
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:9, 2007

1275

Evaluating Sinusoidal Functions by a Low
Complexity Cubic Spline Interpolator with Error

Optimization
Abhijit Mitra and Harpreet Singh Dhillon

Abstract—We present a novel scheme to evaluate sinusoidal
functions with low complexity and high precision using cubic spline
interpolation. To this end, two different approaches are proposed to
find the interpolating polynomial of sin(x) within the range [−π, π].
The first one deals with only a single data point while the other with
two to keep the realization cost as low as possible. An approximation
error optimization technique for cubic spline interpolation is intro-
duced next and is shown to increase the interpolator accuracy without
increasing complexity of the associated hardware. The architectures
for the proposed approaches are also developed, which exhibit
flexibility of implementation with low power requirement.

Keywords—Arithmetic, spline interpolator, hardware design, error
analysis, optimization methods.

I. INTRODUCTION

Evaluating basic functions like sinusoids is an important part
of many applications such as scientific computations, signal
processing and computer graphics. Although software routines
are available for the computation of these functions using
standard floating point instructions, application-specific hard-
ware/firmware combination is preferred to that for minimizing
the cost and power of these implementations. Therefore,
the hardware support for the evaluation of these functions
is always an integral part of the computation. Depending
upon the nature of the application, e.g., fast evaluation of
these functions, low power architecture or cost constraint
on the architecture, a wide variety of hardware algorithms
have been developed. The most commonly used among them
are COordinate Rotation DIgital Computer (CORDIC) based
techniques [1], [2], linear approximation algorithms [3], and
general polynomial [4] or even rational approximations [5]. A
variety of look-up table methods [6] have also been applied
to develop efficient architectures for approximating elementary
functions. Among these, two parallel table look-ups to obtain a
carry save function approximation [7], using small multipliers
with small tables [8] and combining table look-up with an
enhanced minimax quadratic approximation [9] are different
important techniques. Apart from these, the popular memory
interleaving schemes [10] are also employed for the fast
evaluation of these where polynomial interpolation [11] is used
to approximate the value of the function. In [12], one can find
a survey of the well-known techniques for computing, among
other trigonometric and exponential functions, the sinusoidal

Manuscript received September 9, 2007.
The authors are with the Department of Electronics and Communication

Engineering, Indian Institute of Technology (IIT) Guwahati 781 039, India.
E-Mail: (a.mitra, harpreet) @iitg.ernet.in.

function. However, many present day applications require low
power digital sinusoidal generators [13], which, in turn, call
for hardware algorithms leading to optimizing the memory
required by reducing the size of look-up tables for these
sinusoidal generators. In this paper one such low power and
low complexity scheme for generation of sinusoidal functions
is presented with two different approaches, both with only
a few number of memory elements. The proposed scheme is
mainly based on cubic spline interpolation [14] and one of our
earlier work [15] where a prototype of sinusoidal evaluation
is given. However, the work [15] lacks to enhance the system
precision along with flexibility of implementation issues. We
properly address all these issues here. The main virtue of the
present scheme is to propose a low power scheme with respect
to the number of stored interpolator coefficients as well as to
introduce a simplified hardware structure with high precision
that arises from an error optimization technique.

The proposed approach especially computes the sine of a
number (in radian) in the range [−π, π]. Since sin(π − x) =
sin(x) and sin(π + x) = − sin(x), the interval range can be
shortened to [−π/2, π/2]. Further, as sin(−x) = − sin(x), the
approximation interval may effectively be reduced to [0, π/2]
[16]. The task is then to find an interpolating polynomial
for sin(x) in the interval [0, π/2] with certain data points
in this range. In order to have a low power scheme, the
number of these data points should be kept as low as possible
so that the interval [0, π/2] is sub-divided into a small
number of intervals to store only a few coefficients of the
interpolating polynomial. It is shown that by using a cubic
spline interpolation, storing the value of sine only at one point
in between the interval (0, π/2) is enough to have a precise
approximation of the function. This leads to an efficient low
power, low complexity hardware architecture. To this end,
firstly, equal intervals are chosen for interpolation with the
chosen data point as x = π/4 which comes out to be a sub-
optimal choice. An error optimization technique is then taken
up to find the proper data point such that the approximation
error is nearly optimized to extend the accuracy. With this,
atleast 1-bit increase in precision is achieved without any
additional increment in the hardware complexity. A similar
investigation is also carried out by taking two data points in
the interval (0, π/2) (i.e., considering three equal intervals
for interpolation). This increases the accuracy, but hardware
complexity is also increased as compared to the first case.
Here too, the introduction of the error optimization is shown to
yield a 1-bit increase in accuracy without any further increase

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:9, 2007

1276

in hardware complexity.
The paper is organized as follows. In Section 2, fundamen-

tals of cubic spline interpolation are explained briefly. Section
3 introduces the proposed schemes for both two and three
interval interpolations. The error analysis and corresponding
high-precision hardware architectures are given in Sections 4
and 5 respectively. The paper is concluded in Section 6 by
summarizing the main concepts introduced herein.

II. FUNDAMENTALS OF CUBIC SPLINE INTERPOLATION

Cubic spline function is basically a cubic polynomial that
interpolates the data in several intervals with properly chosen
coefficients such that the continuity of the function is not
broken. In other words, it can be written as a picewise function
of the form:

S(x) =





s1(x) if x1 ≤ x < x2

s2(x) if x2 ≤ x < x3

. . .
sn−1(x) if xn−1 ≤ x < xn

(1)

where any si(x), i = 1, 2, ..., n − 1, is a third degree
polynomial defined by

si(x) = ai(x− xi)3 + bi(x− xi)2 + ci(x− xi) + di (2)

with ai, bi, ci and di being the coefficients of the cubic
polynomial in the interval [xi, xi+1). The first and second
derivatives of these n − 1 equations are important in this
process and they are

s′i(x) = 3ai(x− xi)2 + 2bi(x− xi) + ci, (3)

s′′i (x) = 6ai(x− xi) + 2bi (4)

for i = 1, 2, ..., n−1. The basic properties of such cubic spline
functions along with their suitability in curve fitting technique
is given below in brief.

A. Properties of spline functions

S(x) is defined to be a spline function of order m ≥ 1 if it
satisfies the following two properties:

1) S(x) is a polynomial of degree < m on each interval
[xi−1, xi];

2) The rth derivative, S
′(r)(x), is continuous in the whole

range [x1, xn], for 0 ≤ r ≤ m− 2.
The derivative of a spline of order m is a spline of order

m−1. From the above definition, cubic spline comes out to be
a spline function of order m = 4. Therefore, it should conform
to the following properties:

1) The piecewise function S(x) should interpolate all the
data points;

2) S(x), S′(x), S′′(x) should be continuous in the interval
[x1, xn].

With the help of these two properties, cubic splines are
efficiently used for curve fitting. However, it can be shown
that this system is under-determined. In order to generate a
unique cubic spline, two other conditions must be imposed on
the system [14]. According to these conditions, there can be
many different types of splines, some of which are: natural

spline, parabolic runout spline, cubic runout spline, periodic
spline, clamped spline etc. Intersted readers can get a good
survey of these in [17].

Unique cubic spline interpolation technique is always pre-
ferred for curve fitting purpose because it can be shown that
data interpolated by a spline behaves more or less like the
original function. The main virtue of the spline as a data
correlation tool is its consistency and efficiency which we
demonstrate in our proposed scheme.

III. THE PROPOSED SCHEME

The proposed algorithm computes the sine of a number in
the range [0, π/2]. To have a low power architecture, number
of the fixed data points in the interval should be as small as
possible. It is shown that by using cubic spline interpolation
we can get a precise approximation of sine by using only one
data point (say x = k) in the interval (0, π/2). To this end,
equal intervals are taken for interpolation (i.e., the data point
is chosen to be k = π/4) at first [15]. An error optimization
method is then introduced to find a proper k which minimizes
the approximation error involved. This data point comes out
to be k = 0.877 radian. For more precise approximation, we
consider another case with three-interval interpolation where
two data points (say x = k and x = l) are taken in the interval
(0, π/2). Firstly, equal intervals are chosen for interpolation.
The data points in this case are k = π/6 and l = π/3. The
approximation error is optimized next and the data points are
calculated to be k = 0.634 and l = 1.115 radian, which
clearly depicts that optimization leads to unequal interval
interpolation.

A. Two-interval interpolation
In this case, the interpolating function takes the form:

S(x) =
{

s1(x) if 0 ≤ x < k
s2(x) if k ≤ x ≤ π/2 (5)

where si(x) is a third degree polynomial defined by (2) for
i = 1 and 2, i.e., we get two cubic polynomials, one for each
interval. To determine this cubic spline uniquely, we need to
find all the eight coefficients. By using the properties of the
cubic spline [14], we get the following equations:

s1(0) = 0, s1(k) = sin(k), s2(k) = sin(k), s2(π/2) = 1;
(6)

s′1(k) = s′2(k), s′′1(k) = s′′2(k). (7)

With these six known values, the system becomes under-
determined as number of unknowns is eight. To determine the
cubic spline uniquely, two more conditions are required that
will basically define the behaviour of the interpolating function
at the end points. These conditions can be derived from the
nature of the sine curve. There can be many possible choices,
but the conditions used in this paper are:

s′1(0) = 1, s′2(π/2) = 0 (8)

as they provide a simple form of implementation in terms of
hardware.

With the help of (6)-(8), we get a unique interpolating spline
function. Taking the data point as k = π/4 this function is
shown in Fig. 1.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:9, 2007

1277

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x →

S
(x

)
→

Fig. 1. Plot of S(x) versus x in case of two-interval interpolation.

B. Three-interval interpolation

In this case, the interval [0, π/2] is sub-divided into three
intervals by two data points x = k and x = l. Hence the
interpolating spline function takes the form:

S(x) =





s1(x) if 0 ≤ x < k
s2(x) if k ≤ x < l
s3(x) if l ≤ x ≤ π/2

(9)

where any si(x) is a third degree polynomial defined by (2)
for i = 1, 2 and 3, i.e., we get three cubic polynomials, one
for each interval. To determine this cubic spline uniquely, we
need to find all the twelve coefficients. By using the properties
of the cubic spline, we get the following equations:

s1(0) = 0, s1(k) = sin(k), s2(k) = sin(k),

s2(l) = sin(l), s3(l) = sin(l), s3(π/2) = 1; (10)

s′1(k) = s′2(k), s′′1(k) = s′′2(k), s′2(l) = s′3(l), s′′2(l) = s′′3(l).
(11)

As we get ten known values while the number of unknowns
is twelve, it is necessary to find two more conditions. Like the
previous case, here also we exploit the nature of sine function
to find these equations as follows

s′1(0) = 1, s′3(π/2) = 0. (12)

With the help of (10)-(12), we calculate all the unknowns
and hence get a unique interpolating cubic spline function.
Taking the data points to be k = π/6 and l = π/3, this cubic
spline is shown in Fig. 2. Although this leads to a fairly precise
interpolation scheme of sin(x), the associated precision can be
further increased by introducing an optimization method for
the approximation error, which is taken up next.

IV. OPTIMIZATION OF APPROXIMATION ERROR

The absolute approximation error for any general case of
n-interval interpolation can be defined as:

δ(x) = |S(x)− sin(x)| (13)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x →

S
(x

)
→

Fig. 2. Plot of S(x) versus x in case of three-interval interpolation.

with δ(x) being a piecewise function that can be written as

δ(x) =





|s1(x)− sin(x)| if x1 ≤ x < x2

|s2(x)− sin(x)| if x2 ≤ x < x3

. . .
|sn(x)− sin(x)| if xn−1 ≤ x < xn

(14)

where each data point xi, i = 2, 3, ..., n − 1, is associated
with two intervals, namely, [xi−1, xi) and [xi, xi+1). For our
case, x1 and xn are taken to be two fixed points as 0 and
π/2 respectively. In order to optimize the approximation error
δi(x), where δi(x) = |ai(x−xi)3 +bi(x−xi)2 +ci(x−xi)+
di − sin(x)|, within the interval [xi, xi+1), let us assume that
it has a global maxima δi(xM) at x = xM . Shifting the data
point xi by a small amount ε (> 0) towards xi+1 makes the
intervals uneven and the error associated with [xi + ε, xi+1)
can then be written as

δ̃i(x) = |ãi(x− xi − ε)3 + b̃i(x− xi − ε)2+

c̃i(x− xi − ε) + d̃i − sin(x)| (15)

which will again have a global maxima δ̃i(xN) at some
x = xN . Note that the values of coefficients normally change
while shifting the end point and thus are denoted by ‘˜ ’ on
their heads. Our aim is to find out a definite relation between
δi(xM) and δ̃i(xN) which is given through a few remarks and
corollaries in the following.

Remark 1: It can be shown that neglecting the effect of
change of the coefficients (ai, bi, ci, di) for a small ε (> 0),
the approximation error decreases with decreasing the interval
length, when si(x) > sin(x).

Corollary 1: It directly follows from Remark 1 that
δi(xM) > δ̃i(xN). Similarly, it can be shown that for the
intervals [xi, xi+1) and [xi, xi+1 + ε), if δi(xM) and δ̃i(xQ)
denote the global maxima within these intervals respectively,
then δ̃i(xQ) ≥ δi(xM).

Corollary 2: In general, it can be said that increasing the
interval length increases the maximum approximation error

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:9, 2007

1278

while the error is reduced by decreasing the interval length,
for si(x) > sin(x) in general.

With the help of Corollary 2, we develop an error opti-
mization technique for the proposed methods for shifting the
storage point(s) optimally which is discussed in the following.

A. Two-interval interpolation

Considering the same expression of approximation error
δ(x) as given in (13), where S(x) is an interpolating poly-
nomial defined by (5), we get a maximum associated error as
2−10 (≈ 10−3) in the case of equal interval interpolation (i.e.,
k = π/4). This, in turn, indicates the results to be accurate
to around 10 bits. The plot of δ(x) in this case is shown in
Fig. 3 (with dash-dotted line). Adopting an error optimization
technique as discussed in this section, a data point is found
in the interval (0, π/2) which leads to equal error in both the
interpolation intervals, i.e.,

max(|s1(x)− sin(x)|) = max(|s2(x)− sin(x)|) (16)

where max(f(x)) gives the maximum value of function f(x)
in the specified interval. The data point in this case comes out
to be k = 0.877 radian with the corresponding maximum error
as 2−11 (≈ 6 ∗ 10−4) which is plotted in Fig. 3 (with solid
line). This clearly shows to have achieved a 1-bit increase
in accuracy without any increase in the complexity of the
hardware scheme.

B. Three-interval interpolation

Here also, the approximation error is defined as (13) with
S(x) being an interpolating polynomial defined by (9). Firstly,
equal intervals are chosen for interpolation (i.e., k = π/6
and l = π/3). Maximum error in this case comes out to be
approximately 2−13 (≈ 2∗10−4) which is shown in the plot of
δ(x) in Fig. 4 (with dash-dotted line). This ensures accuracy of
approximately 13 bits. Approximation error is then optimized
in the analogous lines of Corollary 2 to find such data points
which leads to equal error in all the interpolation intervals,
i.e.,

max(|s1(x)− sin(x)|) = max(|s2(x)− sin(x)|) =

max(|s3(x)− sin(x)|) (17)

where max(f(x)) carries its usual meaning as given earlier.
After this optimization, the data points are found to be k =
0.634 and l = 1.115 radian. The maximum error in this case
is 2−14 (≈ 10−4) which is shown in Fig. 4 (with solid line).
Clearly, in this case also there is 1-bit increase in accuracy
without any increase in the complexity of the circuit.

The proposed interpolation scheme can be considered a
consistent one for its adaptive convergence to original function
with only one/two data point(s), which, from storage view
point, is nominal to implement in hardware. We provide a
brief account of the hardware implementation of both the
approaches next.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

x →

δ
(x

)
→

Error optimized
Equal interval

Fig. 3. Plots of δ(x) versus x for two-interval interpolation schemes.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

1.5

2

2.5
x 10

−4

x →

δ
(x

)
→

Error optimized
Equal interval

Fig. 4. Plots of δ(x) versus x for three-interval interpolation schemes.

V. HARDWARE IMPLEMENTATION OF THE PROPOSED
SCHEME

The main advantage of the proposed scheme stems from the
fact that it can be easily realized in hardware, leading to a low
complexity and low power architecture. Below, we provide
the hardware realizations considering both two-interval and
three-interval approaches. The structures of both the cases are
more or less similar except a few extra addition or comparison
operations.

A. Two-interval interpolation

The detailed hardware architecture for implementing two-
interval interpolation scheme is shown in Fig. 5. This architec-
ture can be mainly divided into three modules: preprocessor,
argument generator and spline approximator.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:9, 2007

1279

1) Preprocessor (Module 1): The input to this module
is x ∈ [−π, π]. As sin(−x) = − sin(x), it passes
sign(x) to consequent modules to indicate whether
x ∈ [−π, 0) or [0, π]. Abs(x) is then assigned to x
which effectively reduces the interval of interest to [0, π].
Since sin(x) = sin(π − x), the module thus further
examines whether x ∈ [0, π/2) or [π/2, π] through a
comparison operation taking the reference input to be
π/2. If x ∈ [0, π/2), it directly passes the value of x.
Otherwise, π − x is assigned to x thereby reducing the
interval to [0, π/2] in which the cubic spline function is
defined. This module further examines whether x is a
predefined data or not. The value of sin(x) is directly
displayed if x is predefined, otherwise x is right shifted
by one bit to get [x] = x/2.

2) Argument Generator (Module 2): This module finds
the interval in which x lies by comparing the value
of [x] with the reference point k/2. As the data point
associated with the interval in which x lies is either 0
or k, it finally yields the parameter h = x − xi to be
used as the input argument of the spline approximator.

3) Spline Approximator (Module 3): In this module, the
value of the cubic polynomial is found out by using the
stored coefficients and the input argument h = x − xi

according to the interval in which x lies as said earlier.
The algorithm is summarized in Table 1.

B. Three-interval interpolation

This scheme also leads to an efficient low power hardware
architecture which is shown in Fig. 6. The architecture in this
approach can also be divided into three modules as stated in
the earlier case. However, the complexity in this case increases
slightly for storage and computational purposes due to the
increase in number of coefficients and arithmetic (addition and
comparison) operations. We summarize this in Table 2.

A comparison for both the proposed schemes with respect
to accuracy and hardware complexity is provided in Table 3.

VI. CONCLUSION

In this paper, a low complexity cubic spline interpolation
technique has been introduced to approximate the sine function
in the interval [0, π/2] with two different number of data
points, leading to two different cases. As the number of fixed
data points are small in number within the specified range,
both the cases lead to efficient low power and low complexity
hardware architectures for sinusoidal generation. The usage
of one/two data point(s) reduces the number of coefficients
of the interpolator to eight/twelve only, respectively, which
further reduces the power requirement of both the schemes
from storage element point of view. To increase the hardware
precision of both the proposed schemes, an error optimization
scheme has been considered to shift the fixed data point(s) op-
timally, without any additional increment in hardware. Further,
the first case leads to a fairly low complexity system whereas
the second one gives rise to a relatively complex architecture
with more accuracy and any one of these can thus be used
depending upon the application.

TABLE I
SUMMARY OF THE TWO-INTERVAL INTERPOLATION ALGORITHM

Predefined: x = 0, k, π/2 and values of sine function at these points;
stored ai, bi, ci, di for i = 1 and 2.

1. Input data: argument x ∈ [−π, π]
2. Pass sign(x) to consequent modules.
3. IF |x| ≤ π/2
4. THEN x = |x|; ELSE x = π − |x| ENDIF
5. IF x = 0, k or π/2 THEN
6. Return the corresponding sin(x) or − sin(x) value depending upon the

value of sign(x). ENDIF
7. ELSE give one bit right shift to the input argument x and call this [x].
8. Compare [x] with k/2.
9. IF [x] > k/2 THEN
10. [h] = [x]− k/2. ENDIF
11. ELSE [h] = [x].
12. Give one bit left shift to [h] to get h.
13. Give this h as input to multiplier to recursively generate h, h2, h3.
14. Choose polynomial coefficients according to the interval in which x lies.
15. THEN compute S(x) = aih

3 + bih
2 + cih + di

16. Return S(x) or −S(x) depending upon the value of sign(x).
17. END PROCEDURE.

TABLE II
SUMMARY OF THE THREE-INTERVAL INTERPOLATION ALGORITHM

Predefined: x = 0, k, l, π/2 and values of sine function at these points;
stored ai, bi, ci, di for i = 1, 2 and 3.

1. Input data: argument x ∈ [−π, π]
2. Pass sign(x) to consequent modules.
3. IF |x| ≤ π/2
4. THEN x = |x|; ELSE x = π − |x| ENDIF
5. IF x = 0, k , l or π/2 THEN
6. Return the corresponding sin(x) or − sin(x) value depending upon the

value of sign(x). ENDIF
7. ELSE Give one bit right shift to the input argument x and call this as [x].
8. Compare [x] with k/2 and l/2.
9. IF [x] < k/2 THEN
10. [h] = [x].
11. ELSEIF k/2 < [x] < l/2 THEN
12. [h] = [x]− k/2 ENDIF
13. ELSE [h] = [x]− l/2
14. Give one bit left shift to [h] to get h.
15. Give this h as input to multiplier to recursively generate h, h2, h3.
16. According to the region in which x lies, choose polynomial coefficients.
17. THEN compute S(x) = aih

3 + bih
2 + cih + di

18. Return S(x) or −S(x) depending upon the value of sign(x).
19. END PROCEDURE.

TABLE III
A COMPARISON OF THE TWO PROPOSED APPROACHES WITH ERROR

OPTIMIZATION WITH RESPECT TO ACCURACY AND HARDWARE
COMPLEXITY IN TERMS OF NUMBER OF OPERATIONS PER EVALUATION

Scheme Accuracy Hardware Complexity
(bits) Mult. Add. Comparisons

Two-Interval 11 6 2 3
Three-Interval 14 6 3 4

REFERENCES

[1] J. E. Volder, “The CORDIC Trigonometric Computing Technique”, IRE
Trans. Elect. Comput., vol. EC-8, pp. 330–334, Sep. 1959.

[2] J. C. Bajard, S. Kla and J. M. Muller, “BKM: A New Hardware
Algorithm for Complex Elementary Functions,” IEEE Trans. Comput.,
vol. 43, no. 8, pp. 955–963, Aug. 1994.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:9, 2007

1280

[3] P. J. Davis, Interpolation and Approximation. New York: Dover Publi-
cations, 1990.

[4] J. A. Pineiro and M. D. Ercegovac, “High-Speed Double-Precision
Computation of Reciprocal, Division, Square Root, and Inverse Square
Root,” IEEE Trans. Comput., vol. 51, no. 12, pp. 1377–1388, 2002.

[5] I. Koren and O. Zinaty, “Evaluating Elementary Functions in a Nu-
merical Coprocessor Based on Rational Approximations”, IEEE Trans.
Comput., vol. 39, pp. 1030–1037, Aug. 1990.

[6] P. T. P. Tang, “Table-lookup Algorithms for Elementary Functions and
their Error Analysis”, in Proc. 10th Symposium on Computer Arithmetic,
1991, pp. 232–236.

[7] M. J. Schulte and J. E. Stine, “Approximating Elementary Functions
with Symmetric Bipartite Tables,” IEEE Trans. Comput., vol. 48, no. 8,
pp. 842–847, Aug. 1999.

[8] M. D. Ercegovac, T. Lang, J. M. Muller and A. Tisserand, “Reciproca-
tion, Square Root, Inverse Square Root, and Some Elementary Functions
using Small Multipliers,” IEEE Trans Comput., vol. 49, no. 7, pp. 628–
637, July 2000.

[9] J. A. Pineiro, S. F. Oberman, J. M. Muller and J. D. Bruguera, “High-
Speed Function Approximation using a Minimax Quadratic Interpola-
tor,” IEEE Trans. Comput., vol. 54, no. 3, pp. 304–318, March 2005.

[10] V. Paliouras, K. Konstantina and S. Thanos, “A Floating-point Processor
for Fast and Accurate Sine/Cosine Evaluation”, IEEE Trans. Circuit.
Syst. II : Analaog and Digital Signal Processing, vol. 47, no. 5, 1991,
pp. 441–451, May 2000.

[11] D. M. Lewis, “Interleaved Memory Function Interpolators with Appli-
cation to an Accurate LNS Arithmetic Unit”, IEEE Trans. Comput., vol.
43, pp. 974–982, Aug. 1994.

[12] V. Kantabutra, “On Hardware for Computing Exponential and Trigono-
metric Functions”, IEEE Trans. Comput., vol. 45, no. 3, pp. 328–339,
Mar. 1996.

[13] H. Ting, B. Liu and S. Chang, “An On-Chip Concurrent High Frequency
Analog and Digital Sinusoidal Signal Generator”, in Proc. IEEE Asia-
Pacific Conference on Circuits and Systems, Tainan, Dec. 2004, pp.173-
176.

[14] K. E. Atkinson, An Introduction to Numerical Analysis. New York: John
Wiley & Sons, 1989.

[15] H. S. Dhillon and A. Mitra, “A Low Power Architecture of Digital
Sinusoid Generator using Cubic Spline Interpolation”, IETE J. Edu.,
vol. 47, no. 3, pp. 129–136, July–Sept. 2006.

[16] I. Koren, Computer Arithmetic Algorithms. Englewood Cliffs, NJ:
Prentice-Hall, 1993.

[17] S. McKinley and M. Levine. Cubic Spline Interpolation [On-
line]. Available: http://www-lmpa.univ-littoral.fr/ bouhamid/dossier
fichiers/cubicspline.PDF.

[18] M. J. Schulte and J. E. Stine, “Approximating Elementary Functions
with Symmetric Bipartite Tables”, IEEE Trans. Comput., vol. 48, no. 8,
pp. 842–847, August 1999.

[19] J. Cao, B. Wei and J. Cheng, “High-performance Architectures for
Elementary Function Generation”, in Proc. 15th IEEE Symposium on
Computer Arithmetic, 2001, pp. 136–144.

Abhijit Mitra was born in Serampore, India, in
1975. He received the B.E.(Honors) degree from
the Regional Engineering College, Durgapur, In-
dia, in 1997, the M.E.Tel.E. degree from Jadavpur
University, India, in 1999 and the Ph.D. degree
from the Indian Institute of Technology, Kharagpur,
India, in 2004, all in electronics and communication
engineering.

Since 2004, he has been with the Department of
Electronics and Communication Engineering at the
Indian Institute of Technology, Guwahati, India, as

an Assistant Professor. He visited Indian Statistical Institute (ISI), Kolkata,
as a Visiting Scientist during June-July 2007. His research interests include
adaptive signal processing and signal processing applications in wireless
communications with the primary emphasis on low complexity system re-
alizations.

Dr. Mitra has been a member of IEEE since 2003 and presently serves as
a reviewer of IEEE Transactions on Signal Processing, IEEE Transactions on
Audio, Speech and Language Processing, and IEEE Signal Processing Letters.
He is also a member of Indian Science Congress Association and Institution of
Electronics and Telecommunication Engineers, India. Presently, he serves as
a member of the editorial board of Recent Patents on Electrical Engineering
(Bentham Science, USA), International Journal of Signal Processing and
International Journal of Information Technology (Enformatika, Europe).

Harpreet Singh Dhillon was born in Amritsar,
India, in 1986. He is currently a B.Tech. final year
student in the Department of Electronics and Com-
munication Engineering at the Indian Institute of
Technology, Guwahati, India. The work reported in
this paper was taken up by him, under the guidance
of Dr. Abhijit Mitra, as a part of his undergraduate
study.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:9, 2007

1281

Input x

Sin(x) Values

h

Display respective
If

Yes
Right Shift

One bit

Subtractor

h

One bit
Left Shift

Adder

Preprocessor

Module 1

Terminate

Module 2

Argument
Generator

Module 3

h h3

MULT

MULT

[h]

2

MULT

MULT

Comparator

[x]

Delay

Multiplexer

Multiplexer

Multiplexer

Multiplexer

Multiplexer

[x]

 x = 0, k

k / 2

{ [x] − k/2 }

a

a

b

b

c

c

d

d

1

1

2

2

2

1

2

1

Spline
Approximator

Comparator
|x|

or /2π

π

Comparator

x = |x| or − |x|

No

S(x)

S(x) or −S(x)

Sign (.)

π/2

Abs (.)

Fig. 5. Implementation of sinusoidal generator with the proposed two-interval scheme (here h = x− xi).

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:9, 2007

1282

Input x

Subtractor

Subtractor

Left shift

Right Shift
[x]

h

Adder

h

Module 1

Preprocessor

Module 2

Argument

Module 3

One bit

One bit

Display respective
Sin(x) values

Comparator

Comparator

Multiplexer
[h]

Terminate

Multiplexer

Multiplexer

Multiplexer

Multiplexer

Delay h h3 2

Generator

MULT

MULT

MULT

MULT

or /2π

Yes No
If

/2k

{ [x] − k/2 }

{ [x] − l/2 }

x=0, k, l

a
a
a

b
b
b

c
c
c

d
d
d

1

1

1

2

2

2

2

1

3

3

3

3

/2l

Approximator
Spline

Sign (.)

Comparator
|x|

π

Comparator S(x)

S(x) or −S(x)

π/2

Abs (.)

x = |x| or − |x|

Fig. 6. Implementation of sinusoidal generator with the proposed three-interval scheme (here h = x− xi).

