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Estimation of the External Force for a
Co-Manipulation Task Using the Drive Chain Robot

Sylvain Devie, Pierre-Philippe Robet, Yannick Aoustin, Maxime Gautier

Abstract—The aim of this paper is to show that the observation
of the external effort and the sensor-less control of a system is
limited by the mechanical system. First, the model of a one-joint
robot with a prismatic joint is presented. Based on this model,
two different procedures were performed in order to identify the
mechanical parameters of the system and observe the external effort
applied on it. Experiments have proven that the accuracy of the force
observer, based on the DC motor current, is limited by the mechanics
of the robot. The sensor-less control will be limited by the accuracy in
estimation of the mechanical parameters and by the maximum static
friction force, that is the minimum force which can be observed in
this case. The consequence of this limitation is that industrial robots
without specific design are not well adapted to perform sensor-less
precision tasks. Finally, an efficient control law is presented for high
effort applications.

Keywords—Control, Identification, Robot, Co-manipulation,
Sensor-less.

I. INTRODUCTION

FORCE control is an important part of the mechatronic

control [1]. This type of control system is currently made

by using force sensors in order to measure the external effort.

However, in particular cases, this solution cannot be applied

and a sensor-less solution by using motor currents has to be

chosen. For example, in [2], the electrical current measurement

is used to estimate the feed cutting force for a manufacturing

operation. In [3], the current of the DC motors of a legged

walking robot was used to estimate the ground reaction force

based on the dynamic equation in the joint space for each

joint. The inner friction were identified by using a neural

network to improve the identification. Recently, Kambara et
al. have proposed, in [4], an innovative disturbance force

observer based on the model of their minor current loop. Then

this observer is used to carry out acceleration-based control

for tele-operation tasks without external force sensor and

have proven its efficiency by comparing it to more classical

observation-based controls.

In the case of force control, and more specifically in case

of co-manipulation tasks, the external perturbations are mostly

due to the mechanical part of the system. These perturbations

have a direct effect on the observation of the effort and have

to be identified or mechanically compensated. For example,

the Haption master arm [5] has been designed in order to be

mechanically transparent. This means that all the mechanical

losses are compensated and the effort given by the actuator

is exactly equal to the effort applied on the environment by
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the end-effector. With this design, sensor-less force control

can be performed for surgical tasks. In the case of industrial

robots, the power from the actuator is shared between the

useful work, dynamic effects like inertia or the Coriolis effect,

and perturbation effects like friction. In this spirit, in [6]

the authors proposed a friction observer in order to control

industrial robots by using an innovative estimation of the

friction perturbation.

In the case of the co-manipulation control, the perturbation

are be divided into two categories: the effort from the

operator and the friction perturbation. The effort from the

operator is one of the inputs of the control law. In the

classical application, we desire the velocity of the robot to be

proportional to this effort. The friction perturbation consists of

mechanical losses in the transmission which consumes energy

between the actuator and the end-effector. The identification of

these perturbation presents some difficulties. For example, the

break-away, between the state of rest and motion is difficult

to define, and several empirical models have been proposed

[7]-[9]. Another difficulty is the non-repeatability of the

friction identification, which makes the friction compensation

difficult [10], [11]. This difficulty can be minimised with

on-line correction of the friction estimation. For example, in

[12] the friction estimation is corrected on-line in order to

carry out impedance control.

More globally, the mechanical parameters of an industrial

robot are estimated with a general identification method, based

on the inverse dynamic model (IDM) and the least squares

(LS) method. This method has been successfully applied to

identify the inertial and friction parameters of many prototypes

and industrial robots [13], [14]. The identification consists of

moving a robot without a load (or external force) or with a

constant given payload [15], by following a specific trajectory

[16]. More complicated models can also be solved in order to

consider the flexibility of the system [17].

The aim of this paper is to illustrate the limit for the

force observation for an industrial robot in the case of a

co-manipulation task. This task is similar to the tele-operation

task presented in [4]. The difference is that in the case of

co-manipulation a single robot is considered and the force

applied at its end-effector by the operator is the reference

effort that the robot has to follow, while two robots are

considered in the case of tele-operation: the force applied

on one robot is the reference for the force applied by the

other one. For the experimental part, a one-link robot with

a prismatic joint is presented and is assumed to be rigid.

This robot testbed has already been used to test several

identification processes over the last few years [18], [17] and is
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a good tool to perform this kind of study, as recently shown in

[19]. There, an acceleration-based impedance control is used

in a tele-operation scenario for fast environmental stiffness

estimations with a time delay. Or in [20] where the bilateral

control is improved by considering a non-linear model for the

perturbation observer.

From the work of Onishi [1] a force observer is first

implemented for our robot. An identification of its parameters

was a priori made. The aim of this force observer will be

to check if it is possible to perform a precise task with a

low force observer. After that, an impedance based control

law based on Hogan’s [21], [22] work is implemented. This

control law allows us to successfully perform co-manipulation

tasks with large external forces. In [23], an equivalence was

shown between this control law and the one already used in

the harware used in this paper [24], [25].

This paper is outlined as follows. Section II focuses on the

model of the robot and presents its Newton-Euler equation in

order to define a linear form of the Inverse Dynamic Model.

Section III uses this model to perform the identification of

the mechanical parameters of the robot and the observation of

the effort of the operator while performing a co-manipulation

task. Section IV proposes an efficient sensor-less control law

for high forces and Section V offers our conclusion and

perspectives.

II. MODELING OF A RIGID INDUSTRIAL ROBOT

A. Experimental Set-Up

The EMPS is a high-precision linear Electro-Mechanical

Positioning System, presented in Fig. 1. It is a standard

configuration of a drive system for the prismatic joint of

robots. It is actuated by a Maxon DC motor which drives a

carriage by a ball screw. The carriage moves a force sensor and

a gripper in translation. The motor rotor and the ball screw are

connected by a flexible coupling. Two incremental encoders

are presented on the robot. The first one measures the motor

position qm (rad) while the second one measures the position

of the ball screw q1 (rad).

For the applications considered in this paper, the robot is

assumed to be rigid in the frequency range of the system

harmonics. This means that the encoder measurements are

equal and qm = q1. In the following, we will consider only

the displacement of the carriage q = qm/r (m), where r is the

pitch of the ball-screw (rad/m).

An inner current loop is physically integrated at the input

of the DC motor and allows it to control the motor without

using the current sensor. This helps the hardware of the system

becomes simpler. This current regulation cannot be easily

modified by the operator and has a frequency ωI 20 times

greater than the velocity loop. In the following, the current

loop will be assimilated into a simple gain.

In the following, all the variables on the load side will be

given in SI units. The force applied by the motor on the

carriage is linearly proportional to the motor torque with a

factor of the reduction ratio of the ball screw r. This torque

is linearly proportional to the current sent to the motor Im
(A), with a factor of the torque constant kt (N/A). A current

amplifier is present on the input of the current loop vI (V ),

with Im = GivI .

In the following, we will consider:

τm = Gi r kt vI = Gτ vI (1)

The parameter Gτ (N/V ) will be considered to be known

and independent of the experimental conditions.

B. Inverse Dynamic Model of the Robot

The mechanical system, presented in Fig. 2 has one

prismatic degree of freedom q (m). It is affected by the actions

of the motor τm (N) and of the environment τe (N). In the

considered case, the body of the robot is not affected by

gravitational force.

The Inverse Dynamic Model (IDM) calculates the motor

force as a function of the joint position and its derivatives.

Newton-Euler equations give the following IDM [26]:

τm + τe = Mq̈+Fvq̇+Fcsign(q̇) (2)

Here:

• q̇ (m/s) and q̈ (m/s2) are respectively the carriage velocity

and acceleration,

• τm (N) is the drive force from the motor,

• M (kg) is the total load side equivalent mass, including

the inertia of all rotating elements in the drive chain and

the mass of all the translating elements,

• τe (N) is the external force, applied by the environment,

• Fv (N/m/s) is the viscous damping coefficient,

• Fc (N) is the Coulomb friction force,

• sign(u) denotes the sign function.

The friction considered here, as shown in Fig. 3, is a

classical model that takes into account only the kinetic

(Coulomb) friction and viscous damping:

Ff c(q̇) = Fvq̇+Fcsign(q̇) (3)

However, this model does not take into account the static

friction: in the static case, a break-away force Fs (N) is needed

to overcome the static friction and move the robot, with

Fs > Fc. This break-away is very difficult to model efficiently,

the most efficient empirical model to approximate it is the

Stribeck model, taking into account the non-linearity due to

adherence at the null velocity:

Ff s = Fvq̇+Fcsign(q̇)+(Fs −Fc)e
−|q̇/q̇s|δs

sign(q̇) (4)

where q̇s (m/s) is the Stribeck velocity constant and δs is

a coefficient between 1 and 2. The shape of this model is

also presented in Fig. 3. The classical model restricts us to

experiments in areas far from the non-linear area, away from

null velocities.

Another model problem would be the unsymmetrical

behaviour of friction [18]. In order to deal with this, a two

quadrant model will be considered for the Coulomb and

viscous friction, depending on the sign of the speed. This

implies the following:

• F+
c , F+

v and q̇+ will respectively be used for Fc, Fv and

q̇ when q̇ > 0
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Fig. 1 Components of the EMPS robot

Fig. 2 Components of the EMPS robot

Fig. 3 Shape of the classical friction model in red, and the Stribeck friction
model in blue, function of the velocity q̇

• F−
c , F−

v and q̇− will respectively be used for Fc, Fv and

q̇ when q̇ < 0

Equation (2) can be re-written as function of the model

parameters, gathered in vector X.

τm + τe = WX (5)

Here:

• X =
[
M F+

v F−
v F+

c F−
c
]�

is a 5×1 vector

• W =
[
q̈ q̇+ q̇− sign(q̇+) sign(q̇−)

]
is a 1 × 5

matrix.

This equation will be used in the following in order to

identify the parameters in X.

C. Control Design

In a previous study [24], a simple control law was

studied for the force control using an integral proportional

(IP) correction for the velocity loop and a proportional (P)

correction for the force loop. Then this control law was

adapted in order to perform the co-manipulation task.

In a co-manipulation case, the environmental impedance

depends on the impedance of the environment and of the

operator’s hand. This environmental impedance is supposed

to be unknown. In this case, a classical control system is

illustrated in Fig. 4. Here, an inner velocity loop is used

to control the performance of the system while an outer

force loop is used to control its transparency. Increasing the

gain ke1, we increase the transparency. However, a too high

gain can lead to instability. The aim is to get a simple

co-manipulation controller with τe = 0 when the robot is not

moving (q̇1 = q̇2 = 0). It leads us to choose the force reference

τre f = 0 which is the offset of the force the operator has to

apply on the system.

Thanks to this reference, the system allows a linear

relationship between the external force τe and the velocity

reference vq̇. If the external perturbation has a low frequency,

the relation τe = kcq̇1 can be used in order to calculate the

correction gains of the closed loops.

In order to calculate the correction and the performance of

the system, we consider that the frequency range (< 20 rad/s)

of the exogenous disturbance τe is small compared to the

bandwidth of the velocity loop (100 rad/s), in order to

provide a linear relation between the velocity and the external

force: τe = kcq̇1 with kc = 1/ke1. However, in the case of low

external forces, the external force can be neglected for the

calculation of the velocity loop correction. According to Fig.

4 and considering this last assumption, for co-manipulation

applications the open loop transfer function of the velocity

loop is given by the equation:

Tvo(s) =
q̇1(s)

vq̇(s)− q̇1(s)
=

kv1Gτ

tvs

1

M1s+Fv1 + kv1Gτ
(6)

Imposing the phase margin φv at a frequency ωv leads to

Tvo( jωv) = 1e j(−π+φv) and gives the values of kv1 and tv [?].

kv1 =
M1ωv tan(φv)−Fv1

Gτ
, tv =

kv1Gτ

M1ω2
v

cos(φv) (7)

The closed loop transfer function for the velocity loop is:

Tvc(s) =
q̇1(s)

vq̇(s)
=

1

1+(tv +
Fv1

Kv
)s+

M1

Kv
s2

(8)
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Fig. 4 Cascaded closed loop of speed and force in the case of co-manipulation

with Kv = kv1Gτ/tv. Let us write this transfer function in the

canonical form:

Tvc(s) =
1

1+
2zv

ω0v
s+

s2

ω2
0v

(9)

with ω0v =
√

Kv/M1 and zv = (tv +
Fv1

Kv
)

ω0v

2
.

The outer open force loop has the following equation:

Teo(s) =
τe

τre f + τe
=

ke1kc

1+
2zv

ω0v
s+

s2

ω2
0v

(10)

According to the definition of kc, which is equivalent to a

viscous friction coefficient, the equation can be written in the

following form:

Teo(s) =
1

1+
2zv

ω0v
s+

s2

ω2
0v

(11)

Here, the coefficient kc is chosen to provide good transparency.

III. REACTION FORCE OBSERVER FOR SMALL EXTERNAL

FORCES

A rigorous observation of the reaction force needs a perfect

estimation of the electro-mechanical parameters of the system.

Hence, the observation of the reaction force needs two steps:

the identification of the system parameters, and the estimation

of the reaction force from the parameters. In the considered

case, the electrical parameters are perfectly known and used

to control the inner velocity loop, however the mechanical

parameters have to be identified.

A. Identification of the Parameters

Considering an acquisition free of reaction force, with a

position control of the robot allowing it to follow a specific

trajectory, (5) becomes:

τm1 = W1X1 (12)

Where τm1 is a n×1 matrix of motor forces, X1 is a p×1

matrix of mechanical parameters and W1 is n × p matrix

of velocity and acceleration signals calculated numerically

from the measured positions. Here p = 5 is the number of

independent parameters and n is the number of samples. In

this section, the subscript 1 is used to describe data from the

first set of experiments related to identification.

According to this model, for a robot following a dynamic

trajectory [16], the matrix X̂1 can be estimated with the least

squares method, for example by using the Matlab function:

X̂1 = W1 \ τm1
Standard deviations are estimated using classical and simple

results from statistics, considering the matrix W1 to be

a deterministic one, and ρ to be a zero mean additive

independent noise, with standard deviation σρρ such that:

Cρρ = E(ρρ�) = σ2
ρ IN (13)

where E is the expectation operator and In is the (n × n)

identity matrix. An unbiased estimation of σρ is used and

given by the expression:

σ̂2
ρ =

‖ τm1 −W1X̂1 ‖2

n− p
(14)

The variance-covariance matrix of the estimation error and

standard deviations can be calculated by:

CX̂1X̂1
= E[(X1 − X̂1)(X1 − X̂1)

�] = σρ
2(W1W1

�)−1 (15)

The relative standard deviation is given by the expression:

%σX̂1
(i) = 100|

σ̂X̂1
(i)

X̂1(i)
| (16)

where σX̂1
2(i) = CX̂1X̂1

(i, i) is the ith diagonal coefficient of

CX̂1X̂1
.

Because of the perturbations due to the noise and the

modeling errors, the actual force τm1 differs from the estimated

one τ̂m1 by an error e1, such that:

τm1 = τ̂m1 + e1 = W1X̂1 + e1 (17)

Calculating the least squares solution (17) from the data

in W1 and τm1 can lead to a bias if W1 is correlated to e1.

Hence, it is essential to filter the data in τm1 and W1 before

computing W1 \ τm1.

Velocities are directly estimated by a backward derivative

of the position, and the acceleration is estimated by a central

derivative of the filtered velocity. All the variables were

corrected with the medfilt1 and decimate functions of Matlab
R©Ṫhe measured and filtered values of the effort from the

motor τm1, the velocity q̇ and the acceleration q̈ are presented

in Fig. 5.

The velocity reference trajectory is a mixture of trapezoidal

segments and constant velocity segments. Specific shapes of

the trajectory highlight specific dynamic parameters. A linear

variation of the velocity highlights the inertial parameters

while a constant velocity highlights the viscous friction



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:12, No:10, 2018

981

parameters. The reference trajectory is optimized in order to

have a linear variation of velocity half the time, and a constant

velocity in the other half of the time, in order to excite all

the parameters in order to identify each of them with a good

accuracy.
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Fig. 5 Measured values (blue) and filtered values (red) of the effort from the
motor (top), the velocity (middle) and the acceleration (bottom)

Ten experiments were performed in order to identify the

parameters of the robots. Fig. 6 shows the evolution of

the motor effort τm1 calculated thanks to the motor current

measurement and its estimated values without taking the error

into account W1X1.

The identified values for the experiment shown in Fig. 6 are

given in Table I.

TABLE I
IDENTIFIED VALUES

parameters X̂1 2σ̂X̂1
%σX̂1

M1 (kg) 115.7315 0.5765 0.4981

F+
v1 (N/m/s) 474.9727 17.5686 3.6989

F−
v1 (N/m/s) 563.8568 19.3088 3.4244

F+
c1 (N) 17.3811 0.3259 1.8750

F−
c1 (N) 11.5846 0.3363 2.9030

It is important to remark that for the experiment presented in

Fig. 6, the estimated Coulomb frictions is F+
c1 = 17 N. Another

static experiment allowed us to estimate the static friction as

F+
s = 17 N. This means that the classical model used for the

observation is well adapted for a ball screw system. That also

means that, in the case of sensor-less control, the operator has

to apply a break-away force τe = 17 N on a static robot in

order to allow the controller to detect its action.

The root mean square (RMS) error between the motor force

τm1 and W1X1 is RMS1 =
√

mean(e12) = 3.6 N. The errors

from the other experiments varies between 3.6 N to 5.3 N.

This identification will be used for the observation in the next

step. This means that the observer cannot be more accurate

than 3.6 N in the best case.

In the following, X̂1 represents the mean value of the

mechanical parameters of X̂1 and which were calculated with

the ten experiments.
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Fig. 6 Force from the motor τm1 in blue and W1X1 in red

B. Observation of the Reaction Force

Once the model is known, the goal is to observe the

reaction of the external forces. The co-manipulation control

law presented in the previous section is considered. The aim

of this operation is to control a robot with a transparent

behaviour. This means that the operator should hold a gripper

at the end-effector of the robot and move it without feeling

the dynamics of the robot. This can be achieved thanks to

high values of the gains of the outer force loop. However,

we want to estimate the force applied by the operator on the

robot. This interaction effort can be improved by reducing

the transparency of the control law. The first step to perform a

sensor-less task: if the estimation of the force τe is not efficient

enough, the control of the force τm is impossible with any

control law.

The control law presented in Section II-C is used with the

FN3280 sensor from Hoskin. The data collected thanks to this

sensor is used to control the robot and will be compared to

the estimated effort τ̂e1 from the observer.

Here, the aim is to observe the external force τe1. If the

control system is transparent, the operator does not feel the

force from the robot, and its action is compensated by the

control system. In this case, the observation of the motor

torque does not allow us to estimate this force. To avoid this

issue, the gain ke1 is chosen to have a poor transparency of

the system. The effort measured by the force sensor will be

considered equal to the real effort from the operator, as the

sensing error is insignificant compared to the identification

error.

This effort is estimated with the help of (5), as follows:

τe2 = τm2 −W2X2 (18)

In this section, the subscript 2 is used to describe data from

the second set of experiments related to the observer. The

vector X̂1 from the mechanical parameters identified in the

previous experiments will be considered instead of the vector

X2.

Ten experiments were performed in a co-manipulation

scenario, they are illustrated by Fig. 7. During these
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Fig. 7 Co-manipulation experiments, the operator apply a specific force on
the force sensor of the robot presented into Fig. 1

experiments, a co-manipulation task was carried out,

considering a non-null reference force in order to ensure an

effort at any time. For each of these experiments, the force

applied by the operator on the system was estimated by:

τ̂e2 = W2X̂1 − τm2 (19)

With τm2 calculated with the help of (1). Again, because of

the perturbations due to the noise, the modeling errors, and

the identification errors, the actual force τe2 applied by the

operator differs from τ̂e2 by an error e2 depending on e1, such

that:

τe2 = τ̂e2 + e2 (20)

Two main cases of the calculation of τm2 can be considered:

the on-line calculation and the off-line calculation. The on-line

calculation is done during the experiment, with a simple

first-order low pass filter on the measured velocity and current

in order to obtain a real time estimation of the force, which can

be used to perform a sensor-less co-manipulation operation.

The off-line calculation is done after the experiment and allows

better filtering of the data.

Considering the off-line calculation, the force applied by

the operator is calculated by (19). The force measured by the

sensor τe2 and the estimated force τ̂e2 are presented on Fig. 8.
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Fig. 8 Force measured by the sensor τe2 in red and estimated force τ̂e2 in
blue

According to this figure, for a small force from the operator,

the noise from the observer is bigger than the actual effort.

For the ten experiments, the RMS error of the observation

RMS2 =
√

mean(e22) varies from 3.9 N to 5.4 N. This result

proves that the force observation with a simple 2 quadrant

mechanical model is not well adapted for precision tasks.

However, the proposed model uses a cross validation of

the observer - the observed effort is calculated thanks to the

data identified with another experiment. This means that the

error e2 from the second experiment accumulates upon the

error e1 from the first experiment. This problem is cumulated

with another one due to the characteristics of the stiffness:

it is non-homogeneous on the full workspace of the robot

and depends on several parameters, like the lubrication or the

temperature. In our case, the used workspace was sufficiently

small and the time between the two steps was sufficiently small

to consider the estimation to be correct. However, in the case

of industrial robots, the parameters identified in the first step

could differ from the parameters which should be used in the

second step.

Another approach to limit these errors is to carry out the

two steps on the same set of data off-line.

C. Direct Validation Observation

Let us now consider only the co-manipulation experiment

from the previous section. The efforts applied by the

operator were specifically chosen in order to present particular

behaviours like ramps and floors allowing the identification

of the system. Here, the aim is not to propose a strategy for

sensor-less control, but to use an identification and observation

protocol based on force measurement to check the efficiency

of the previous calculations.

Let us now consider (5):

Y = τm + τe = WX (21)

Here, τm1 is calculated thanks to the current measurement

and (1), τe1 is given by the force sensor and W is calculated

off-line thanks to the motor encoder and time derivative

computations.

According to the previous section, the dynamic parameters

in X can be estimated by X̂ with the help of a least squares

method in order to approximate Y, with:

Y = WX̂+ ei (22)

where ei is the vector of the identification error for the

experiment, due to measurement noise and modelling errors.

The effort from the operator can be estimated similar to the

previous section, by:

τ̂e = WX̂− τm (23)

The evolution of this effort is presented in Fig. 9, for the

same experiment as in Fig. 8.

The identified values for the experiment shown in Fig. 6 are

given in Table II

TABLE II
IDENTIFIED VALUES

parameters X̂1 2σ̂X̂1
%σX̂1

M1 (kg) 109 1.24 1.13

F+
v1 (N/m/s) 707 27.5 3.89

F−
v1 (N/m/s) 998 26.4 2.65

F+
c1 (N) 18.9 0.21 1.15

F−
c1 (N) 9.8 0.21 2.22
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Fig. 9 Force measured by the sensor τe in red and estimated force τ̂e in blue

The RMS error between the observed force and the actual

effort from the operator is 2.8 N. For the ten experiments, this

error varies from 2.7 N to 3.4 N, which is of the same order of

magnitude as the value of the forces applied by the operator,

but better than the observations of the previous section.

These results are mostly due to the fact that most of the

power from the motor is used to compensate for the dynamics

of the robot, and not to assist the operator. This means, in

(23), τm is approximately equal to WX̂ . This assumption is

illustrated in Fig. 10.
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Fig. 10 Force applied by the motor τm in blue, and estimated force WX̂ in
red and effort from the operator τe in black

According to this figure, the motor forces and the forces

due to the mechanical losses have a maximum value of 30 N,

while the maximum value of the effort from the operator is

equal to 5 N, which is the range of the sensing device. In this

particular case, the effort applied by the operator has the same

order of magnitude as the precision of the observation.

Several techniques can be proposed to reduce this problem.

The most common technique is to design a specific robot with

a mechanical compensation of the mechanical losses. In this

case, the force needed to move the robot WX̂ would be far

smaller, and the force from the motor would be equal to the

force from the operator. Another way to reduce the problem

would be to perform large force operations instead of precision

operations in order to have a force τe higher than the precision

of the observation. In this configuration, we can assume a good

reconstruction of the force τe. In any case, it appears that a

sensor-less force control is not possible in the case of small

forces for co-manipulation applications with industrial robots.

However, the next section will present an efficient control

law allowing for these kinds of applications for large external

forces.

IV. SENSOR-LESS CO-MANIPULATION CONTROL FOR

LARGE EXTERNAL FORCES

The aim of this section is to present an efficient control law

in order to carry out a sensor-less co-manipulation task with

an industrial robot, for large external forces based on on-line

estimation of the operator force. Unfortunately, the available

hardware does not allow the measurement of large forces on

the system, so it is not possible to compare the evolution of

the external force and the movement of the system. Simulation

results are presented and external videos have proven the

efficiency of the control law on a real device.

In this section, in order to simplify the expression, we

consider only a one quadrant model: we consider the friction

coefficients to be symmetric and not dependant on the sign of

the velocity.

A. Control Design

The control law used in this section is different from the

one used in the Section II-C. The previous control law is more

efficient for systems controlled with a force sensor. In this

case, the external force usually varies at a low frequency,

which allows the use of an external force loop giving the

reference of the inner velocity loop as shown in Fig. 4.

However, in the case of a sensor-less control law, the estimated

effort depends on the velocity for the estimation of the friction

and the electric current for the estimation of the motor force.

In our specific hardware, an inner electrical current loop is

implemented and has a bandwidth 20 times higher than that

of the bandwidth of the velocity loop.

In the case of large external forces, it is possible to apply an

impedance control law on the system and control the motor

torque to achieve the desired dynamic performance. Fig. 11

describes the implementation of the impedance control law

and its model. The impedance control is used to control the

motor torque according to the current velocity q̇ (m/s), the

motor electric current Im (A), and a reference position q0 (m),
as presented in Fig. 11a. The aim is to control the apparent

impedance, described by Fig. 11b with Ma, B, and K, around

the position q0.

According to (2), the mechanical equation used to design

the control law is:

τm + τe = M̂q̈+ F̂vq̇+ F̂csign(q̇) (24)

with M̂, F̂v and F̂c identified in the previous section.
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Fig. 11 Definition of the impedance control law

According to Fig. 11b, the desired mechanical equation is

the following:

τe = Maq̈+B(q̇− q̇0)+K(q−q0) (25)

This equation gives:

q̈ =
1

Ma
(τe −B(q̇− q̇0)−K(q−q0)) (26)

According to (24) and (26), we get:

τm = (
M̂
Ma

−1)τe +(F̂v − M̂
Ma

B)(q̇− q̇0)

+ F̂csign(q̇)− M̂
Ma

K(q−q0)

(27)

Equation (27) is a classical impedance control law with a

prediction term correcting the friction effects. In the following,

in order to perform a co-manipulation task, we consider

the following simplifications: K = 0 and q̇0 = 0. Thus, (27)

becomes:

τm = (
M̂
Ma

−1)τe +(F̂v − M̂
Ma

B)q̇+ F̂csign(q̇) (28)

Let us now define the following external force observer:

τ̂e = M̂q̈+ F̂vq̇+ F̂csign(q̇)−GτiIm (29)

where Im (A) is the current in the current loop of the motor.

For our model, we consider τ̂m = GτiIm. With Gτi = ktr, (28)

and (29) give:

τm = (
M̂
Ma

−1)M̂q̈+
M̂
Ma

(Fv −B)q̇+
M̂
Ma

Fcsign(q̇)

− 2(
M̂
Ma

−1)GτiIm

(30)

B. Simulation Result

Simulations were performed using the impedance control

law (30). The parameters Ma and B are calculated from the

parameters of the control law of Section II-C thanks to an

equivalence criterion. The parameters M̂, F̂v and F̂c are the

ones identified in Section III-A, when q̇ > 0.

The simulation is performed considering an identification

error of 2% between the parameters used in the control law

and the parameters used in the mechanic model. This error

simulates the uncertainty of the identification.

The evolution of external force applied on the robot, its

velocity and its position are plotted in Fig. 12. According to

this figure, the control law allows a stable evolution of the

velocity, proportional to the external force.
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Fig. 12 Simulation of the external force τe(N), the velocity of the robot
q̇(m/s) and its position q(m) function of the time (s), for a co-manipulation

application without force sensor

This result proves the efficiency of the force observer

under these conditions. However, according to the hardware,

the real conditions can be worse than the ones simulated.

However, experiments were done with Ma = 50 kg and B =
100 N/(m/s). The result can be seen on the videos.

It appears that the operator has to apply an effort higher

that in the case , where a force sensor is used. It is coherent

with the results of the previous section.

V. CONCLUSION

The aim of this paper was to show the limits of force

observation in the case of co-manipulation tasks with an

industrial robot. Firstly, the model of the robot was defined,

and presented in a linear form. This model was used to perform

identification of the robot parameters and observation of the

external effort based on the current in the DC motor. It appears

that the identification of the mechanical parameters has a large

variance. The consequence of this dispersion is a large error

on the force observation. This error coupled with the effects

of static friction makes it unsuitable for precise sensor-less

applications.

Then, an efficient control law was presented in order to

control the robot for sensor-less applications with large efforts.



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:12, No:10, 2018

985

Even if this application is less efficient that the one using a

force sensor, due to noise and identification errors, it still gives

acceptable results.
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the École Normale Suprieure de Rennes in 2015. Since 2015, he has been a
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