
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:1, 2021

23

Abstract—The cache has an important role in the reduction of

access delay between a processor and memory in high-performance
embedded systems. In these systems, the energy consumption is one
of the most important concerns, and it will become more important
with smaller processor feature sizes and higher frequencies.
Meanwhile, the cache system dissipates a significant portion of
energy compared to the other components of a processor. There are
some elements that can affect the energy consumption of the cache
such as replacement policy and degree of associativity. Due to these
points, it can be inferred that selecting an appropriate configuration
for the cache is a crucial part of designing a system. In this paper, we
investigate the effect of different cache replacement policies on both
cache’s performance and energy consumption. Furthermore, the
impact of different Instruction Set Architectures (ISAs) on cache’s
performance and energy consumption has been investigated.

Keywords—L1-cache, energy consumption, replacement policy,

Instruction set architecture, multicore processor.

I. INTRODUCTION

MBEDDED systems are basically application-specific
systems. These system products are widely used in mobile

devices such as smartphones and tablet PCs. In these devices,
caches have been widely used to fill the performance gap
between memories and processors. Thus, the information
evoked from the memory is kept into a quick and small cache
system. In the case of recalling the same items, the processor
directly searches the cache as a high-speed memory instead of
the whole main memory, and as the result, the system
performance improves significantly via using the cache
memory [1]. In addition, embedded systems are usually
produced as portable devices or embedded in devices in which
the required energy for processing is provided by batteries.
Therefore, the energy consumption is an important issue in
these systems. One of the modules that consume a lot of
energy is the cache. Thus, if the energy consumption of the
cache decreases, the total energy consumed by the system will
decrease as well [2]. Hence, computer architects should
investigate the power consumption of the caches with different

Sajjad Rostami-Sani is with the Department of Electrical and Computer

Engineering, Ryerson University Toronto, Canada (e-mail:
srostamisani@ryerson.ca).

Mojtaba Valinataj is with the Department of Computer Engineering, Babol
Noshirvani University of Technology, Babol, Iran (e-mail:
m.valinataj@nit.ac.ir).

Amir-Hossein Khojir-Angasi is with the Department of Electrical
Engineering, Golestan University, Gorgan, Iran (e-mail:
a.khojirangasi@gmail.com).

configurations and choose the most optimum configuration for
it to alleviate the cache power consumption as much as it is
possible. In a cache, there are several parts that could be
effective on its energy consumption such as the cache’s
replacement policy and the degree of associativity. The impact
of different replacement policies on cache’s energy
consumption is outstanding; also, these policies are effective
in the case of system’s performance [3]-[7]. Regarding to
these facts and Fig. 1, choosing an appropriate replacement
policy for the cache especially in multicore systems is a
critical part of a system designer’s task. In this work, we
investigate the effect of different replacement policies on
caches with different configurations.

The rest of this paper is organized as follows. Section II
reviews some existing works that are about the evaluating the
impact of the cache replacement policies on the system’s
performance. The structure of the cache and the effect of its
different parts on its performance are given in Section III.
Section IV details the simulation environment and presents the
experimental results for the evaluation of the cache with
different replacement policies and configuration. Finally,
some conclusions are drawn in Section V.

Fig. 1 The structure of the cache in multicore systems (2-core
processor)

II. RELATED WORKS

There exist a variety of previous works focused on the
effect of cache replacement policies and different
configurations on the system’s performance. However, to the
best of our knowledge, none of the previous works focus on
issues such as energy consumption and the impact of ISAs.

In [8], Al-Zoubi et al. tried to find the replacement policy as

Evaluating the Impact of Replacement Policies on the
Cache Performance and Energy Consumption in

Different Multicore Embedded Systems
Sajjad Rostami-Sani, Mojtaba Valinataj, Amir-Hossein Khojir-Angasi

E

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:1, 2021

24

close to optimal as possible; they thoroughly explored the
design space of existing replacement mechanisms using
SimpleScalar toolset, across a wide range of cache sizes and
organizations. In order to better understand the behavior of
different policies, they introduced new measures, such as a
cumulative distribution of cache hits in the LRU stack. They
also dynamically monitored the number of cache misses, per
each 100000 instructions. In [9], they analyzed various factors
of effects on cache performance, and then carried out the
simulation experiment of cache performance based on
SimpleScalar tools set and SPEC2000 benchmark suite. They
compared the effects on cache performance when L1-cache,
L2-cache capacity, and replacement methods are changed
separately, and then they analyzed the experimental results in
detail.

In [10], Grund et al. presented an efficient method to
estimate the miss ratio using a stochastic model. The model
takes into account the parameters of the cache architecture and
a concise characterization of the software’s locality. In that
work, they considered the replacement policy as an important
component of the cache architecture. To this goal, they
introduced policy tables as a concise representation of
replacement policies. In [11], Zahran at first showed that local
replacement policies may not always be the correct way to go
for obtaining the most efficient cache hierarchy. Second, they
proposed several global replacement policies and discussed
their behavior with several benchmarks using a cycle accurate
simulator. Third, they showed that for some benchmarks, the
global replacement schemes do not perform much better than
their local counterparts, and they discussed the characteristics
of an application that can benefit from the global schemes.

III. THE EFFECTIVE FACTORS OF CACHE

A. Cache Size

The size of the cache has an important impact on its
performance (hit and miss ratio). By increasing the cache size,
the amount of data that can be kept on the cache will increase
and therefore, the hit rate will grow and then, it would have a
positive effect on system’s performance. Unfortunately, by
growing the cache, the energy that could be consumed by the
cache will increase and the system’s overall energy
consumption will increase significantly. Due to these facts,
one of the greatest tasks of the system’s designer is to find the
best size for the cache to convince both performance and
energy.

B. Associativity Degree

The associativity degree is the number of cache mirrors that
can save the data. The structure of the cache could be uniform
or not. In the case of uniform structure, all data are kept in a
single cache and all operation will be done on it. On the other
hand, the data are saved on various sub-structures. The greater
the number of cache mirrors, the cache’s miss rate will
decrease and therefore, its performance will increase; but by
increasing the mirrors, more comparators and gates are
needed, thus the energy consumption will increase. These

points clearly illustrate the importance of choosing the
optimum number for associativity degree.

C. Instruction Set Architecture

One of the most crucial parts of a system is its ISA that
plays a key role in the performance and energy consumption
of the whole system. The ARM and X86 are two different
ISAs that are widely used in modern systems and each of these
ISAs has its advantages and disadvantages. The ARM is based
on RISC architecture and it is prominent for its low-power
attitude that could be an outstanding characteristic especially
in embedded systems. On the other hand, the x86 is well-
known for its CISC architecture and its high performance.
With the increasing demands for new devices with different
goals, the issue of ISA selection became a challenging issue
for system’s designers.

D. Replacement Policy

The data that are kept on the cache is originally from
memory. Adding different data on the cache is a simple
operation until the cache has some empty rooms. But, when
the cache be filled and there is not any place for new data, the
system needs a replacement algorithm for finding a room for
new data. In the case of new data coming in a full cache, these
new data should be replaced by some old data. The operation
of choosing the appropriate data for substitution is done by
replacement policies. There are variant replacement policies
such as LFU, MRU, FIFO, and Random that work in different
manners.

IV. EXPERIMENTAL RESULTS

In this section, in the beginning, the simulators that are used
for evaluating the performance and energy consumption will
be introduced and then, the benchmark that is used will be
discussed. In the second part, the results of simulations would
be presented and we will discuss the impact of different
parameters on cache’s performance and energy consumption.
In this work, the results belong to Level 1 D-cache and
cache’s miss rate is used as an indicator of performance.

A. Simulation Setup

In this work, the Gem5 simulator [12] is utilized to evaluate
the performance of the cache. This simulator can simulate a
whole system with different devices and an operating system
in two modes, full system mode (FS mode) and syscall
imitation mode (SE mode). There are various levels of support
for executing the processors including ARM, Alpha, Power,
MIPS, SPARC, and 64-bit x86 binaries on CPU models
consist of two simple single CPI models, an out of order
model (O3), and an in-order model. In our simulations, Gem5
is arranged to the ARM and X86 versions, which are typical
embedded processors. The parameters of the main system are
shown in Table I.

The CACTI 6.5 cache model is used in this paper with 22
nm technology size to estimate the dynamic energy
consumption of the proposed method [13], [14]. CACTI can
evaluate the energy consumption of cache memory system

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:1, 2021

25

based on the cache memory parameters such as the block size,
cache memory size, degree of associativity, technology size

and etc. In this paper, the dynamic energy information of the
proposed method is obtained from CACTI.

(a) Direct-map (b) 2-way

(c) 4-way (d) 8-way

Fig. 2 The effect of different replacement policies on performance of the cache (cache size: 16 KB)

TABLE I
SYSTEM CONFIGURATION PARAMETERS USED IN THE SIMULATIONS

Parameter Value

ISA ARM, X86

CPU clock speed 2.4 GHz

Core # 4

Instruction cache size 16 KB

Data cache size 16 KB, 32 KB, 64 KB

Associativity Direct map, 2-way, 4-way, 8-way

Technology size 22 nm

Replacement policy LRU, MRU, FIFO, Random

Block size 64 bytes

L2 cache size 512 KB

L3 cache size 8 MB

TABLE II
SELECTED PROGRAMS FROM DIFFERENT CATEGORIES OF MIBENCH

Category Program Description

Automotive
Bitcount An algorithm that checks the bit manipulation

Qsort A well-known sorting algorithm

Network
Patricia

A data structure that is used in trees with sparse
nodes

Dijkstra An algorithm for finding the shortest path

Office
Ispell A fast spell checker

Stringsearch A program that searches for given words

Security
Blowfish A block cipher by a length key

Rijndael An algorithm for standard encryption

Telecomm
Crc A program for cyclic redundancy check

FFT A program for fast Fourier transform

The application programs used for all simulations are from

0

0,02

0,04

0,06

0,08

0,1

0,12

M
is
s
R
a
te

FIFO‐arm FIFO‐x86 MRU‐arm
MRU‐x86 LRU‐arm LRU‐x86
Random‐arm Random‐x86

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

M
is
s
R
at
e

FIFO‐arm LRU‐arm MRU‐arm
Random‐arm FIFO‐x86 LRU‐x86
MRU‐x86 Random‐x86

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

M
is
s
R
at
e

FIFO‐arm LRU‐arm MRU‐arm
Random‐arm FIFO‐x86 LRU‐x86
MRU‐x86 Random‐x86

0

0,03

0,06

0,09

0,12

0,15

0,18

0,21

M
is
s
R
at
e

FIFO‐arm LRU‐arm MRU‐arm
Random‐arm FIFO‐x86 LRU‐x86
MRU‐x86 Random‐x86

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:1, 2021

26

the MiBench benchmark [15]. This benchmark is composed of
different categories that support various applications of
embedded systems. The details of utilized categories and

programs from the MiBench benchmark are depicted in Table
II. All the programs are compiled in cross compiler manner
with the static compiler flag.

(a) Direct-map (b) 2-way

(c) 4-way (d)8-way

Fig. 3 The effect of different replacement policies on performance of the cache (cache size: 32 KB)

B. Simulation Results

In this section, at first, the effect of the different
replacement policies on the performance in the form of cache
miss rate is estimated. Then, their effect on the cache energy
consumption with different configuration is evaluated. In these
sections, the simulations are investigated in both x86 and
ARM.

1) Replacement policy Versus Performance

Fig. 2 shows the miss rate of different benchmark programs
in 22 nm feature size for a 16 KB L1 data cache with different
degrees of associativity (Direct-map, 2-way, 4-way, and 8-
way). In this figure, despite the fact that the replacement
policies have different impacts on programs’ performances

with different configurations, some general results can be
stated. Due to Fig. 2, the replacement policies are ineffective
on the performance of Direct-map caches. The reason is that,
in Direct-map caches, the exact location of each data is
predefined and the data cannot be kept in other places and
therefore, this conclusion can be reached that in Direct-map
caches, there is no difference between various replacement
policies. By increasing the degree of associativity, the changes
in the acache’s performance are perceptible. As it can be
inferred from this figure, caches with higher associativity
degrees have better performance in comparison with caches
with lower degrees of associativity. By observing the results, it
can be found that some of the replacement policies have better
effects on a cache’s performance. For example, with regard to

0

0,02

0,04

0,06

0,08

0,1

M
is
s
R
at
e

FIFO‐arm FIFO‐x86 MRU‐arm
MRU‐x86 LRU‐arm LRU‐x86
Random‐arm Random‐x86

0

0,02

0,04

0,06

0,08

0,1

M
is
s
R
a
te

FIFO‐arm LRU‐arm MRU‐arm
Random‐arm FIFO‐x86 LRU‐x86
MRU‐x86 Random‐x86

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

M
is
s
R
a
te

FIFO‐arm LRU‐arm MRU‐arm
Random‐arm FIFO‐x86 LRU‐x86
MRU‐x86 Random‐x86

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

M
is
s
R
at
e

FIFO‐arm LRU‐arm MRU‐arm
Random‐arm FIFO‐x86 LRU‐x86
MRU‐x86 Random‐x86

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:1, 2021

27

the results, in most of the cases, when the cache is simulated
with an LRU replacement policy, the system’s performance is
better than other policies. But, it can be worth mentioning that
the LRU is not the best policy in all cases. As an instance, in a
4-way cache, in the case of the Patricia program, the results of
the Random replacement policy are better than other policies.

Based on these facts, it cannot be concluded that a
replacement policy is the best for all caches with different
configurations; but, it is obvious that the results of the LRU
policy are outstanding. The impact of different replacement
policies of the cache on its performance with 32 KB and 64
KB as cache size is shown in Figs. 3 and 4, respectively.

(a) Direct-map (b) 2-way

(c) 4-way (d) 8-way

Fig. 4 The effect of different replacement policies on performance of the cache (cache size: 64 KB)

To evaluate the effect of the different replacement policies
on the performance of the cache with different ISAs, the cache
is simulated considering different replacement policies (FIFO,
LRU, MRU, and Random) with different cache associativity
degrees from Direct-map to 8-way and various ISAs (ARM
and x-86). As shown in Fig. 5, the ISA has a direct impact on
miss rate of the cache and when the ISA is changed from
ARM to x86, the performance is altered significantly; the
reason is that, the ARM is RISC-based, which means that it is
focused on keeping the instructions simple and therefore, more
instructions are needed for doing tasks. Unlike the ARM, the

x86 that is CISC-based is focused on performing complex
instructions with high flexibility. This figure indicates that by
changing the replacement policy from ARM to x86, the
performance will increase remarkably. For example, when a 2-
way cache with FIFO policy is simulated, the average amount
of miss rate is about 0.056, by changing the ISA, the miss rate
changed to 0.035 that is a significant reduction. With regard to
these facts and figures, it can be concluded that x86 could be a
good choice for system’s designers that want to have the best
performance in their systems. However, in some cases, the
energy consumption is a crucial element that designer should

0

0,02

0,04

0,06

0,08

0,1

M
is
s
R
a
te

FIFO‐arm FIFO‐x86 MRU‐arm
MRU‐x86 LRU‐arm LRU‐x86
Random‐arm Random‐x86

0

0,02

0,04

0,06

0,08

0,1

M
is
s
R
a
te

FIFO‐arm LRU‐arm MRU‐arm Random‐arm

FIFO‐x86 LRU‐x86 MRU‐x86 Random‐x86

0

0,02

0,04

0,06

0,08

0,1

0,12

M
is
s
R
at
e

FIFO‐arm LRU‐arm MRU‐arm
Random‐arm FIFO‐x86 LRU‐x86
MRU‐x86 Random‐x86

0

0,02

0,04

0,06

0,08

0,1

0,12

M
is
s
R
at
e

FIFO‐arm LRU‐arm MRU‐arm Random‐arm

FIFO‐x86 LRU‐x86 MRU‐x86 Random‐x86

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:1, 2021

28

consider that. The next sub-section will discuss the impact of
replacement policies and ISAs on the energy consumption of

the systems.

(a) Direct-map (b) 2-way

(c) 4-way (d) 8-way

Fig. 5 The effect of different ISAs and replacement policies on performance of the cache

TABLE III
THE IMPACT OF DIFFERENT REPLACEMENT POLICIES ON CACHE’S ENERGY CONSUMPTION

(A) LRU AND FIFO AS REPLACEMENT POLICY

Cache energy consumption (nJ)

MiBench
Programs

LRU FIFO

1-way 2-way 4-way 8-way 1-way 2-way 4-way 8-way

ARM X86 ARM X86 ARM X86 ARM X86 ARM X86 ARM X86 ARM X86 ARM X86

Bit count 55.3 69.2 56.3 70.6 64.7 76.7 67.5 78.1 55.3 69.2 56.4 70.7 64.8 76.7 67.9 78.5

CRC 51.3 64.4 52.3 65.6 61.5 72.7 64.2 73.9 51.3 64.4 52.3 65.7 61.5 72.7 64.3 74

Ispell 196.7 1394.4 199.8 1417.3 220.7 1550 256.7 1586.5 196.7 1394.4 199.8 1418.1 221.6 1550.4 266.4 1586.8

Patricia 68.33 86.3 69.6 87.9 75.4 90.7 78.5 92.5 68.3 86.3 69.6 87.9 75.4 90.7 79.5 92.5

Qsort 55.5 69.4 56.5 70.7 64.9 76.8 68.6 78.2 55.4 69.3 56.5 70.7 64.9 76.8 69.6 78.2

Rijndael 89.8 111 87.8 113.2 90.4 119.4 94.5 127.3 89.8 111 87.8 113.2 90.4 119.4 96.2 128.1
String
search

4374.6 1895.9 4462.6 1913.8 4648.2 2078.5 4781.1 2135.4 4374.6 1895.9 4462.7 1913.8 4648.2 2078.5 4781.1 2137.9

0

0,02

0,04

0,06

0,08

0,1

M
is
s
R
at
e

Bitcount CRC Ispell

Patricia Qsort Rijndael

String search Average

0

0,02

0,04

0,06

0,08

0,1

M
is
s
R
at
e

Bitcount CRC Ispell

Patricia Qsort Rijndael

String search Average

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

M
is
s
R
at
e

Bitcount CRC Ispell

Patricia Qsort Rijndael

String search Average

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

M
is
s
R
at
e

Bitcount CRC Ispell
Patricia Qsort Rijndael
String search Average

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:1, 2021

29

(B) MRU AND RANDOM AS REPLACEMENT POLICY

Cache energy consumption (nJ)

MiBench
Programs

MRU Random

1-way 2-way 4-way 8-way 1-way 2-way 4-way 8-way

ARM X86 ARM X86 ARM X86 ARM X86 ARM X86 ARM X86 ARM X86 ARM X86

Bit count 55.3 69.2 57.1 70.8 65.4 77.1 66.7 78.6 55.3 69.2 56.4 70.6 64.8 76.7 65.5 78.1

CRC 51.3 64.4 52.4 65.8 61.8 72.9 63.4 74.4 51.3 64.4 52.3 65.7 61.5 72.7 62.2 73.9

Ispell 196.7 1394.4 200.6 1426.4 212.4 1467.6 218.9 1514.1 196.7 1394.4 199.8 1417.9 201.7 1550.4 206.4 1686.6

Patricia 68.3 86.3 69.9 88.2 75.8 91.1 88.2 93.2 68.3 86.3 69.6 87.9 75.4 90.7 76.5 92.5

Qsort 55.5 69.4 56.6 70.9 65.1 77.1 66.7 78.7 55.5 69.4 56.5 70.7 64.9 76.8 65.6 78.2

Rijndael 89.8 111 91.6 113.3 92.7 119.8 94.6 124.6 89.8 111 87.8 113.2 90.4 119.4 92 121.8
String
search

4374.6 1895.9 4464.1 1939.9 4649.8 2084.1 4792.4 2152.4 4374.7 1895.9 4462.7 1931.8 4648.2 2078.5 4781 2135.4

2) Energy versus Replacement Policy

Table III illustrates the effect of replacement policy and
system’s ISA on a cache’s energy consumption and indicates
that the policy has a direct impact on the energy consumption
of the cache. Based on this table, it can be inferred that when
the policy is changed from a specific one (LRU) to another, in
most cases, the energy consumption increased. For example,
in a 2-way cache, when the policy is changed from LRU to
MRU, the cache’s energy consumption increased in most of
the programs. Based on this table and the system’s
configuration, the best policy for the cache could be selected.
Another important point that can be reached based on Table
III is that the ISA plays a crucial role in the energy
consumption of the cache. As it can be inferred from this
table, in the case of x86 as the ISA, the energy consumption is
much more than the ARM. Earlier, it was discussed the
positive effect of the x86 ISA on system’s performance but,
due to this table, it can be concluded that the x86 is not the
best choice in the case of energy and the ARM is far better
than it.

V. CONCLUSION

In this paper, the effect of various replacement policies on
cache’s performance and energy consumption has been
evaluated. The results indicate that none of the cache’s policy
is the best in all cases, but, in most of the cache
configurations, the LRU policy is the best. Due to this paper’s
results, a system’s designer can choose the most optimum
replacement policy with regard to the cache’s configuration.
Moreover, the results could be useful for designers to decide
between ARM and x86 as the system’s ISA. Based on the
simulations, the ARM could be a good choice in the case of
energy consumption, but, the results of x86 is more
convincing in the case of performance.

REFERENCES
[1] J. L. Hennessy, D. A. Patterson. “Computer architecture: a quantitative

approach.” Elsevier; 2011.
[2] H. Esmaeilzadeh, T. Cao, X. Yang, S. Blackburn, K. McKinley,

“Looking back to the language and hardware revolutions: measured
power, performance, and scaling”, Proc. 16th Int’l. Conf. on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2011.

[3] A. Vakil-Ghahani, S. Mahdizadeh-Shahri, M. Lotfi-Namin, et al. “Cache
replacement policy based on expected hit count”, IEEE computer
architecture letters, 2017.

[4] R. Olanrewaju, A. Baba, B. Khan, et al. “A study on performance
evaluation of conventional cache replacement algorithms: A review”,
International conference on parallel, distributed and grid computing
(PDGC), 2016.

[5] D. Swain, S. Marar, N. Motwani, et al. “CWRP: An efficient and
classical weight ranking policy for enhancing cache performance”,
International conference on image information processing (ICIIP), 2017.

[6] G. Einziger, R. Friedman, B. Manes, “TinyLFU: A highly efficient
cache admission policy”, ACM Transactions on storage (TOS), 2017.

[7] J. Reineke, D. Grund, C. Berg, R. Wilhelm. “Timing predictability of
cache replacement policies”, Real-Time Systems, Volume 37, Issue 2,
2007.

[8] H. Al-Zoubi, A. Milenkovic, M. Milenkovic. “Performance Evaluation
of cache Replacement Policies for the SPEC CPU2000 Benchmark
Suite”, In Proc. of the 42nd ACM Southeast Conf, April 2004.

[9] M. Hai-feng, Y. Nian-min, F. Hong-bo. “Cache Performance
Simulations and Analysis under Simplescalar Platform”, International
conference on new trends in information and service science, 2009.

[10] D. Grund, J. Reineke, “Estimating the Performance of Cache
Replacement Policies”, IEEE international conference on formal
methods and models for Co-Design, 2008.

[11] M. Zahran, “Cache Replacement Policy”, Proc. Annual Workshop on
Duplicating, Deconstructing, and Debunking (WDDD) held in
conjunction with the international Symposium on Computer
Architecture (ISCA), 2007.

[12] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
et al. “The gem5 simulator”, ACM SIGARCH Computer Architecture
News, 39 (2) (2011) 1-7.

[13] N. Muralimanohar, R. Balasubramonian, N. P. Jouppi. CACTI 6.0: A
tool to model large caches. HP Laboratories, 22-31, 2009.

[14] CACTI, An integrated cache and memory access time, cycle time, area,
leakage, and dynamic power model, Available:
<http://www.hpl.hp.com/research/cacti>.

[15] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, R.
B. Brown. MiBench: a free, commercially representative embedded
benchmark suite. IEEE International Workshop on Workload
Characterization, WWC-4. pp. 3-14, 2001.

