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Abstract—Source apportionment using Dispersion model 
depends primarily on the quality of Emission Inventory. In the 
present study, a CMB receptor model has been used to identify the 
sources of PM2.5, while the AERMOD dispersion model has been 
used to account for missing sources of PM2.5 in the Emission 
Inventory. A statistical approach has been developed to quantify the 
missing sources not considered in the Emission Inventory. The 
inventory of each grid was improved by adjusting emissions based on 
road lengths and deficit in measured and modelled concentrations. 
The results showed that in CMB analyses, fugitive sources - soil and 
road dust - contribute significantly to ambient PM2.5 pollution. As a 
result, AERMOD significantly underestimated the ambient air 
concentration at most locations. The revised Emission Inventory 
showed a significant improvement in AERMOD performance which 
is evident through statistical tests.  

 
Keywords—CMB, GIS, AERMOD, PM2.5, fugitive, emission 

inventory. 

I. INTRODUCTION 

ARTICULATE MATTER (PM) levels are very high in 
Indian cities PM2.5: 25–200 μg m–3 [27]. A review of air 

quality trends in India suggests that the levels of PM exceed 
both 24-h and annual standards at most locations of the Indian 
National Air Quality Monitoring Program [11]. PM levels in 
large cities in India could be 5-10 times higher than those in 
the European cities [26]. These high PM levels may severely 
impact public health [25] and there are evidences of 
respiratory health problems which could be related to high 
pollution levels [27], [22]. Recent studies in India have 
focused on the chemical characterization of PM10 [29], [13], 
[16]. Source apportionment of PM10 has been done using 
Receptor and Dispersion models [31]. But not much is known 
about source apportionment of PM2.5. Although PM2.5 is a 
subset of PM10, its sources, characteristics, health effects and 
behaviour in the atmosphere could be very different [10], [20], 
[34].  

There is a need to plan and execute PM2.5 controls, as PM2.5 
is a key pollutant with negative impacts on human health [23]. 
PM2.5 can more readily penetrate into the lungs and are 
therefore likely to have short- and long-term effects such as 
increased respiratory symptoms, premature death and disease, 
decreased lung functions. To arrive at PM2.5 control strategies, 
one needs information about the sources and their relative 
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contributions to the ambient air PM levels. The main 
constraints for effective dispersion modelling are incomplete 
EI and availability of quality meteorological data. EI is a 
structured collection of information about emissions of 
pollutants [28] in a specified area and permits allocation of 
emitted pollutants to the originating sources. Therefore, it is 
evident from the above discussion that both receptor and 
dispersion models have their own benefits and limitations. 
Dispersion models use meteorology and Emission Inventory 
(EI) to trace the dispersal trail of a pollutant and thus evaluate 
its effect at the receptor. Studies have shown greater interest in 
the past on receptor models, since information on 
meteorological data and EI (essential for dispersion models) is 
not required. The receptor model shows the contribution of 
each source to ambient air pollution level at the receptor 
location [6]. However, using a receptor model requires 
chemical characterization (organic and inorganic composition) 
of PM and is not simple. 

Regardless of preference for a receptor or dispersion model, 
EI is essential for post processing of modelling results to 
develop air pollution control strategies/action plans. 
Preparation of EI, in fact, is the first step in planning control 
of air pollution. The methods and procedures for developing 
EI for regular point, line and area sources are well established 
[3]. But identification and quantification of fugitive/ non-point 
emission sources is challenging. Emission factors for such 
sources are location and process specific and cannot be 
applied universally. Some of the important non-point sources 
include dusts from road [4] soil, pot holes, etc. and these 
sources should be included in the EI. 

Dust emissions from paved roads can be estimated using silt 
load on the road surface and the average weight of vehicles 
travelling on the road [33]. This approach is not applicable for 
partially paved and unpaved roads as silt load may 
dramatically vary within a short distance. Indian roads in 
suburban towns are generally poorly paved and hence silt-load 
based approach cannot be adopted. In India, for these sources, 
EI is non-existent or incomplete [3]. As seen, preparation of 
EI is challenging, especially to capture fugitive sources in an 
urban mix, there is a need to explore new ways to assess 
fugitive component of emissions. 

Reference [19] studied the quality of EI for fine particulates 
(PM2.5) in London using the source contributions calculated 
from a PMF (Positive Matrix Factorization) receptor model 
and source apportionment using the AirQUIS dispersion 
model. The study by [7] demonstrated an optimized approach 
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for coupling dispersion and receptor models using a Genetic 
Algorithm (GA). Reference [24] apportioned PM10 sources 
which were not well-defined in EI using a receptor model, and 
then augmented these sources in dispersion model predictions. 
Reference [21] used Ozone Isopleth Plotting Package-
Research (OZIPR) which is a trajectory box model and 
integrated into the GA to represent ozone transport and 
chemistry in order to develop ozone control strategies. The 
study by [18] used a dispersion model to predict 
concentrations and applied a multiple regression model to 
estimate emission rates in traffic areas.  

An attempt has been made in this paper to apportion PM2.5 

by developing a mathematical approach for estimating the 
missing emissions of PM2.5. The developed approach uses 
synergically the two models: the CMB [9] receptor model and 
the AERMOD [2] dispersion model to update the EI of 
missing fugitive sources. The objective of this research is to 
first identify the missing sources contributing to ambient PM2.5 
using receptor modelling (as it does not require EI) and then 
improve the performance of dispersion modelling after 
updating the EI of missing sources identified by the receptor 
modelling. This approach of identifying sources using a 
receptor model, revising EI and dispersion modelling has been 
demonstrated for a town, Baddi – Nalagarh (30.9412° N 
latitude, 76.78° E longitude) in the State of Himachal Pradesh, 
India.  

II. METHODOLOGY 

Fig. 1 summarizes the stepwise methodology of this study. 
The AERMOD dispersion modelling has been used and 
meteorological data (mixing height, wind direction, wind 
speed, etc.) were obtained from CDAC (Centre for 
Development of Advanced Computing), Pune and IMD 
(Indian Meteorological Department). The meteorological data 
were processed in RAMMET and AERMET which are the 
processing tools of AERMOD. Stack information was 
collected from HPSPCB (Himachal Pradesh State Pollution 
Control Board) for preparation of EI. Source specific EI was 
developed based on Emission factors given by CPCB [12]. 
This EI was used as input for AERMOD. It is to be noted that, 
soil and road dust have not been accounted in the EI of PM2.5 
as the inventory for fugitive sources was missing. AERMOD 
was run for all point and area sources separately. Model 
evaluation was taken up and validated by comparing 
experimental and model-computed concentrations using 
statistical tools.  

EPA-CMB version 8.2 receptor model was used for 
identifying the missing sources in EI. The CMB model 
requires speciated ambient data and source profiles to identify 
and quantify source contributions. The receptor concentrations 
with appropriate uncertainty estimates and source profile 
abundances, serve as input data to CMB model. For CMB 
modelling, CPCB [12] and USEPA [9] reported source 
profiles were used. The output consists of the amount 
contributed by each source type to ambient PM2.5 
concentration. The identified major sources from CMB model 
can be compared with sources present in EI to get an insight 

on missing sources. Effort has been made to include missing 
sources in the existing EI and to improve the model 
performance of dispersion model using the revised EI. 

A. Study Area 

The Baddi-Nalagarh (BN) area (Fig. 2) is the most 
industrialized region in Solan district. The types of industries 
include - pharmaceutical, textile, chemical, iron, cement, 
rubber, steel, spinning mills etc. In most offices and 
institutions, diesel generators were used at the time of power 
failure. The road condition in the town was quite bad as roads 
were poorly maintained, broken, partially paved surfaces. It is 
observed that movement of vehicles causes non-exhaust road 
dust emission which is a significant amount. The major traffic 
flow is on national highway 22 which leads to a major tourist 
destination, Kullu. The BN area is considered for air quality 
sampling and later used for receptor and dispersion modelling. 

Land use of sampling sites: S2, S7, S9, S10, S11, S13 
(Industrial); S1, S12 (Industrial & Commercial); S4, S5, S8 
(Commercial) and S3, S6 (Residential)  

B. GIS Based Emission Inventory 

Various maps (Wards, Roads, etc.) of BN were collected 
from different agencies (e.g.: Census of India, BN Industrial 
map, Baddi Barotiwala Nalagarh Development Agency, etc.) 
and digitized using ArcGIS 9.2. World geodetic system 
(WGS) 1984 (UTM Zone 44 N) map projection system was 
used for geo referencing the maps. The latitude and longitude 
of different points including the sampling sites and major 
landmarks were geo referenced. These geo-referenced maps 
were first digitized for city boundaries, landmark locations, 
and road network. All the digitized features were 
superimposed on 2 km x 2 km grids (total 434 grids). Road 
lengths in each grid for minor roads (number of vehicles less 
than 10,000 per day) and major roads (number of vehicles 
more than 10,000 per day) were calculated from the digitized 
maps using the ArcGIS tool, ArcMap.  

1. Activity Levels 

The broad classifications of sources in this area are: (a) 
industry point sources (stack height ≥20 m) (b) line sources 
(vehicles) (c) industry area sources (stack height <20 m) and 
(d) domestic sources (LPG, wood burning, kerosene). The 
details of industries (e.g. stack details, fuel uses, production 
etc.) in each grid were collected from HPSPCB. To determine 
the fraction of vehicle technology classes in service on city 
streets, video cameras were set up at four locations along the 
road side and traffic movement was recorded from 08:00 - 
11:00 am and 5:00 - 8:00 pm. The traffic volume during lean 
hours has been extrapolated from the traffic data that was 
already collected. Parking lot survey procedure given in [28] 
was adopted in BN region to determine the fractions of 
various types of vehicles (e.g.: 2 wheelers, 3 wheelers, 4 
wheelers, trucks, buses, year of manufacturing, etc.). ArcMap 
was used to calculate the road length for both major and minor 
roads in each grid. Based on the road length and number of 
vehicles on road, total vehicle kilometre travel (VKT) for each 
vehicle category was estimated in each grid. 
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For domestic sources, the fuel consumptions of wood, 
kerosene, and LPG were considered. The population per 
panchayat was taken from [8] was known and persons per 
household were estimated. Activity data (kg of fuel/person/ 
day) for each fuel category multiplied by population in each 
panchayat provided the consumption of wood, kerosene and 
LPG. The category-wise domestic fuel consumption was 
assigned to each grid. Emission factors [12] for domestic 
fuels, vehicles, point sources and industrial productions were 
used to estimate PM2.5 emissions from each grid. 

C. Air Quality Monitoring and Chemical Analysis 

Air-quality monitoring was carried out at 13 sampling sites 
(S1 to S13) (Fig. 2) to assess the status of air quality and 
validation of the model. The period of sampling was May 14, 
2012 - June 20, 2012. The WINS Impactor based PM2.5 
samplers (ECOTECH MODEL AAS 271) were used to collect 
the particles on Teflon and quartz filter papers. All initial and 
final weighing of filter papers (Whatman PTFE (Teflon) 
Membrane, 46.2 mm with support ring) was carried out on 
Mettler-Toledo MX-5 USA balance having sensitivity of 
0.00001 g in a humidity-controlled room. Filters were 

conditioned in desiccators for 24 hours before and after 
sampling. The USEPA weighing protocol [32] was followed 
in this study.  

For measuring OC (Organic Carbon) and EC (Elemental 
Carbon) from the particles collected on quartz filter paper, 
DRI Model 2001A OC/EC analyzer was used. The analyzer 
operation is based on preferential oxidation of OC and EC at 
different temperatures. Its working is based on the fact that 
OC can be volatilized from the sample in a non-oxidizing 
helium (He) atmosphere, while EC must be combusted by an 
oxidizer.  

PM2.5 data included Metals – Na, Mg, Al, Cu, Si, K, Ca, Fe, 
Ti, Cr, V, Ni, Mn, Zn, Pb using X- ray fluorescence technique 
(RIGAKU ZSX Primus II series; Japan). For analyses of ions, 
filters were extracted using ultra-pure Milli-Q water following 
the reference method of water soluble inorganic ions 
(Compendium Method IO-4.2, EPA/625/R-96/010a 1999). 
Chemical analyses of water soluble inorganic ions were 
carried out using Ion Chromatography (Model 882 Metrohm, 
Switzerland).  

 

 
Fig. 1 Overall methodology to identify and estimate missing emissions
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Fig. 2 The study area – Baddi-Nalagarh in Solan District of Himachal Pradesh, India 
 

III. RESULTS AND DISCUSSION 

A. EI and AERMOD Dispersion Modelling  

The overall EI of PM2.5 for vehicles, domestic fuels, and 
industries (as an area source and point source) is presented in 
Fig. 3.  

 

 

Fig. 3 Emission Inventory for PM2.5  

 
It is to be noted that, road and soil dusts have not been 

accounted in the EI of PM2.5. As seen from the results of CMB 
(Fig. 4), road and soil dusts contribute significantly to PM2.5 at 
almost all sites. Therefore, the EI is incomplete. An attempt 
has been made to improve the EI by taking into account the 
contribution from road and soil dusts by combining the results 
of CMB8.2 and performance of AERMOD with existing EI 
(without Road and Soil dust). The EI and meteorology were 
used to model PM2.5 levels using AERMOD. 

 

Fig. 4 CMB8.2 results showing contribution of each source for PM2.5 
at all the sites 
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Thirteen sites were considered for AERMOD modelling 
(Fig. 2). Each site had a measured sample concentration for 
two days. Measured and AERMOD computed air quality 
results are shown in Fig. 5. 

 

 
Fig. 5 AERMOD modelled values compared to measured values for 

PM2.5 
 

 

Fig. 6 Measured and AERMOD modelled PM2.5 levels with existing 
EI 

 
It was observed that the model under-predicted PM2.5 levels 

at seven locations in the range of 30% - 78%. The measured 
and AERMOD modelled values for PM2.5 have been plotted in 
Fig. 6. The slope and intercepts of the best fit line are 
statistically significant at the 5% level of significance. The 
intercept indicates that even if emissions are zero, there exists 
significant measured concentration of PM2.5 at about 15.45 
µg/m3. The slope of the best fit line also suggests under 
prediction by the model. The R2 indicting the model fit, 
although significant at the 5% level of significance, can still be 
stated as modest.  

It can be inferred from the model results shown in Fig. 6 
that EI is incomplete and there is a need to identify missing 
sources and judiciously distribute the missing sources to 
improve the model performance and update the EI for better 
decision making.  

B. Identification of Missing Sources: Application of CMB 
8.2 

The CMB8.2 model was run at 13 sites (Fig. 2) to obtain the 
contribution of various sources to ambient PM2.5 levels. The 
acceptance criteria for model results are (i) R2 (model fitting) 
be greater than or equal to 0.8 and (ii) percentage of measured 

mass reconciled by the model should be in the range 0.8 -1.2. 
Receptor modelling results were analysed in terms of R2 
(model fitting) and percentage of measured mass reconciled 
by the model. The model could apportion the measured mass 
in the range 80-120%, which was acceptable as per [15].  

It is observed from Fig. 4 that soil and road dust is a 
prominent source (greater than 30%) of PM2.5 in the study area 
in seven sites. It is to be noted while major contribution to 
PM2.5 is from road and soil dust for these sites but the existing 
EI (Fig. 3) does not include these sources which are fugitive in 
nature. It can be argued that incomplete EI without soil and 
road dust emission has resulted in under prediction of PM2.5 
levels by the dispersion model. Thus, there is a need to 
improve the EI and model performance for developing proper 
control strategies. It is to be noted that fugitive soil and road 
dust were not considered in the EI. It can be argued that 
incomplete EI without soil and road dust emission has resulted 
in under-prediction of PM2.5 levels by the dispersion model, 
and therefore, there is a need to improve the EI and model 
performance for developing proper control strategies.  

Soil and Road Dust Emission and Revised EI 

The following approach has been adopted for accounting 
the soil and road dust emission which may vary from one grid 
to another. The road length (paved, partially paved and 
unpaved) in each grid is taken as an indicator of road and soil 
dust emission. For estimating this emission, Road factor in the 
ith grid (Rfi) is defined as:  

 

𝑅௙௜ ൌ  ோ೔

∑ ோ೔
    (1) 

 
where Ri = sum of all road lengths in ith grid; and ∑ 𝑅௜ = sum 
of all road lengths in all grids. 

The deviation in measured and modelled concentration in ith 
grid ∆𝐶௜ ൌ ሺ𝐶௠௘௔௦௨௥௘ௗ െ 𝐶௠௢ௗ௘௟௟௘ௗሻ is taken as an indicator of 
missing soil and road dust emission which should relate to Rfi. 
For the sites where measurements of PM2.5 were available, 
first ∆𝐶௜ was estimated (using average of measured and 
modelled concentration at each sampling site) and a 
relationship between ∆𝐶௜ and Rfi (road factor of the grid where 
the sampling site is located) is developed (Fig. 7). Two sites 
have same road factor value and hence there seems to be 12 
values in Fig. 7. 

 

 
Fig. 7 Relation between ∆Ci and Rfi for PM2.5 
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depends on Rfi as:  
 

∆𝐶௜ ൌ 228.11𝑅௙௜ ൅ 10.457                       (2) 
 
As per the first principle, pollutant concentration, C is 

proportional to emission rate, Q (kg/d). Therefore, the missing 
emission rate, ∆Qi (in ith grid) can be estimated as:  

 

 ∆𝑄௜ ൌ  ொ೔

஼೔
 ∆𝐶௜    (3) 

 
where Ci is the modelled concentration. 

By substituting ∆𝐶i from (2) in (3); 
 

 ∆𝑄௜ ൌ  ொ೔

஼೔
 ൫228.11𝑅௙௜ ൅ 10.457൯   (4) 

 
Equation (4) has been used for estimating ∆𝑄௜ (having the 

same units as Qi) in all the grids. Thus the EI has been revised 
to include road and soil dust and the results are presented in 
Fig. 8. 

 

 
Fig. 8 Measured and AERMOD modelled PM2.5 levels with revised 

EI 
 
The model performance has been tested using statistical 

analyses [30] for (i) fractional bias (FB), (ii) normalized mean 
square error (NMSE), (iii) coefficient of correlation (r) and 
(iv) index of agreement (d) along with parameters of best fit 
line (slope and intercept) for existing and revised EI (Table I).  

 
TABLE I 

STATISTICAL PARAMETERS FOR PM2.5 

 PM2.5 (existing EI) PM2.5 (revised EI) 

Slope 0.45 0.86 

Intercept 15.45 8.97 

FB 0.46 0.17 

NMSE 0.44 0.08 

r 0.20 1.07 

d 0.38 0.80 

 
FB is a nonlinear operator that varies between − 2 and +2. 

For best model performance FB has an ideal value of 0 [1]. A 
negative FB value indicates that the model over estimates, and 
a positive value suggests that the model under estimates. 
NMSE is an unbiased dimensionless statistic and is preferred 
over FB. It measures the random spread of the values around 

the mean, i.e., it deals with scatter or variance [17]. A value of 
zero for NMSE is considered to a perfect modelling fit. 
Smaller values of NMSE indicate better model performance, 
and acceptable criterion is NMSE ≤0.5. The index of 
agreement (d) is a measure of relative error in estimated model 
results. It is a dimensionless number and ranges from 0 - 1, 
where 0 indicates complete disagreement between modelled 
and observed values and 1 indicates perfect fit. The coefficient 
of correlation (r) between observed and modelled values is 
also an independent indicator of model performance. The 
index of agreement (d) is used because the coefficient of 
correlation (r) cannot account for additive differences or 
differences in proportionality [5], [14]. 

 

 

Fig. 9 PM2.5 measured vs. modelled concentration with revised EI 
 
It has been observed that the model performance has 

improved with revised EI for the above stated statistical tests: 
(i) values of FB decreased from 0.45 to 0.86 (ii) NMSE levels 
decreased from 0.44 to 0.08 (iii) ‘r’ increased from 0.20 to 
1.07 (iv) estimated values of ‘d’ increased from 0.38 to 0.80. 
In this study, the value of NMSE decreased from 0.44 to 0.08, 
and it is reasonable claim that model performance is 
satisfactory and has improved with revised EI. The overall ‘r’ 
was found to increase from 0.20 to 1.07 which is statistically 
significant at 5% level of significance, indicating linear 
association between observed and modelled concentrations. 
The value of ‘d’ improved from 0.38 to 0.80 suggesting that 
the model is adequate for application and decision making. 
These statistical analyses validate that the model with revised 
EI can describe physical phenomena well and can be used for 
further interpretation and application. Fig. 9 presents a clear 
depiction of measured vs. modelled concentration with 
existing and revised EI. 

III. CONCLUSIONS 

Based on the results and discussion, the following general 
conclusions can be made; 
1. The CMB receptor model and AERMOD dispersion 

model can be combined to identify the missing sources, 
revise the EI and improve the performance of AERMOD 
dispersion model.  

2. The CMB analyses showed that fugitive sources, soil and 
road dusts contribute substantially to ambient pollution.  

3. AERMOD significantly underestimated the ambient air 
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concentration because the fugitive sources were not 
considered in the EI.  

4. The existing EI was improved in each emission grid by 
adjusting emission as per road lengths and deficit in 
measured and computed concentrations.  

5. The revised EI showed a significant improvement in 
AERMOD performance in terms of statistical tests, such 
as fractional bias, normalized mean square error, 
coefficient of correlation and index of agreement.  

6. This method can be used for adopting effective and 
appropriate air pollution control strategies.  
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