
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

2018

Abstract—Software reusability is an essential characteristic of
Component-Based Software (CBS). The component reusability is an
important assess for the effective reuse of components in CBS. The
attributes of reusability proposed by various researchers are studied
and four of them are identified as potential factors affecting
reusability. This paper proposes metric for reusability estimation of
black-box software component along with metrics for Interface
Complexity, Understandability, Customizability and Reliability. An
experiment is performed for estimation of reusability through a case
study on a sample web application using a real world component.

Keywords—Component-based software, component reusability,
customizability, interface complexity, reliability, understandability.

I. INTRODUCTION

HE software reuse through components has been present in
software engineering for several decades. It has been

started way back in 1969 with the work presented by McIlroy
on reusable components [1]. According to reuse the component
belonging to one application can be used in development of
other application having different functionality. The reusability
is one of the effective ways to improve productivity. Reusable
software components are intended to apply the power and
benefit of reusable, interchangeable parts from other
applications to the field of software development. Other
industries have also profited from reusable components like
reusable electronic components are found on circuit boards.
The main objective of reuse in context of Component-Based
Software (CBS) is to reduce various overheads like cost,
duplication of work, time of implementation, efforts and to
enhance standard compliance and reliability of the system [2]
[3]. There are some issues [4] which are associated with reuse
of components like increased maintenance costs, not-invented-
here syndrome, creating and maintaining a component library,
finding, understanding and adapting reusable components [5].
In spite of these issues, component reuse attracts due to various
benefits in the development of new application by using
reusable components. Reusability has an important role in CBS
Architecture. Reusability can measure the degree of
features/components that are reused in building similar or
different new software with minimal change.

For Component-Based Software Development (CBSD),
there are two broad reuse development approaches. One is the
development of systems with reuse and another is development

Aditya Pratap Singh and Pradeep Tomar are with the School of Information

and Communication Technology of Guatam Buddha University, Greater
Noida, Uttar Pradesh, India 201308 (e-mail: adityapsingh@gmail.com,
parry.tomar@gmail.com).

of components for reuse [6]. In the first approach, the
application is developed by reusing a number of already built in
components. Such components are already tested thoroughly
and enhance the quality of the concerned product and will save
time and cost. In the other approach, the components are
developed in a way to keep them more reusable. This paper
considers first approach and studies the methods of finding
reusability of target components before integrating with the
new application.

Reusability is one of the quality attributes of CBS. It is not
easy to measure quality attributes of software directly because
various quality-attributes may be affected by many factors and
there is no standard method to weigh them. This paper proposes
metrics for estimation of one of the quality attributes of
black-box component i.e. reusability.

In the literature, many metrics are available to measure the
quality of component, but there is very less work on the
framework that makes use of these metrics to find reusability of
software components [5]. The paper is focused on estimating
the reusability of black-box component using metrics.

The paper is organized as follows. In Section II we briefly
surveyed a substantial literature on component reusability.
Some of the approaches of component reusability estimation
and assessment are reviewed. The paper then identifies four
attributes for reusability estimation and metrics for identified
attributes are proposed that are to be used for reusability
estimation. In the next section, a reusability estimation process
is presented. A metric for reusability estimation is also
proposed using metrics for identified attributes. In Section IV a
case study is presented to illustrate the use of metrics on a real
world component used in a sample web application. This
section describes the process of estimating reusability of a
component using the proposed model. Section V contains the
conclusion and future work.

II. COMPONENT REUSABILITY

A physical replaceable part of a system that adds
functionality to the system, through the realization of a set of
interfaces is called reusable component. The components
having well defined interfaces can be considered good for
reuse. The interfaces have strong significance in context of
reusability of components. An interface contains a collection of
operations, which are used to access a service of the
component. All platforms supporting CBS architecture like
COM+, CORBA and EJB use interface as the glue that binds
component together [7].

The components are being reused at different design levels
having different reusability probabilities in an application and

Estimation of Component Reusability through
Reusability Metrics

Aditya Pratap Singh, Pradeep Tomar

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

2019

th
in
re
co
pa

ex
re
ef
R
an
co
ap
[9

co
di
[1

ca
by
w
hi
co
es
co

is
qu
re
do
co
co
re
ap
co
re
[1
in
re
co
co
av

hey can be cla
n Fig. 1. The
eusability tha
omponent at f
aper refers to a

Component r

xpected reuse
euse not only i
ffect on qualit
eusability min
nd also the i
omponents are
pplications an
9].

With the c
omponents, th
iscuss the top
10], [11] with

A. Approach

Component r
an be reused [
y enabling les

with respect to
igher reusabil
omponents w
stimation beco
omponents eff

For systemat
essential. W

uality of comp
euse [13]. Vari
ocumented in
omponent reu
oncerned with
euse. Such as
pproaches to
ost-benefit a
eusability a us
17] confirm th
nvolves more
eusability me
oncerned with
omponents. In
vailable reusab

assified accord
e components
an a context/
foundation/Ba
application lev

Fig. 1 Reus

reusability is a
potential of a

improves prod
ty and mainta
nimizes the re
implementatio
e particularly

nd are more lik

consideration
here have be
pic of compon
some research

hes of Compo

reusability is
11], and reduc
ss coding and
developers ar
lity and whic

with similar
omes necessar
fectively.
tic process of

Without metric
ponents select
ious models a
 the literature
use in a CB
h estimating th

Barns and B
making goo

analysis. The
seful approac
hat the reusab
than the set

etrics, as we
h measures of
n this sectio
bility metrics.

Application
Compone

Context L
Compone
Architect

Level
Compone
Foundat
Compone

ding to reusab
s at applicatio
/Domain lev

ase level has l
vel componen

sability Hierarc

a quality attrib
a software com
ductivity, but i
ainability of so
edundant com
on time. In s
constructed to
kely to be eas

of the pre
een several ef
nent reusabili
h direction [12

onent Reusabil

the degree to
ces the softwa
d more assem
re the selectio
ch one is m

specification
ry in order to

software reus
cs, it is diffi
ed for reuse an

and metrics [6
e that try to a
BS. Some of
he actual fina
ollinger [16]

od reuse inv
e programm

ch. The exper
bility predictio

of metrics b
ell as the em
f reusability po
on we will r
.

n Level
ents

Level
ents
ture
l
ents
ion
ents

Re

bility levels as
on level hav
el componen
east reusabilit
nts.

hy

bute that refer
mponent. Com
it also puts a p
oftware produ

mponent devel
systematic reu
o be reused in
sy and safe fo

esence of so
fforts underta
ity e.g. [3], [
2].

lity Estimation

o which a com
are developme

mbly. The key
n of compone

most reusable
ns. The reu
o realize the r

se, the use of
cult to evalu
nd cost saving
], [11], [14], [
assess the de
f the measur

ancial benefits
suggested an

vestments, ba
mers find so
rimental result
on is possible
eing used. Pr
mpirical stud
otential of bla
review some

eusability

s shown
e more

nt. The
ty. This

rs to the
mponent
positive
ucts [8].
opment
use the
n future
or reuse

oftware
aken to
[5], [8],

n

mponent
ent cost
y issues
ent with

among
usability
reuse of

metrics
uate the
g due to
[15] are
gree of
res are
s due to
nalytical
ased on
oftware
ts from

e, but it
roposed
dy, are
ack-box

of the

va
ad
pro
int
Jav
me
1.

wh

wh

wh
in
co

wh
in

Ho
no
me

co
reu
set

Washizaki et
arious non-fu
daptability, po
oposed metric
terval values w
va Bean c
easurement va
The metrics th

EMI: Exis
interval is b

RCO: Rate
interval is b

here: : num

: number of
RCC: Rate
considered
customizab
and 0.34:

here: : nu

SCCr: Self-
confidence

here: : nu

component
mponent c.

SCCp: Sel
confidence

here: : nu
component c.
Reusability m

owever, the ar
ot considered
easurements.
Boxall and
mponent’s int
usability. To b
t of metrics in

t al. [11] prop
unctional att
ortability and
cs suite is base
were set with

components.
alues in the m
hey proposed
stence of M
between 0.5 an

1,
0 ,

e of Compone
between 0.17 a

mber of read
f fields in c’s
of Componen
as an imp

ility. Its conf

0,

umber of writa
f-Completenes
interval is bet

umber of busin
c; : nu

lf-Completene
interval is bet

umber of busi
.
metrics were
rchitectural an

while these

Araban [18]
terface is a ma
better underst

ncluding size o

poses a metri
tributes like

reusability o
ed on confide

h the help of s
Authors no

metrics to a num
are:

Meta-Informati
nd 1.

I

ent Observab
and 0.42.

,

0,

dable properti
Facade class
nt Customizab
ortant factor
fidence interv

, 0

able propertie
ss of Compon
tween 0.61 an

,

1,

ness methods
umber of bu

ess of Comp
tween 0.42 an

,

1,

iness methods

based on a
nd system dom

constraints

] have propo
ajor quality fa
and Interface
of interface an

ics suite to m
understanda

of component
ence intervals.
statistical anal
ormalized al
mber between

on, its conf

ility; its conf

0

es in compon

bility, adaptab
r that depen
val is betwee

es in compone
nent’s Return
nd 1.

0

without return
usiness metho

ponent’s Para
nd 0.77.

0

s without para

 reusability
main constrain

may affect

osed that so
actor for determ

they have de
nd argument c

measure
ability,
ts. The
. These
lysis of
ll the
n 0 and

fidence

 (1)

fidence

 (2)

nent c;

bility is
nds on
en 0.17

 (3)

nt c.
Value,

 (4)

n value
ods in

ameter,

 (5)

ameters

model.
ns were
overall

oftware
mining
fined a
ount.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

2020

 APP: Arguments per Procedure, The average number of
arguments in publicly declared procedures (within the
interface).

 (6)

where: : total count of arguments of the publicly declared
procedures; : total count of publicly declared procedures.

 DAC: Distinct Argument Count, the number of distinct
arguments in publicly declared procedures

| | (7)

where: A: set of <name, type> pairs representing arguments in
the publicly declared procedures; |A|: number of elements in
the set A.
 DAR: Distinct Arguments Ratio, the percentage of DAC in

the component interface.

 (8)

where: : total count of arguments of the publicly declared
procedures.
 ARS: Argument Repetition Scale, it aims to account for the

repetitiveness of arguments in a component’s interface.

∑ | |
 (9)

where: A: set of the <name, type> pairs representing arguments
in the publicly declared procedures; |a|: count of procedures in
which argument name-type ‘a’ is used in the interface; :
argument count in the interface.

They validated their metrics on the selected components and
develop a tool to automatically calculate them.

Rotaru and Dobre [19] studied Adaptability, Composability
and Complexity of individual components as determinants for
their measure of reusability. The multiplicity of a software
component can be used to measure composability. The
multiplicity of a component C () is defined as:

∑ (10)

where: n is the number of interface methods in C.

The multiplicity of an interface method M:

 (11)

where: return multiplicity; signature multiplicity;
and constants.

They stated that adaptability of a component is not only
influenced by internal factors but also by the adaptability of the
architecture.

 (12)

where: : component's adaptability; : adaptability of the

framework.
The complexity k of a software component C can be

expressed based on its multiplicity (10):

lim . (13)

where: is a constant (0,1].

Gill [8] discussed the variety of issues regarding component
reusability. Author listed some important guidelines to improve
the level of software reusability in CBSD. Author suggested to
software reuse practicing organizations for conducting
thorough and detailed assessment of software reuse to get
maximum benefit in terms of cost and time.

Sandhu and Singh [15] propose an approach based on metric
for identification of a reusable software module. The reusability
estimation was done with the help of Fuzzy Logic and
Neuro-Fuzzy technique. The study carried out by the authors
shows the use of metrics for identification of quality of a
software component.

Kumar [20] used Support Vector Machine (SVM) for
classification of reusability of software components. The
various available metrics like Cyclomatic Complexity Using
McCabe’s Measure, Halstead Software Science Indicator,
Regularity Metric, Reuse-Frequency Metric, and Coupling
Metric were used for identification of reusable software
modules.

Gui and Scott [21] measured the reusability of Java
components retrieved from the internet by using a set of new
proposed static metrics for coupling and cohesion.

Yingmei et al. [24] considered reusability as a factor that
depends on functionality, reliability, utilizability,
maintainability and portability. For component reusability
assessment they proposed Reusability Measure Value (RMV)
metric:

RMV = W1* F +W2 * R + W3* U+W4 * M + W5 * P (14)

where: Wi(i=1,...,5): weights; F: functionality; R: reliability; U:
utilizability; M: maintainability; P: portability.

Koteska and Velinov [25] performed a critical review on
various existing component reusability metrics. The authors
suggested two new attributes security and installability to be
included as additional conditions when evaluating component
reusability. According to the authors the final score of the
security class of a component can be calculated using these
equations:

, , , , (15)

, , (16)

∑ (17)

where: C: A class; O: A security objective; F: A security
function; W: the percentage weight of an objective; Di, j, k: the
scores of the dependencies k of the security function j of
security objective i.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

2021

Installation flexibility metric as follows:

 (18)

where: A: number of implemented customizable installation
operation; B: number of customizable installation operation
required.

The authors expressed component reusability as:

∑ (19)

where: N: number of attributes that will be considered as
important in the measurement process; : weight factor for
i-th attribute; : metric that measures i-th attribute.

B. Identified Factors Affecting Software Reusability

The literature lists various characteristics of software
components, which are believed to determine reusability and
are therefore repeatedly referenced in literature [6] [10], [11],
[18], [19], [22], [24], [25]. Some of the factors are: adaptability,
complexity, composability, maintainability, modularity,
portability, programming language, quality, reliability,
retrievability, utilizability, size, documentation quality,
understandability, security and installability. Based on the
researchers and practitioners view, we have identified
following four factors for the reusability estimation of
black-box components (Fig. 2):
 Interface Complexity
 Understandability
 Customizability

 Reliability

Fig. 2 Identified factors for reusability estimation

1) Interface Complexity

Components interact with other components through their
well-defined interfaces. The interfaces act as a primary source
of information to understand, use, implementation and
maintenance to the component. Interfaces may contain
information like inputs, outputs, operations and exceptions.
The component interface complexity provides an estimate of
the complexity due to interfaces of components. The lower
value of interface complexity leads to better reusability of
component.

Interface complexity of a component can be qualitatively
defined by analyzing the parameters and return values of its
interface methods [19]. The interface methods with no

parameters and no return value have least complexity because it
does not have any external data dependencies. The interface
methods having some return value, but no parameters can be
considered as middle level complexity. Whereas interface
methods with both parameters and return values have highest
complexity.

Interface complexity (IC) of a component can be calculated
as:

∑ ∑

 (20)

where: n: number of interface methods available for the
component; k: number of arguments in ith method; : weight
for return value type of ith method; : weight for jth
argument type of ith method.

The weight values can be assigned on the basis of the data
type of return value and formal arguments of the component
interface method. The weight for no or void type has been
assumed 0.01. All other weight values depending on data types
are represented in Table I.

TABLE I

WEIGHT VALUE ASSIGNED TO DIFFERENT CATEGORIES OF DATA TYPES
Category of data type Weight value

Primitive data type 0.10

Derived data type 0.20

User defined type/ object type 0.30

2) Understandability

According to ISO/IEC 9126 [26] understandability can be
defined as the capability of the component to enable the user to
understand whether it is suitable and how it can be used for
particular tasks and conditions of use. Component
understandability depends on how much component
information is provided for functional description and how well
it is documented [27]. The cohesiveness between component
document and component functionality is important for
understandability. If the design of the component and language
of the documents is closely related then understandability is
high and the user will make fewer efforts to know the
functionality of directly used the services of component. For
better reusability, understandability of a software component
should be as high as possible.

The component documentation contains component
descriptions, demos, API’s, test procedures and tutorials. These
documentation attributes have direct impact on component
understandability.

For documentation, practitioners also use Component
Registry i.e. a fully searchable XML (Extensible Markup
Language) document for component documentation. Such
XML document covers a range of reusable JavaBean,
Enterprise JavaBean and Component Object Model (COM)
components.

A presence type metric can be used to measure such
attributes. The metrics EMI (1) and RCO (2) proposed by
Washizaki et al. [11] can be adapted to assess understandability
of the component. These two metrics may help component

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

2022

users to understand its behavior. The EMI (1) is only concerned
with Java Beans, which can be changed to check also for other
UML or other metadata objects for component service and
context.

1, I

0 ,
 (21)

The simplest way to combine two metrics is to calculate the

average of two. The Understandability of Component (UC) can
be calculated as:

EMI RCO (22)

3) Customizability

The ability to be customized is called Customizability. The
customizability of a component represents the available
writable properties within exterior side classes of a component.
The components can provide customizable features to enhance
reuse spectrum. A component should be customizable during
the integration to adjust itself into specific requirements. But
more writable properties can be used wrongly. Component’s
customizability effects on reusability of components in CBSD
[10].

The component customizability can be evaluated by adapting
Rate of Component Customizability (RCC) metric (3) defined
by Washizaki et al. [11].

4) Reliability

The reliability is the ability of a system or a component to
perform its required functions under stated conditions for a
specified period of time [23]. Reliability is the probability that
the system will perform as intended over a specified time
interval. The high reliability of a component does not guarantee
the high reliability of CBS. The CBS reliability is estimated
using the reliability of the individual components and their
interconnection mechanisms [2]. It is still argued that the
reliability plays an important role when reuse of pre-existing
software component is performed.

In CBS the components may be black-box, independently
deployable components. To evaluate the reliability of a
component, there could be some reliability results from the
component developer. But, that result is obtained under
component developer’s environment and assumptions.
Therefore, the results may not match those for the component
user’s environment. Before integration the components are
tested separately. During or after this testing of component, its
reliability can be measured.

The black box component reliability can be estimated using
[28]:

R 1 lim
∞

 (23)

where: R: reliability of component; f : number of failures of
component i; n : number of executions of component i in N
randomly generated test cases.

The next section contains proposed metric for reusability
estimation using metrics for identified attributes.

III. ESTIMATION OF REUSABILITY

In order to improve quality, flexibility and development
productivity of a software application, practitioners relies on
reusable software components. The reusability is one of the
nonfunctional requirements of CBSD. Assessing nonfunctional
requirement is always a tedious task.

To measure reusability, the relative significance of
individual identified attributes that influence component
reusability is weighted proportionally.

To calculate Component Reusability (CR) of a black-box
software component, first the individual identified attributes of
measurement model have to be quantified through metrics
specified in section II then these metrics are aggregated to
estimate black-box component. Based on metrics for identified
attributes in section II, the Component Reusability of a
black-box component can be estimated as follows:

1 (24)

where: - are weights and others are metrics for identified
attributes for reusability estimation.

The equation uses (1-IC) as the interface complexity should
have lower value for higher reusability. To facilitate the
comparison of different black-box component reusability these
values should be normalized to a specific range [0...1]. The
weights are used for the relative importance of attributes for
measurement of component reusability and can be decided
empirically. The weights can be influenced by the domain
constraints and may have a relative importance in different
application domain. Due to the normalization, the sum of
weights has to be 1.

IV. A CASE STUDY FOR ESTIMATION OF REUSABILITY

This section applies the metrics presented above using one
case study. The case study presents a real world component,
Apache.Commons.FileUpload [29]. It is an independently
released component as a part of the Apache Commons project
[29]. The FileUpload component provides robust, high
performance form based file upload facility to web
applications. The FileUpload component has totally 41 classes.
This component has six interface methods out of which four are
constructors. Total ten fields are in the ServerFileUpload and
DiskFileItemFactory classes. Out of these ten properties five
are readable and three are writable properties. To test this
component a very simple JAVA web application is created
using CodeEnvy [30] (shown in appendix A). Various types of
files including multiple compressed files were uploaded using
the application to test the component. All the files were
successfully uploaded.

A. Measurement of IC

The component FileUpload has ServletFileUpload and
DiskFileItemFactory as its façade classes. Two methods
parseParameterMap() and parseRequest() are available as

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

2023

interface methods. Two constructors per class are also used to
create objects of ServletFileUpload and DiskFileItemFactory
classes. The interface methods return a List object and have
HttpServletRequest object as argument. Based on this dataset
the Interface Complexity (IC) of FileUpload component is
calculated using (20) and the weights as per Table I.

IC = ((0+0.01) + (0+0.30) + (0 + 0.01) + (0+ (0.10 + 0.30)) + (0.30 +

0.30) + (0.30 + 0.30)) / 6 = 0.32

B. Measurement of UC

The FileUpload component has javadoc and other proper
documentation attached to it. Therefore, the value of EMI
metric should be 1. The ServletFileUpload class has total nine
fields inherited from its parent classes. The four properties are
readable in this class. The DiskFileItemFactory has only one
property which is readable as well as writable. As per (2) the
value of RCO metric will be 0.5. With values of EMI and RCO
the understandability of FileUpload Component (UC) is
calculated using (22).

UC= (1+0.5) / 2 = 0.75

C. Measurement of RCC

The facade classes of FileUpload component have total ten
properties out of which three are writable. The value of RCC
metric is calculated using (3).

RCC= 3/10= 0.30

D. Measurement of Reliability

The reliability of this component depends on the test results
in user environment. For testing of FileUpload component ten
test cases are prepared for various aspects like file size, file
name, file type, file location.

The developed sample web application for testing of this
component successfully passed all the test cases. Hence the
reliability for FileUpload in the context of sample web
application is 1.

The calculated metric values for FileUpload component are
given in Table II.

TABLE II

CALCULATED VALUES OF METRICS FOR FILEUPLOAD
Metrics Value

IC 0.32

UC 0.75

RCC 0.30

R 1

E. Measurement of Reusability:

To calculate reusability of FileUpload component, the
relative weight value for each attribute is required. The weight
values are determined based on researchers and practitioner’s
accumulated knowledge about the relative importance of
identified attributes. A set of weight values decided empirically
for some of the situations is given in Table III.

The component reusability for each weight value set is
calculated using (24).

CR for weight value set S1 is:

CRS1 = (0.3 * 0.68) + (0.1 * 0.75) + (0.2 * 0.3) + (0.4 * 1) = 0.739

TABLE III
DATASET OF WEIGHT VALUES

Weight value set Weight Value

S1 (0.3,0.1,0.2,0.4)

S2 (0.4,0.1,0.2,0.3)

S3 (0.5,0.1,0.2,0.2)

S4 (0.3,0.2,0.2,0.3)

Similarly the value of CR metric for other weight value sets

S2, S3 and S4 can be calculated. The results are given in Table
IV.

TABLE IV

COMPONENT REUSABILITY VALUES
Weight value set Component Reusability

(CR)
S1 0.739
S2 0.707
S3 0.675
S4 0.714

In this way the reusability of a component can be measured
based on identified attributes. The weight values for the metric
(24) can be adjusted as per the component type and the context
of its usage.

V. CONCLUSION

The paper has surveyed current approaches of component
reusability estimation and assessment. Some of the available
approaches were presented. Based on these approaches, the
paper identified four attributes as a part of presented reusability
metric to estimate the reusability of a black-box component.
The reusability metric is parameterized by following attributes:
component interface complexity, understandability,
customizability and reliability.

The paper presents metrics for calculating values for
identified attributes. A proposed metric for component
interface complexity is presented and validated along with
other attribute metrics by calculating their values for the
FileUpload component of the Apache Commons project. The
metric for reusability is a composition of these four sub metrics.
The proposed reusability metric is used to estimate reusability
value of FileUpload component. However, this work further
requires validation. In future the weight values for the
estimation of reusability can be adjusted using neural network.

APPENDIX

A: Partial Code for JAVA Web Application

This code is a part of sample web application to test
FileUpload component of Apache Commons project. The code
contains a standard way of using a component in a servlet and is
developed with the help of Codenvy [30] an online developer
environment.

FileUploadServlet.java
import java.io.File;

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

2024

import java.io.IOException;
import java.util.List;
import javax.servlet.RequestDispatcher;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.apache.commons.fileupload.FileItem;
import org.apache.commons.fileupload.disk.DiskFileItemFactory;
import org.apache.commons.fileupload.servlet.ServletFileUpload;
public class FileUploadServlet extends HttpServlet {
 private static final long serialVersionUID = 1L;
 private static final int THRESHOLD_SIZE = 1024 * 1024 * 3; //

3MB
 private static final int MAX_FILE_SIZE = 1024 * 1024 * 40; //

40MB
 private static final int REQUEST_SIZE = 1024 * 1024 * 50; //

50MB
 private List<FileItem> fileItem = null;
 private String __filePath =

this.getClass().getClassLoader().getResource("../../").getFile();
 protected List<FileItem> initRequest(HttpServletRequest req) {
 boolean isMultipart =

ServletFileUpload.isMultipartContent(req);
 if(!isMultipart) throw new UnsupportedOperationException();
 DiskFileItemFactory factory = new DiskFileItemFactory();
 factory.setSizeThreshold(THRESHOLD_SIZE);
 factory.setRepository(new

File(System.getProperty("java.io.tmpdir")));
 ServletFileUpload upload = new ServletFileUpload(factory);
 upload.setFileSizeMax(MAX_FILE_SIZE);
 upload.setSizeMax(REQUEST_SIZE);
 List<FileItem> formItems = null;
 try {
 formItems = upload.parseRequest(req);
 } catch (Exception e) {
 e.printStackTrace();
 }
 return formItems;
 }

 protected File uploadFile(List<FileItem> formItems, String

destFolder)
 {
 String uploadPath = __filePath+destFolder;
 File uploadDir = new File(uploadPath);
 System.out.println(uploadDir.getAbsolutePath());
 if (!uploadDir.exists()) {
 uploadDir.mkdir();
 }
 File uploadedFile = null;
 try {
 for(FileItem fi : formItems){
 if (!fi.isFormField()) {
 String fileName = new File(fi.getName()).getName();
 String filePath = uploadPath + File.separator +

fileName;
 uploadedFile = new File(filePath);
 fi.write(uploadedFile);
 }
 }
 }

 catch (Exception ex) {
 ex.printStackTrace();
 }
 return uploadedFile;
 }
protected String getFieldValue(List<FileItem> formItems, String

fieldName)
 {
 String value = null;
 try {
 for(FileItem fi : formItems)
 {
 if (fi.isFormField())
 {
 if(fi.getFieldName().equals(fieldName))
 {
 value = fi.getString();
 }
 }
 }
 }
 catch (Exception ex) {
 ex.printStackTrace();
 }
 return value;
 }
protected void doPost(HttpServletRequest request,

HttpServletResponse response)
 throws ServletException, IOException
 {
 fileItem = initRequest(request);
 String description = getFieldValue(fileItem,

"inputDescription");
 File file = uploadFile(fileItem, "uploads");
 request.setAttribute("path",file.getAbsolutePath());
 request.setAttribute("description", description);
 RequestDispatcher rd =

request.getRequestDispatcher("/success.jsp");
 rd.forward(request, response);
 }
}

REFERENCES
[1] Mojica, I. J., Adams, B., Nagappan, M., Dienst, S., Berger, T., and

Hassan, A. E. “A Large-Scale Empirical Study on Software Reuse in
Mobile Apps”. IEEE Software, vol. 31, no. 2, pp 78-86, 2014.

[2] Singh, A. P. and Tomar, P., “A new model for Reliability Estimation of
Component-Based Software”, in Proc. IEEE 3rd International Advance
Computing Conference (IACC), pp. 1431-1436, Feb. 2013.

[3] Heinemann, L., Deissenboeck, F., Gleirscher, M., Hummel, B., and
Irlbeck, M. “On the extent and nature of software reuse in open source
Java projects”. In Top productivity through software reuse Springer
Berlin Heidelberg. pp. 207-222, 2011.

[4] Sommerville I., Software Engineering, 9th edition, Pearson Education;
2013. ISBN: 978-9332518858

[5] Sandhu, P.S., Kakkar, P. and Sharma, S., “A survey on Software
Reusability”, in Proc. 2nd International Conference on Mechanical and
Electrical Technology (ICMET), pp.769-773, 2001.

[6] Sharma, A., Grover, P. S., and Kumar, R., “Reusability assessment for
software components”. ACM SIGSOFT Software Engineering Notes,
vol.34, no. 2, pp. 1-6, 2009.

[7] Booch, G., Rumbaugh, J., and Jacobson, I., The unified modeling
language user guide. Pearson Education India, 2011. ISBN:
978-81-7758-372-4

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

2025

[8] Gill, Nasib S., “Importance of Software Component Characterization for
Better Software Reusability”, ACM SIGSOFT Software Engineering
Notes, vol. 31 No. I, pp. 1-3, 2006.

[9] Schach, S. R., Object-oriented and classical software engineering, ed. 8.
McGraw-Hill, 2011. ISBN: 0071081712, 9780071081719

[10] Sharma, A., Kumar R. and Grover, P.S., “A critical Survey of Reusability
Aspects for Component- Based Systems”, World Academy of Science,
Engineering and Technology, Vol.19, pp. 411-415, 2007.

[11] Washizaki, H., Yamamoto, H., and Fukazawa, Y., “A metrics suite for
measuring reusability of software components”, in Proceedings of IEEE
Ninth International Software Metrics Symposium, pp. 211-223, 2003.

[12] Frakes, W.B. and Kyo K., “Software Reuse Research: Status and Future”,
IEEE Trans. Software Eng., vol. 31, issue 7, pp. 529 – 536, 2005.

[13] Leach, Ronald J. Software Reuse: Methods, Models, Costs. AfterMath,
2012. ISBN: 0985368519, 9780985368517

[14] Tomer, A., Goldin, L., Kuflik, T., Kimchi, E., and Schach, S. R.
“Evaluating software reuse alternatives: a model and its application to an
industrial case study”, IEEE Trans. Software Eng, vol. 30, no 9, pp.
601-612, 2004.

[15] Sandhu, P. S., and Singh, H., “Automatic reusability appraisal of software
components using neuro-fuzzy approach”, International Journal Of
Information Technology, vol. 3, no. 3, pp. 209-214, 2006.

[16] Barns, B. H., and Bollinger, T. B., “Making reuse cost-effective”, IEEE
Trans. Software., vol. 8, issue 1, pp. 13-24, 1991.

[17] Schach S. R. and Yang X., “Metrics for Targeting Candidates for Reuse:
An Experimental Approach”, ACM, SAC, pp 379-383, 1995.

[18] Boxall, M. A. and Araban, S., “Interface metrics for reusability analysis
of components”, in Proceedings of IEEE Australian Software
Engineering Conference, pp. 40-51, 2004.

[19] Rotaru, O. P. and Dobre, M., “Reusability metrics for software
components”, in 3rd ACS/IEEE International Conference on Computer
Systems and Applications, pp. 24, 2005.

[20] Kumar, A., “Measuring Software Reusability using SVM based Classifier
Approach”. International Journal of Information Technology and
Knowledge Management, vol. 5 no. 1, pp. 205-209, 2012.

[21] Gui, G. and Scott, P. D., “Coupling and cohesion measures for evaluation
of component reusability”, in Proceedings of ACM International
workshop on Mining software repositories, pp. 18-21, 2006.

[22] Gill, N. S., “Reusability issues in component-based development”, ACM
SIGSOFT Software Engineering Notes, vol. 28 no. 6, pp. 30, 2003.

[23] IEEE Standard Computer Dictionary: A Compilation of IEEE Standard
glossaries. IEEE Press, 1991.

[24] Yingmei, L., Jingbo, and S., Weining, X., “On Reusability Metric Model
for Software Component”, in: Wu, Y. (eds.) Software Engineering and
Knowledge Engineering. LNCS, Vol. 114, pp. 865-870. Springer,
Heidelberg, 2012.

[25] Koteska, B. and Velinov, G., “Component-Based Development: A
Unified Model of Reusability Metrics”, in ICT Innovations, pp. 335-344.
Springer Berlin Heidelberg, 2013.

[26] ISO/IEC 9126: Software engineering - Product quality - Part 1: Quality
model. International Organization for Standardization and International
Electrotechnical Commission, 2001.

[27] Gao, J., “Component Testability and Component Testing Challenges”, in
Proceedings of International Workshop on Component-based Software
Engineering (ICSE2000), 2000.

[28] Goseva-Popstojanova, K., Mathur, A. P. and Trivedi, K. S., “Comparison
of architecture-based software reliability models”, in Proceedings of
IEEE 12th International Symposium on Software Reliability Engineering
(ISSRE2001). pp. 22-31, 2001.

[29] Apache Commons FileUpload library (online),
(http://commons.apache.org/fileupload/)

[30] Codenvy integrated development environment (https://codenvy.com/ide)

