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Abstract— Most routing protocols (DSR, AODV etc.) that have
been designed for wireless adhoc networks incorporate the broadcast-
ing operation in their route discovery scheme. Probabilistic broadcast-
ing techniques have been developed to optimize the broadcast oper-
ation which is otherwise very expensive in terms of the redundancy
and the traffic it generates. In this paper we have explored percolation
theory to gain a different perspective on probabilistic broadcasting
schemes which have been actively researched in the recent years.
This theory has helped us estimate the value of broadcast probability
in a wireless adhoc network as a function of the size of the network.
We also show that, operating at those optimal values of broadcast
probability there is at least 25-30% reduction in packet regeneration
during successful broadcasting.
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I. INTRODUCTION

BROADCASTING is a very essential scheme to enable suc-

cessful communication in wireless networks such as manets,

sensor networks etc. essentially because these nodes don’t

really have information about the topology of the network.

This approach like any other scheme has got its drawbacks.

Problems that have been identified with broadcasting are

categorized as broadcast storm problem [1].

A lot of research has also gone into optimizing broadcasting

operation with neighbour based, area based etc techniques

[2] [3]. Another such technique is the probability based

technique first suggested by Yoav Sasson, David Cavin,

Andre Schiper in their paper [4]. The authors in that paper

have modelled the problem of optimizing broadcast operation

using percolation theory [5]. We extend the idea suggested

by that paper by exploring percolation theory further.

We have analytically derived and also verified, how good

(and under what conditions) it is to use probability based

techniques for optimizing broadcast operation. In the process,

we have also identified the shortcomings and limitations of

probabilistic techniques. All the results have been verified for

ideal network conditions without loss of generality.

The structure of the paper is as follows, section II would be

a brief introduction to percolation theory. Section III would

elaborate on our model description followed by section IV

which would illustrate results we have used from percolation

theory and in section V we have verified them with our
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simulated results. Section VI would list out the major

conclusions we have made through this paper and possible

areas to work further.

II. PERCOLATION THEORY

Percolation literally means movement of liquid inside a

random medium. The theory of percolation deals with the

study of percolation on lattices of different dimensions and

structures. The random medium could be modelled, in two

dimensions, as a square lattice. Two kinds of percolation, Bond

and Site (refer to Fig. 1)have been studied very extensively on

these lattices. Bond percolation involves uncertainty associated

with the edges between the nodes of the lattice, i.e. each edge

being either open (or closed) with a probability p (with (1−p)).
Similarly the uncertainty in site percolation is associated

with site rather than the edge i.e., each site is open with a

probability p and closed with (1 − p). Movement within the

lattice is restricted to paths which are connected by open edges

(in the case of Bond percolation) or open sites (in the case of

site percolation).

Fig. 1. Site Percolation and Bond Percolation

The existence of a critical probability pc, beyond which

there is an infinite cluster is one of the major results of

percolation theory. The value of pc has been determined

analytically for very few cases, bond percolation on 2D

square lattice being one of them. Thus the probability of

existence of the infinite cluster undergoes a phase transition

(as could be observed in Fig. 2) [6] when the connection
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probability is at pc from 0→ 1.

This result has been of tremendous importance considering

the applications of percolation theory. In a simple model of

broadcasting in wireless adhoc networks using percolation

theory, a critical probability would translate into the existence

of critical broadcast probability beyond which a number of

nodes would be connected. In the introductory paper [4] on

probabilistic broadcasting, this has been the major argument.

This argument though does not take into account the

number of nodes which become connected and the conditions

under which they become connected. Exploring percolation

theory further, one can find a lot of study conducted on the

nature of these clusters/paths within the lattices, size of these

clusters and the meaning of an infinite cluster. Infinite cluster

in percolation theory is merely a path connecting the left end

of the lattice to the right end, without necessarily connecting

all nodes. We have explored these equations that estimate the

sizes of these clusters.

Fig. 2. Phase-transition phenomena observed in percolation

We will begin our arguments by first explaining our

model in the next section along side getting into deeper

understanding of percolation theory.

III. MODEL DESCRIPTION

Let us consider a wireless adhoc network which has been

deployed on an area A and with node density ηper Sq. units.

The total number of nodes is equal to Aη. Without loss of

generality, we can align each node to the closest intersection

on the grid, with no more than one node at every intersection

and none of the intersections points in the grid are left empty.

We thus have a square grid of L X L in 2 dimensions, with

L nodes in one dimension.

Therefore, L2 =Aη

Since we plan to model the broadcast operation in wireless

adhoc network, its easier to apply site percolation rather

than bond percolation on our 2D square lattice. Connection

probability in site percolation is equivalent to the broadcast

probability in wireless adhoc network (2D square) which is

to say that a site is open with probability a p is equivalent to

a node rebroadcasting the packet with probability p(refer to

Fig. 3).

With this basic model of a wireless adhoc network as a 2D

Fig. 3. All the intersection points are nodes of the wireless adhoc network.
The darkened ones indicate the nodes which would rebroadcast

square lattice, we can now apply results from percolation

theory. Some of the important assumptions made here are,

1) The entire grid is occupied.

2) All the immediate neighbours of a node in the horizontal

and vertical direction can listen to that particular node

and the diagonal neighbours cannot hear that particular

node.

3) There is no loss of information between two nodes.

4) Nodes are immobile.

5) Collision and other traffic conditions do not apply here.

IV. RESULTS FROM PERCOLATION THEORY

The quantity of interest so far has been the connection

probability p, which determined the existence of infinite cluster

and in the case that there exists an infinite cluster for a

particular p, we could say all nodes with p as their broadcast

probability would be connected.

Some of these quantities become very confusing while

considering finite systems, which is precisely what a wireless

adhoc network is (e.g. What would an infinite cluster mean

in a finite lattice?). A wireless adhoc network consists of a

limited number of nodes and is far from being considered an

infinite system and so far in the literature it has been modelled

as an infinite system.

The moment we shift our focus from the infinite cluster, to

the largest cluster of the lattice, some of these questions could

be answered. An infinite cluster as stated in percolation theory

is a cluster which connects the left end of the lattice to the
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right. This as we notice is not the requirement for successful

broadcast, we not just need the left end to be connected to the

right but also all the nodes within the lattice to be connected.

This shift of concern from the infinite cluster to the largest

cluster of the lattice surprisingly shifts the focus from critical

probability pc, to another term known as the crossover length

denoted as ξ. Percolation theory offers us lot of mathematical

equations which govern the behaviour of the size/mass(M ) of

the largest cluster.

Our major focus has been to understand how and when this

mass of the largest cluster in a lattice varies as the total size

of the lattice (L2 is the total number of nodes in the lattice)

i.e., M ∝L2.

M ∝LD for L < ξ

M ∝Ld for L > ξ

ξ ∝(p − pc)
−ν ; P ∝(p − pc)

β ;

β ∼=0.14; ν ∼=1.33

D is the fractal dimension,d is the dimension of the

lattice, L is the length of the cluster in one dimension, P

strength of the infinite cluster, M mass of the largest cluster.

D = d − (β/ξ) for d < 6
Theoretical value of D = 91/48 = 1.9

Also the number of nodes which receive a broadcasted

message is greater than the actual mass of the largest

cluster. The reason for this is, in site percolation a path is

possible only when both the neighbours are open whereas

in broadcasting even if one node does not rebroadcast the

message it can definitely receive a broadcasted message from

a broadcasting neighbour.

To represent this relation in mathematical form, we say

Total number of nodes receiving broadcasted message (Tbr)

=

Mass of the Cluster (M) +

Perimeter of the cluster (t)

Perimeter of a cluster (t) denotes the number of nodes which

are the immediate neighbours for the cluster.

In order to execute a successful broadcast operation one must

operate at a value of p which makes sure the number of nodes

receiving broadcasted message is proportional to L2 and hence

its not just sufficient to be operating at p > pc

An interesting point to note here is that selection of p is

also a function of the lattice size in one dimension L i.e.,

for a given lattice of size L1 X L1, we need to check what

the closest value of crossover length is and then determine the

corresponding p with the above mentioned equation. Although

these equations represent proportionalities a more accurate

value can be estimated using simulations.

Another interesting point to note here is, when operating at p

= pc, the value of crossover length is infinite, hence no matter

what the size of the lattice is, the mass of the largest cluster

would vary as LD and not Ld. So it is definitely advisable to

operate above pc.

In order to verify our conclusions, we present our simulated

results in the next section.

V. SIMULATION

Fig. 4. Largest Cluster vs. Length in one dimension, for number of sites
varying between 4 and 625, for p = 0.75

We have verified the results used in the above section by

simulation of site percolation(Fig. 4,5,6) on a 2D square lattice

on MATLAB. We have varied the sizes of lattice from 4 sites

to 625 sites. The simulation involved the following:

1) Generating random numbers and depending on the value

of connection probability either place an open or closed

site.

2) Using the Hoshmen Kopelman [7] algorithm, we perco-

lated labels through the lattice.

3) Estimated the size of the largest cluster in the lattice

for varying sizes of lattice for a particular value of

connection probability p.

The value of the fractal dimension D, has been estimated

from the log log plot of size of largest cluster vs. length of

lattice in one dimension. It turned out be around 1.98(refer to

Fig. 4), just as it has been theoretically derived.

We also simulated an ideal wireless adhoc network(Fig.

7,8,9) on MATLAB using the model described in section III.

The number nodes again varied between 4 nodes to 625 nodes.

The simulation involved the following:

1) Decided with a probability p if each node rebroadcasts

or not to its neighbours in the vertical and horizontal

direction.

2) Broadcasting a message from a different node every

time, we calculated the number of nodes which are

actually receiving it.

Roughly around when p = 0.7 we can observe(refer to Fig.

8, 9, 10) the number of nodes receiving broadcasted message

varying as the number of nodes in the wireless adhoc network.
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p ξ ∝

0.59 ∞

0.6 457
0.65 42

0.7 18
0.75 12

0.8 8
0.85 6

0.9 5
0.95 4

TABLE I

p AND CORRESPONDING CROSSOVER LENGTH ξ VALUE

The major conclusion of the paper is as follows, given

a wireless adhoc network of size L X L, we need to be

able to predict the broadcast probability with which nodes

have to broadcast so as to ensure its successful (complete

connectivity).

Ideally to optimize power consumption, one has to operate

at the lowest possible value of p and also simultaneously

ensure connectivity. This can be done by selecting the value of

crossover length that is close to L. As noted in the equations

above, when the value of crossover length is close to or less

than L, the size of the largest cluster is proportional to the

size of the lattice.

What is also to be noticed are the values of crossover length

at a particular value of p from the Table I.

At p = pc,

crossover length(ξ) → ∞.

This value falls sharply as we move away from pc, but still

remains well over usual wireless adhoc network dimensions.

Hence it is interesting to see that the size of wireless adhoc

network in one dimension would always be less than crossover

length if we use p close to pc and in which case the size of

largest cluster would vary as LD and not Ld. This picture

though changes drastically when p is roughly around 0.7
when, crossover length becomes close to the size of a realistic

wireless adhoc network in one dimension.

By fixing the value of crossover length for a lattice of size

L X L, one could fix p from Table I(the left column is the

connection probability p and the right gives the proportional

value of crossover length ξ). To be noted is the value of pc

for site percolation on 2D square lattice which is roughly

around 0.59 [5]. For example, if the size of the wireless adhoc

network ≈106, one can assume the length of crossover length

ξ to be around 400 and the corresponding value of broadcast

probability (p) is 0.6(from Table I). Therefore for a wireless

adhoc network of such huge(unrealistic) size, p > 0.6 could

be an appropriate value. Similarly as the size of the wireless

adhoc network decreases, the corresponding value of the ξ also

reduces and the value of p increases.

Hence, for more realistic wireless adhoc network sizes

≈102, the value of ξ ≈ 10 to 40. Thus it is more sensible to

use 0.65 < p < 0.8. This has been verified in our simulations

(Fig. 8,9,10).

Hence we draw a major conclusion here, which is to say

that, it is not sufficient to operate at p > pc for successful

broadcast, but also the size of the wireless adhoc network in

one dimension is to be taken into account to determine the

broadcast probability. Hence as stated in the introduction of the

paper we have shifted the focus from connection probability(p)
to the crossover length(ξ).

VI. CONCLUSION AND FUTURE WORK

Broadcasting, as mentioned also in the abstract, is very fun-

damental to a network with nodes which have no information

about the topology of the network. Broadcasting operation

is definitely optimized using probabilistic schemes but only

under a lot of constraints on the network size, shape, density

etc. A more effective technique for general networks would be

to use an intelligent probabilistic scheme, where the value of

rebroadcast probability could change with the density of nodes

around. This could be particularly effective when the nodes

are mobile and neighbourhood of a node keeps constantly

changing. This idea has been explored in [8].

It is plausible to say that rebroadcast probability should

be a function of the neighbour density, i.e., if the number of

nodes in the neighbourhood is high, we could use a smaller

broadcast probability and vice versa. This argument leads to

another interesting point which is, the neighbour density of a

node is a function of the transmission range, i.e. a node with

larger transmission range is likely to have more number of

neighbours purely by the virtue of its reachibility. What we can

hence conclude is that, there is an inherent relation between the

rebroadcast probability and transmission range of the node. It

would thus be very interesting to work on dynamically chang-

ing rebroadcast probability(p) and transmission range(r)[9]

simultaneously with a logic implemented with it. The logic

could be as simple as, a node with large transmission range

has lower rebroadcast probability and vice versa with,

rp = k(constant).

The other interesting result that percolation theory gives

us is the value of pc
∼= 0.246 [5] for a BCC lattice. This

is to say that the broadcast operation in a three dimensional

wireless adhoc network can be optimized even further. To be

able to arrive at the exact values of broadcast probability for

3D wireless adhoc networks, one has to do a similar research

as we have done for 2D wireless adhoc networks.
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