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Abstract—In this paper, a model is proposed to determine the life 

distribution parameters of the useful life region for the PV system 

utilizing a combination of non-parametric and linear regression 

analysis for the failure data of these systems. Results showed that this 

method is dependable for analyzing failure time data for such reliable 

systems when the data is scarce. 

 

Keywords—Masking, Bathtub model, reliability, non-parametric 
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I. INTRODUCTION 

N determining the feasibility of owning a PV system, the 

total cost of owner ship (TCO) for the system must be 

calculated. This cost includes (but not limited to) the initial 

purchasing cost of the system, the operating costs of the 

system, and the downtime cost of the system [1]. While the 

initial cost does not depend on the life distribution of the PV 

system, the downtime cost and parts of the operating cost do. 

Maintenance cost (corrective, preventive, and predictive) is a 

major part of the operating cost, which depends heavily on the 

life distribution of the PV system as the life distribution of the 

PV system governs its failure pattern. Another maintenance-

related cost is the downtime cost, which includes the costs 

related to the stoppage of the PV system (loss of potential 

revenue) while performing the maintenance. Energy 

consumption is another part of operating costs, but this part 

does not apply in the case of PV systems as PV systems 

consume free fuel (solar radiation). 

In evaluating the payback period or the energy price per 

KWh of the PV system, the useful life of the system must be 

known. Moreover, to evaluate the maintenance cost and the 

downtime cost for the PV system (which will be needed to 

calculate the payback period or the energy price per KWh), the 

life distribution of the useful life region for the system must be 

known. Assuming that the PV system works without 

interruption will underestimate the TCO of the PV system. 

This will affect the payback period and the energy price per 

KWh calculations which may lead to a wrong decision about 

the feasibility of the PV system. 

Typically, the useful lives of the PV systems are in the 

range of 15- 20 years with the inverter failure is the main 

cause for the system failure [2], [3]. Unfortunately, there is a 
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shortage in failure data sets for PV systems as these systems 

are relatively new. Moreover, the available data sets limited to 

time between failures without much information about the 

reasons of the failure.  

This lack of information about the reasons of the failure 

(known in literature as masking problem) makes the extraction 

of the useful life region limits hard to obtain as the failure 

reasons are mixed between wear out, random, and 

manufacturing defects [4]-[7]. In this paper, a model for 

determining the useful life region limits and the life 

distribution governing this region for Weibull life PV systems 

is proposed utilizing non-parametric and linear regression 

analysis for the failure time data points. The effectiveness of 

the model is illustrated using simulated data.  

The rest of the paper will be organized as follows: Section 

II will present the derivation of the model, Section III will 

utilize simulated data for discussion, and Section IV will 

conclude. 

II. DERIVATION OF THE PROPOSED MODEL 

For Weibull-life systems, the infant mortality region of the 

bathtub model is characterized by decreasing hazard rate 

function because the reliability of the system increases as the 

time goes on, while the opposite happens in the aging region 

as the reliability of the system decreases. Unlike these two 

regions, in the useful life region of the bathtub model, the 

hazard rate stays constant [8]. This means that the slope of the 

hazard rate function in the useful region is constant. This 

characteristic of the useful life region can be exploited in 

determining the limits of this region.  

The slope of the hazard rate function in the useful region of 

the bathtub model can be obtained from the slope of the best 

line fit in this region. The best line fit can be found by simple 

linear regression model between the failure time data points 

and the corresponding hazard rate values at each of the failure 

time data points in the useful life region.  

Hazard rate is defined as the conditional probability of 

failure in the interval t to (t+dt), given that there was no 

failure at t. Mathematically, it can be calculated as [9]:  

 

( )
( )
( )i
i

i
tR

tf
th =

          (1) 

 

The non-parametric formula for the hazard rate function can 

be derived from (1) as: 
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where 
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N
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tF i =  ,           (3) 

 

and i is the index for the failure time data point under 

consideration, and N is the total number of data points. 

Substituting (3) into (2) gives a non-parametric equation for 

the life distribution: 
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The reliability distribution (complementary of failure 

distribution) also can be expressed in a non-parametric form 

utilizing (3) as: 
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Substituting (4) and (5) into (1) gives a non-parametric 

form for the hazard rate function as: 
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Equation (6) was reported by many other authors like [8]. 

Consider a set of ordered ungrouped complete failure data 

point t as: 

 

{ }Ntttttttttt ,...,,,,...,,,,..,, 221222111121 ++++= ττττττ
, 

 

where 1t is the index of the failure time data point representing 

the start of the useful life, 2t  is the index of the failure time 

data point representing the end of the useful life. Define 
⋅
t as 

the set of failure time data points without the last failure time 

data point as:  

 

Nttt −=& , 

 

Moreover, let h be the set of hazard rate values 

corresponding to the failure time data set 
⋅
t  as: 
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Given the failure time data points ( )it  and the corresponding 

hazard rate 

 

( ){ }22111121 ,...,,,,..,,:, ττττ ttttttitth ii ++=  

The least square estimates to the slope m of the regression line 

between ( )ith and 
it  as a function of 1τ and 

2τ is computed as: 
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where m̂  is the least square estimate of the regression line,t  
is the average of the failure time data point set t&,and h is the 

average of the hazard rate set h  . 

In this paper, the time between failures for the PV systems 

is assumed to follow Weibull distribution. According to [8], 

the shape parameter of the Weibull distribution can be 

estimated using:  
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where { }211 ,...,1, τττ += cardr and card(.) is the 

cardinality of the set. 

Equation (8) can be solved numerically for β  using 

Newton-Raphson procedure to find an estimation for β , 

( )21,
ˆ ττβ , as a function of 1τ and 2τ . 

Fig. 1 shows a typical bathtub model. It is clear from Fig. 1 

that as we move from the left toward 1τ  on the time axis, the 

slope of the hazard rate function increases until it reaches zero 

at 1τ . Moreover, as we move away from 2τ  to the left, the 

slope of the hazard rate function increases. This means that 

1ˆ ≈β  and 0ˆ ≈m  between 1τ  and 2τ and in their vicinities. 

 

 

Fig. 1 Typical bathtub model 

 

Exploiting that 1ˆ ≈β  and 0ˆ ≈m  between 
1τ  and 

2τ and in 

their vicinities, we can build our objective function as: 

 

( ) ( )[ ]1,ˆ,ˆ
2121 +−= ττβττmabsZ       (9) 

 

Equation (9) suggests that in the useful life region for a 

Weibull-life PV systems Z must equal to zero. This is true 
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because at that region the slope of the hazard rate function is 

zero and the shape parameter for the life distributing is one 

thus Z must be zero. Because the Z is calculated using sample 

of the failure time data, we should expect that Z will not have 

exactly zero, but something around this value. The value of 

zero will not be achieved unless there is a perfect data which 

is hard to obtain in real life situations. 

The failure time data between 1τ  and 2τ  can be used to 

estimate the characteristic life of the PV systems as; 
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As a matter of fact, (9) can be used as our objective 

function for the proposed model, which can be used to find 
1τ

and 
2τ . Finding the optimal 

1τ  and 
2τ determines the useful 

life region of the PV system. 

Based on (9), the proposed model is as  
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where m̂  and β̂  are the slope of the regression line and the 

shape of the Weibull distribution parameter in the useful life 

region between 
1τ  and 

2τ .  

Full enumeration technique will be employed to solve this 

model. The number of combinations need to be evaluated is 

∑
−

=

=
1

1

N

i

c iN . As the failure time data usually scarce for the PV 

systems, the number of combinations need to be evaluated is 

within the capabilities of most modern computers. For 

example if we have 1000 failure time data points, then the 

number of combinations need to be evaluated is 499500
999

1

=∑
=i

i

combinations, which is reasonable for most of the modern 

computers. 

The procedure followed in this paper to find the optimal 

values of 
1τ  and 

2τ  is as: 

 

Start 

 Step 1 

Enumerate the combinations for the failure time data points 

and give each combination a serial number starting from 1: 

{ }
cN

cccc ,...,, 21=  . 

  Set k=0 

 Step 2 

  Do while k <
c

N  

1. k=k+1 

2. Set [ ]{ }2,1: kki ccitD ∈= , where 
,1kc  and 

2kc  

are the first value and the second value in 
kc , 

respectively. 

3. Calculate the hazard rate h with equation (6) 

using the failure time data D. 

4. Calculate the slope of the regression line m̂  

with equation (7) using the values of D and h. 

5. Calculate β̂  using equation (8) where 

)(Dcardr =  

6. Calculate Z with equation (9) using the values 

of m̂ and β̂ . 

7. Store the value of Z along with its 

corresponding k value 

  End 

 Step 3 

Choose the minimum value of Z as the optimal value and 

retrieve the corresponding optimal combination 
1τ  and 

2τ  

using the corresponding k value. 

 Step 4 

Use 
1τ  and 

2τ and the corresponding D set to find the 

characteristic life θ̂  with (10) and retrieve the value for the 

shape parameter β̂ . 

End 

 

The above non-parametric procedure can be used to 

determine the useful life region of the Weibull-life PV systems 

and determine the life distribution parameters for the useful 

life region. 

III. ILLUSTRATIVE EXAMPLES 

Four illustrative examples using simulated data will be used 

to illustrate the effectiveness of this model. The first example 

will simulate data only in the useful life region. The second 

example will use simulated data from infant mortality and 

useful life regions. The third example will use simulated data 

from useful life and aging regions. And finally, the fourth 

example will use a simulated data from all three regions. 

A. Example 1 

Table I shows the pertaining failure time data for example 

1. The failure time data (years) is simulated from a Weibull 

distribution with 1=β and 6.1=θ . 

 

TABLE I 

FAILURE TIME DATA FOR EXAMPLE 1 

2.0695 3.285 0.0966 0.006 2.0807 

0.6825 0.1272 2.0023 1.1071 1.5107 

6.825 0.3807 0.8319 1.8794 0.869 

2.7308 0.7918 0.9206 0.7167 0.3098 

5.5971 0.1143 2.6753 1.4214 1.6911 

0.3631 0.3518 0.1397 0.4155 2.7609 

0.1321 1.2889 1.3137 1.2121 0.1705 

3.1936 5.2825 0.9347 0.9584 1.4796 

1.5117 1.2859 0.8188 3.225 1.3022 

4.778 1.8619 0.1939 0.5209 1.7917 

 

Applying the proposed model, the optimal solution was 

11 =τ  and 502 =τ  with 09.1ˆ =β and 56.1ˆ =θ . It is clear that the 

model was able to predict that there is only one region and the 
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whole data set came from the useful life region that starts from 

0.006 years and ends at 6.825 years. 

B. Example2 

Table II shows the pertaining failure time data for example 

2. The data for this example is the same data used in example 

1 added to it 10 failure data points from infinite mortality 

region from a Weibull distribution with 86.0=β and 

32.0=θ  . It should be clear from the data that the infant 

mortality data points overlap with useful life data to simulate 

the real life situation.  
 

TABLE II 

FAILURE TIME DATA FOR EXAMPLE 2 

0.0039 2.0695 3.285 0.0966 0.006 2.0807 

0.0999 0.6825 0.1272 2.0023 1.1071 1.5107 

0.5016 6.825 0.3807 0.8319 1.8794 0.869 

0.1743 2.7308 0.7918 0.9206 0.7167 0.3098 

0.175 5.5971 0.1143 2.6753 1.4214 1.6911 

0.1047 0.3631 0.3518 0.1397 0.4155 2.7609 

0.1009 0.1321 1.2889 1.3137 1.2121 0.1705 

0.6425 3.1936 5.2825 0.9347 0.9584 1.4796 

1.407 1.5117 1.2859 0.8188 3.225 1.3022 

0.2395 4.778 1.8619 0.1939 0.5209 1.7917 

 

Applying the proposed model, the optimal solution was 

31 =τ and 602 =τ with 99.0ˆ =β and 4.1ˆ =θ . The model was 

able to detect the two regions, the infant mortality region and 

the useful life region. Note that the model predicted that there 

is no third region, i.e., aging region because 602 =τ . The 

model detected the beginning of the useful life region to be 

0.0966 years which is close to the actual value of 0.006. 

C. Example 3 

Table III shows the pertaining failure time data for example 

3. The data for this example is the same data used in example 

1 added to it 10 failure data points from aging region from a 

Weibull distribution with 83=β and 56.6=θ . It should be 

clear from the data that the aging data points overlap with 

useful life data to simulate the real life situation.  

 
TABLE III 

FAILURE TIME DATA FOR EXAMPLE 3 

2.0695 3.2850 0.0966 0.0060 2.0807 6.4353 

0.6825 0.1272 2.0023 1.1071 1.5107 6.3657 

6.8250 0.3807 0.8319 1.8794 0.8690 6.6070 

2.7308 0.7918 0.9206 0.7167 0.3098 6.4703 

5.5971 0.1143 2.6753 1.4214 1.6911 6.6311 

0.3631 0.3518 0.1397 0.4155 2.7609 6.5353 

0.1321 1.2889 1.3137 1.2121 0.1705 6.3927 

3.1936 5.2825 0.9347 0.9584 1.4796 6.5083 

1.5117 1.2859 0.8188 3.2250 1.3022 6.6134 

4.7780 1.8619 0.1939 0.5209 1.7917 6.6288 

 

Applying the proposed model, the optimal solution was 

31 =τ and 532 =τ  with 1.1ˆ =β and 8.1ˆ =θ . The model predicted 

the end of the useful life to be at 6.4703 years which is close 

to the actual end of the useful life of 6.825 years. It is worth to 

mention here that the model incorrectly predicted a small 

infant mortality region.This error is reasonable as the 

predicted infant mortality region is very small and contains 

only two data points. Moreover, the predicted start of the 

useful life region was 0.1143 years which is reasonable close 

to the actual value. 

D. Example 4 

Table IV shows the pertaining failure time data for example 

4. The data for this example is the same data used in examples 

1, 2, and 3 together. 
 

TABLE IV 

FAILURE TIME DATA FOR EXAMPLE 4 

0.0039 2.0695 3.285 0.0966 0.006 2.0807 6.4353 

0.0999 0.6825 0.1272 2.0023 1.1071 1.5107 6.3657 

0.5016 6.825 0.3807 0.8319 1.8794 0.869 6.607 

0.1743 2.7308 0.7918 0.9206 0.7167 0.3098 6.4703 

0.175 5.5971 0.1143 2.6753 1.4214 1.6911 6.6311 

0.1047 0.3631 0.3518 0.1397 0.4155 2.7609 6.5353 

0.1009 0.1321 1.2889 1.3137 1.2121 0.1705 6.3927 

0.6425 3.1936 5.2825 0.9347 0.9584 1.4796 6.5083 

1.407 1.5117 1.2859 0.8188 3.225 1.3022 6.6134 

0.2395 4.778 1.8619 0.1939 0.5209 1.7917 6.6288 

 

Applying the proposed model, the optimal solution was 

101 =τ and 652 =τ  with 06.1ˆ =β and 2ˆ =θ . Fig. 2 shows the 

three regions found by the model in this example. 

 

 

Fig. 2 The bathtub regions found by the model for example 4 

 

The model was able to distinguish between three regions. 

The infant mortality region that contains 10 data points, the 

useful life region between 0.1397 years and 6.5353 years that 

contains 55 data points, and the aging region that contains 5 

data points. It is obvious that the model incorrectly assign the 

beginning and the end of the useful life region but with a 

reasonable error as the actual beginning and ending for the 

useful life region are 0.006 and 6.825 year respectively. 

IV. CONCLUSIONS 

In this paper we presented a practical model utilizing non-

parametric analysis of ungrouped complete failure time data 

for Weibull-life PV systems. The illustrative examples showed 

that the proposed model reasonably distinguished between the 
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infant mortality, useful life, and aging regions of Weibull-life 

PV systems. Moreover, the results for the illustrative examples 

showed that the model provided a reasonable estimation of the 

life distribution parameters in the useful life region.  

A good estimation for the life distribution parameters of the 

PV systems will allow the decision maker to incorporate the 

life distribution of the PV systems in their calculations when 

making decisions regarding the feasibility of a certain PV 

system as this information will enhance the calculations' 

accuracy of the payback period and the energy price per KWh. 

ACKNOWLEDGMENT 

The author is grateful to the Applied Science Private 

University, Amman, Jordan, for the financial support granted 

to this research (Grant No.DRGS-2015-2014). 

REFERENCES 

[1] E. F. Hitt, Battelle and O. H. Columbus, “Total ownership cost use in 
management”, Digital Avionics Systems Conference, Proceedings, 17th 

DASC. The AIAA/IEEE/SAE, Vol. 1, A32-1-5,(1998). 

[2] Maish A, Atcitty C., Hester D. Greenberg D., Osborn D., Collier D., 
(1997). Photovoltaic Reliability, Proceedings of the 26th Photovoltic 

Specialists Conference (PVSC) Anheim CA 1049. 

[3] Begovic M., Pregelj A., Rohatgi A., (2000). Four-year Performance 
Assessment of the 342 kW PV System at Georgia Tech, Proceedings of 

the 28th Photovoltic Specialists Conference (PVSC) Anchorage AL.  

[4] Guess, F. M., Usher, J. S., Hodgson, T. J. (1991). Estimating system and 
component reliabilities under partial information on cause of failure. J. 

Statist. Plann. Infer.29:75–85. 

[5] Flehinger, B. J., Reiser, B., and Yashchin, E. (1998). Survival with 
competing risks and masked causes of failures. Biometrika 85:151–164. 

[6] Basu, S., Basu, A. P., and Mukhopadhyay, C. (1999). Bayesian analysis 

for masked system failure data using non-identical weibull models. J. 
Statist. Plann. Infer. 78:255–275. 

[7] Chiranjit M. and Sanjib B., (2007). Bayesian Analysis of Masked Series 
System Lifetime Data. Communications in Statistics—Theory and 
Methods, 36: 329–348. 

[8] Charles E., (2008). An Introduction to Reliability and Maintainability 

Engineering,McGraw-Hill, New Delhi. 
[9] Elsayed A., (1996). Reliability Engineering, Addison Wesley, 

Massachusetts.  

 

 

 

Saleem Z. Ramadan is an Assistant Professor in the Department of 

Mechanical and Industrial Engineering at Applied Science University, 
ShafaBadran, Jordan. He received his Ph.D. from the Department of Industrial 

and Systems Engineering at Ohio University in 2011. His research interests 

are in Bayesian statistics, reliability, genetic algorithms, and operations 
research. 


