of the 
Schoen problem, to show the cluster of data points near the 
optimum. To overcome the problem with an eventually 
oscillating response surface, we recommend considering a 
change of the metamodel to some other type of approximating 
surface, or to introduce a minimum distance factor in the ISC, 
to keep the sample points a certain distance apart. We also 
remind about the possibility to take advantage of multiple 
surrogates, as an insurance against poorly fitted models, which 
was discussed in section III. 

Finally, in Table II and Fig. 6, we present some results 
obtained with a ߪ-parameter list which is slightly less focused 
on global search. In these simulations the ߪ parameter was set 
to 10ஐ, where Ω ∈ ሼെ1, 0	1, 2, 3, 4, 5, 40ሽ. For the first three 
metrics the results are overall much better, but as can be 
expected, the fit of the surrogate function is worse. 

 

 

Fig. 1 One hundred evaluated sample points for the Branin function. 
Contours of the logarithm of the objective function 

 

 

Fig. 2 The common logarithm of the absolute error in the response 
surface after the final iteration for the Branin test function problem 

 

Fig. 3 One hundred evaluated sample points for the Schoen function. 
Contours of the logarithm of the objective function 

 

 

Fig. 4 One hundred evaluated sample points for the Schoen function. 
Zooming in at the area of the solution 

 

 

Fig. 5 The common logarithm of the absolute error in the response 
surface after the final iteration for the Schoen test function problem 
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Fig. 6 One hundred evaluated sample points for the Schoen function, 
obtained with ߪ ൌ 10ஐ, when Ω ∈ ሼെ1, 0	1, 2, 3, 4, 5, 40ሽ 
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