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Abstract—The cache has an important role in the reduction of 

access delay between a processor and memory in high-performance 
embedded systems. In these systems, the energy consumption is one 
of the most important concerns, and it will become more important 
with smaller processor feature sizes and higher frequencies. 
Meanwhile, the cache system dissipates a significant portion of 
energy compared to the other components of a processor. There are 
some elements that can affect the energy consumption of the cache 
such as replacement policy and degree of associativity. Due to these 
points, it can be inferred that selecting an appropriate configuration 
for the cache is a crucial part of designing a system. In this paper, we 
investigate the effect of different cache replacement policies on both 
cache’s performance and energy consumption. Furthermore, the 
impact of different Instruction Set Architectures (ISAs) on cache’s 
performance and energy consumption has been investigated.  

 
Keywords—L1-cache, energy consumption, replacement policy, 

Instruction set architecture, multicore processor. 

I. INTRODUCTION  

MBEDDED systems are basically application-specific 
systems. These system products are widely used in mobile 

devices such as smartphones and tablet PCs. In these devices, 
caches have been widely used to fill the performance gap 
between memories and processors. Thus, the information 
evoked from the memory is kept into a quick and small cache 
system. In the case of recalling the same items, the processor 
directly searches the cache as a high-speed memory instead of 
the whole main memory, and as the result, the system 
performance improves significantly via using the cache 
memory [1]. In addition, embedded systems are usually 
produced as portable devices or embedded in devices in which 
the required energy for processing is provided by batteries. 
Therefore, the energy consumption is an important issue in 
these systems. One of the modules that consume a lot of 
energy is the cache. Thus, if the energy consumption of the 
cache decreases, the total energy consumed by the system will 
decrease as well [2]. Hence, computer architects should 
investigate the power consumption of the caches with different 
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configurations and choose the most optimum configuration for 
it to alleviate the cache power consumption as much as it is 
possible. In a cache, there are several parts that could be 
effective on its energy consumption such as the cache’s 
replacement policy and the degree of associativity. The impact 
of different replacement policies on cache’s energy 
consumption is outstanding; also, these policies are effective 
in the case of system’s performance [3]-[7]. Regarding to 
these facts and Fig. 1, choosing an appropriate replacement 
policy for the cache especially in multicore systems is a 
critical part of a system designer’s task. In this work, we 
investigate the effect of different replacement policies on 
caches with different configurations.    

The rest of this paper is organized as follows. Section II 
reviews some existing works that are about the evaluating the 
impact of the cache replacement policies on the system’s 
performance. The structure of the cache and the effect of its 
different parts on its performance are given in Section III. 
Section IV details the simulation environment and presents the 
experimental results for the evaluation of the cache with 
different replacement policies and configuration. Finally, 
some conclusions are drawn in Section V. 

 

 

Fig. 1 The structure of the cache in multicore systems (2-core 
processor) 

II. RELATED WORKS 

There exist a variety of previous works focused on the 
effect of cache replacement policies and different 
configurations on the system’s performance. However, to the 
best of our knowledge, none of the previous works focus on 
issues such as energy consumption and the impact of ISAs. 

In [8], Al-Zoubi et al. tried to find the replacement policy as 
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close to optimal as possible; they thoroughly explored the 
design space of existing replacement mechanisms using 
SimpleScalar toolset, across a wide range of cache sizes and 
organizations. In order to better understand the behavior of 
different policies, they introduced new measures, such as a 
cumulative distribution of cache hits in the LRU stack. They 
also dynamically monitored the number of cache misses, per 
each 100000 instructions. In [9], they analyzed various factors 
of effects on cache performance, and then carried out the 
simulation experiment of cache performance based on 
SimpleScalar tools set and SPEC2000 benchmark suite. They 
compared the effects on cache performance when L1-cache, 
L2-cache capacity, and replacement methods are changed 
separately, and then they analyzed the experimental results in 
detail.  

In [10], Grund et al. presented an efficient method to 
estimate the miss ratio using a stochastic model. The model 
takes into account the parameters of the cache architecture and 
a concise characterization of the software’s locality. In that 
work, they considered the replacement policy as an important 
component of the cache architecture. To this goal, they 
introduced policy tables as a concise representation of 
replacement policies. In [11], Zahran at first showed that local 
replacement policies may not always be the correct way to go 
for obtaining the most efficient cache hierarchy. Second, they 
proposed several global replacement policies and discussed 
their behavior with several benchmarks using a cycle accurate 
simulator. Third, they showed that for some benchmarks, the 
global replacement schemes do not perform much better than 
their local counterparts, and they discussed the characteristics 
of an application that can benefit from the global schemes. 

III. THE EFFECTIVE FACTORS OF CACHE 

A. Cache Size 

The size of the cache has an important impact on its 
performance (hit and miss ratio). By increasing the cache size, 
the amount of data that can be kept on the cache will increase 
and therefore, the hit rate will grow and then, it would have a 
positive effect on system’s performance. Unfortunately, by 
growing the cache, the energy that could be consumed by the 
cache will increase and the system’s overall energy 
consumption will increase significantly. Due to these facts, 
one of the greatest tasks of the system’s designer is to find the 
best size for the cache to convince both performance and 
energy. 

B. Associativity Degree 

The associativity degree is the number of cache mirrors that 
can save the data. The structure of the cache could be uniform 
or not. In the case of uniform structure, all data are kept in a 
single cache and all operation will be done on it. On the other 
hand, the data are saved on various sub-structures. The greater 
the number of cache mirrors, the cache’s miss rate will 
decrease and therefore, its performance will increase; but by 
increasing the mirrors, more comparators and gates are 
needed, thus the energy consumption will increase. These 

points clearly illustrate the importance of choosing the 
optimum number for associativity degree.   

C. Instruction Set Architecture 

One of the most crucial parts of a system is its ISA that 
plays a key role in the performance and energy consumption 
of the whole system. The ARM and X86 are two different 
ISAs that are widely used in modern systems and each of these 
ISAs has its advantages and disadvantages. The ARM is based 
on RISC architecture and it is prominent for its low-power 
attitude that could be an outstanding characteristic especially 
in embedded systems. On the other hand, the x86 is well-
known for its CISC architecture and its high performance. 
With the increasing demands for new devices with different 
goals, the issue of ISA selection became a challenging issue 
for system’s designers. 

D. Replacement Policy 

The data that are kept on the cache is originally from 
memory. Adding different data on the cache is a simple 
operation until the cache has some empty rooms. But, when 
the cache be filled and there is not any place for new data, the 
system needs a replacement algorithm for finding a room for 
new data. In the case of new data coming in a full cache, these 
new data should be replaced by some old data. The operation 
of choosing the appropriate data for substitution is done by 
replacement policies. There are variant replacement policies 
such as LFU, MRU, FIFO, and Random that work in different 
manners.  

IV. EXPERIMENTAL RESULTS 

In this section, in the beginning, the simulators that are used 
for evaluating the performance and energy consumption will 
be introduced and then, the benchmark that is used will be 
discussed. In the second part, the results of simulations would 
be presented and we will discuss the impact of different 
parameters on cache’s performance and energy consumption. 
In this work, the results belong to Level 1 D-cache and 
cache’s miss rate is used as an indicator of performance. 

A. Simulation Setup 

In this work, the Gem5 simulator [12] is utilized to evaluate 
the performance of the cache. This simulator can simulate a 
whole system with different devices and an operating system 
in two modes, full system mode (FS mode) and syscall 
imitation mode (SE mode). There are various levels of support 
for executing the processors including ARM, Alpha, Power, 
MIPS, SPARC, and 64-bit x86 binaries on CPU models 
consist of two simple single CPI models, an out of order 
model (O3), and an in-order model. In our simulations, Gem5 
is arranged to the ARM and X86 versions, which are typical 
embedded processors. The parameters of the main system are 
shown in Table I. 

The CACTI 6.5 cache model is used in this paper with 22 
nm technology size to estimate the dynamic energy 
consumption of the proposed method [13], [14]. CACTI can 
evaluate the energy consumption of cache memory system 
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based on the cache memory parameters such as the block size, 
cache memory size, degree of associativity, technology size 

and etc. In this paper, the dynamic energy information of the 
proposed method is obtained from CACTI. 

 

 

(a) Direct-map       (b) 2-way 
 

 

(c) 4-way       (d) 8-way 

Fig. 2 The effect of different replacement policies on performance of the cache (cache size: 16 KB) 
 

TABLE I 
SYSTEM CONFIGURATION PARAMETERS USED IN THE SIMULATIONS 

Parameter Value 

ISA ARM, X86 

CPU clock speed 2.4 GHz 

Core # 4 

Instruction cache size 16 KB 

Data cache size 16 KB, 32 KB, 64 KB 

Associativity Direct map, 2-way, 4-way, 8-way 

Technology size 22 nm 

Replacement policy LRU, MRU, FIFO, Random 

Block size 64 bytes 

L2 cache size 512 KB 

L3 cache size 8 MB 

 
 

TABLE II 
SELECTED PROGRAMS FROM DIFFERENT CATEGORIES OF MIBENCH 

Category Program Description 

Automotive 
Bitcount An algorithm that checks the bit manipulation 

Qsort A well-known sorting algorithm 

Network 
Patricia 

A data structure that is used in trees with sparse 
nodes 

Dijkstra An algorithm for finding the shortest path 

Office 
Ispell A fast spell checker 

Stringsearch A program that searches for given words 

Security 
Blowfish A block cipher by a length key 

Rijndael An algorithm for standard encryption 

Telecomm 
Crc A program for cyclic redundancy check 

FFT A program for fast Fourier transform 

 
The application programs used for all simulations are from 
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the MiBench benchmark [15]. This benchmark is composed of 
different categories that support various applications of 
embedded systems. The details of utilized categories and 

programs from the MiBench benchmark are depicted in Table 
II. All the programs are compiled in cross compiler manner 
with the static compiler flag. 

 

 

(a) Direct-map        (b) 2-way 
 

 

(c) 4-way         (d)8-way 

Fig. 3 The effect of different replacement policies on performance of the cache (cache size: 32 KB) 
 

B. Simulation Results 

In this section, at first, the effect of the different 
replacement policies on the performance in the form of cache 
miss rate is estimated. Then, their effect on the cache energy 
consumption with different configuration is evaluated. In these 
sections, the simulations are investigated in both x86 and 
ARM.  

1) Replacement policy Versus Performance 

Fig. 2 shows the miss rate of different benchmark programs 
in 22 nm feature size for a 16 KB L1 data cache with different 
degrees of associativity (Direct-map, 2-way, 4-way, and 8-
way). In this figure, despite the fact that the replacement 
policies have different impacts on programs’ performances 

with different configurations, some general results can be 
stated. Due to Fig. 2, the replacement policies are ineffective 
on the performance of Direct-map caches. The reason is that, 
in Direct-map caches, the exact location of each data is 
predefined and the data cannot be kept in other places and 
therefore, this conclusion can be reached that in Direct-map 
caches, there is no difference between various replacement 
policies. By increasing the degree of associativity, the changes 
in the acache’s performance are perceptible. As it can be 
inferred from this figure, caches with higher associativity 
degrees have better performance in comparison with caches 
with lower degrees of associativity. By observing the results, it 
can be found that some of the replacement policies have better 
effects on a cache’s performance. For example, with regard to 
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the results, in most of the cases, when the cache is simulated 
with an LRU replacement policy, the system’s performance is 
better than other policies. But, it can be worth mentioning that 
the LRU is not the best policy in all cases. As an instance, in a 
4-way cache, in the case of the Patricia program, the results of 
the Random replacement policy are better than other policies. 

Based on these facts, it cannot be concluded that a 
replacement policy is the best for all caches with different 
configurations; but, it is obvious that the results of the LRU 
policy are outstanding. The impact of different replacement 
policies of the cache on its performance with 32 KB and 64 
KB as cache size is shown in Figs. 3 and 4, respectively.   

 

 

(a) Direct-map        (b) 2-way 
 

 

(c) 4-way        (d) 8-way 

Fig. 4 The effect of different replacement policies on performance of the cache (cache size: 64 KB) 
 

To evaluate the effect of the different replacement policies 
on the performance of the cache with different ISAs, the cache 
is simulated considering different replacement policies (FIFO, 
LRU, MRU, and Random) with different cache associativity 
degrees from Direct-map to 8-way and various ISAs (ARM 
and x-86). As shown in Fig. 5, the ISA has a direct impact on 
miss rate of the cache and when the ISA is changed from 
ARM to x86, the performance is altered significantly; the 
reason is that, the ARM is RISC-based, which means that it is 
focused on keeping the instructions simple and therefore, more 
instructions are needed for doing tasks. Unlike the ARM, the 

x86 that is CISC-based is focused on performing complex 
instructions with high flexibility. This figure indicates that by 
changing the replacement policy from ARM to x86, the 
performance will increase remarkably. For example, when a 2-
way cache with FIFO policy is simulated, the average amount 
of miss rate is about 0.056, by changing the ISA, the miss rate 
changed to 0.035 that is a significant reduction. With regard to 
these facts and figures, it can be concluded that x86 could be a 
good choice for system’s designers that want to have the best 
performance in their systems. However, in some cases, the 
energy consumption is a crucial element that designer should 

0

0,02

0,04

0,06

0,08

0,1

M
is
s 
R
a
te

FIFO‐arm FIFO‐x86 MRU‐arm
MRU‐x86 LRU‐arm LRU‐x86
Random‐arm Random‐x86

0

0,02

0,04

0,06

0,08

0,1

M
is
s 
R
a
te

FIFO‐arm LRU‐arm MRU‐arm Random‐arm

FIFO‐x86 LRU‐x86 MRU‐x86 Random‐x86

0

0,02

0,04

0,06

0,08

0,1

0,12

M
is
s 
R
at
e

FIFO‐arm LRU‐arm MRU‐arm
Random‐arm FIFO‐x86 LRU‐x86
MRU‐x86 Random‐x86

0

0,02

0,04

0,06

0,08

0,1

0,12

M
is
s 
R
at
e

FIFO‐arm LRU‐arm MRU‐arm Random‐arm

FIFO‐x86 LRU‐x86 MRU‐x86 Random‐x86



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:1, 2021

28

consider that. The next sub-section will discuss the impact of 
replacement policies and ISAs on the energy consumption of 

the systems. 

  

 

(a) Direct-map       (b) 2-way 

 

(c) 4-way       (d) 8-way 

Fig. 5 The effect of different ISAs and replacement policies on performance of the cache 
 
 
 

TABLE III 
THE IMPACT OF DIFFERENT REPLACEMENT POLICIES ON CACHE’S ENERGY CONSUMPTION 

(A) LRU AND FIFO AS REPLACEMENT POLICY 

Cache energy consumption (nJ) 

MiBench 
Programs 

LRU FIFO 

1-way 2-way 4-way 8-way 1-way 2-way 4-way 8-way 

ARM X86 ARM X86 ARM X86 ARM X86 ARM X86 ARM X86 ARM X86 ARM X86 

Bit count 55.3 69.2 56.3 70.6 64.7 76.7 67.5 78.1 55.3 69.2 56.4 70.7 64.8 76.7 67.9 78.5 

CRC 51.3 64.4 52.3 65.6 61.5 72.7 64.2 73.9 51.3 64.4 52.3 65.7 61.5 72.7 64.3 74 

Ispell 196.7 1394.4 199.8 1417.3 220.7 1550 256.7 1586.5 196.7 1394.4 199.8 1418.1 221.6 1550.4 266.4 1586.8 

Patricia 68.33 86.3 69.6 87.9 75.4 90.7 78.5 92.5 68.3 86.3 69.6 87.9 75.4 90.7 79.5 92.5 

Qsort 55.5 69.4 56.5 70.7 64.9 76.8 68.6 78.2 55.4 69.3 56.5 70.7 64.9 76.8 69.6 78.2 

Rijndael 89.8 111 87.8 113.2 90.4 119.4 94.5 127.3 89.8 111 87.8 113.2 90.4 119.4 96.2 128.1 
String 
search 

4374.6 1895.9 4462.6 1913.8 4648.2 2078.5 4781.1 2135.4 4374.6 1895.9 4462.7 1913.8 4648.2 2078.5 4781.1 2137.9 
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(B) MRU AND RANDOM AS REPLACEMENT POLICY 

Cache energy consumption (nJ) 

MiBench 
Programs 

MRU Random 

1-way 2-way 4-way 8-way 1-way 2-way 4-way 8-way 

ARM X86 ARM X86 ARM X86 ARM X86 ARM X86 ARM X86 ARM X86 ARM X86 

Bit count 55.3 69.2 57.1 70.8 65.4 77.1 66.7 78.6 55.3 69.2 56.4 70.6 64.8 76.7 65.5 78.1 

CRC 51.3 64.4 52.4 65.8 61.8 72.9 63.4 74.4 51.3 64.4 52.3 65.7 61.5 72.7 62.2 73.9 

Ispell 196.7 1394.4 200.6 1426.4 212.4 1467.6 218.9 1514.1 196.7 1394.4 199.8 1417.9 201.7 1550.4 206.4 1686.6 

Patricia 68.3 86.3 69.9 88.2 75.8 91.1 88.2 93.2 68.3 86.3 69.6 87.9 75.4 90.7 76.5 92.5 

Qsort 55.5 69.4 56.6 70.9 65.1 77.1 66.7 78.7 55.5 69.4 56.5 70.7 64.9 76.8 65.6 78.2 

Rijndael 89.8 111 91.6 113.3 92.7 119.8 94.6 124.6 89.8 111 87.8 113.2 90.4 119.4 92 121.8 
String 
search 

4374.6 1895.9 4464.1 1939.9 4649.8 2084.1 4792.4 2152.4 4374.7 1895.9 4462.7 1931.8 4648.2 2078.5 4781 2135.4 

2) Energy versus Replacement Policy

Table III illustrates the effect of replacement policy and 
system’s ISA on a cache’s energy consumption and indicates 
that the policy has a direct impact on the energy consumption 
of the cache. Based on this table, it can be inferred that when 
the policy is changed from a specific one (LRU) to another, in 
most cases, the energy consumption increased. For example, 
in a 2-way cache, when the policy is changed from LRU to 
MRU, the cache’s energy consumption increased in most of 
the programs. Based on this table and the system’s 
configuration, the best policy for the cache could be selected. 
Another important point that can be reached based on Table 
III is that the ISA plays a crucial role in the energy 
consumption of the cache. As it can be inferred from this 
table, in the case of x86 as the ISA, the energy consumption is 
much more than the ARM. Earlier, it was discussed the 
positive effect of the x86 ISA on system’s performance but, 
due to this table, it can be concluded that the x86 is not the 
best choice in the case of energy and the ARM is far better 
than it. 

V. CONCLUSION 

In this paper, the effect of various replacement policies on 
cache’s performance and energy consumption has been 
evaluated. The results indicate that none of the cache’s policy 
is the best in all cases, but, in most of the cache 
configurations, the LRU policy is the best. Due to this paper’s 
results, a system’s designer can choose the most optimum 
replacement policy with regard to the cache’s configuration. 
Moreover, the results could be useful for designers to decide 
between ARM and x86 as the system’s ISA. Based on the 
simulations, the ARM could be a good choice in the case of 
energy consumption, but, the results of x86 is more 
convincing in the case of performance. 
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