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Abstract—A novel method using bearing-only SLAM to es-
timate node positions of a localization network is proposed. A
group of simple robots are used to estimate the position of each
node. Each node has a unique ID, which it can communicate to a
robot close by. Initially the node IDs and positions are unknown.
A case example using RFID technology in the localization
network is introduced.

Index Terms—Localization network, Multi-robot, RFID,
SLAM

I. INTRODUCTION

HE localization of a mobile robot is of paramount

importance for efficient task execution. The field has
been well studied and many different methods have been
proposed. These methods can be roughly divided into two
categories: methods relying only on robot’s own sensors and
methods using external infrastructure such as beacons, land-
marks, etc. Each method has its benefits and short-comings.
The choice depends on the application and environment, but
some methods have proven to be more generally applicable.
A common approach for robot localization is the method
called Simultaneous Localization and Mapping (SLAM). It
combines the measurements of the robots internal sensors with
the observations of the environment. The detected features
of the environment may be natural or artificial. No a priori
information on the features is required. Several studies have
addressed this method [1], [2], [3], [4], [5].

In multi-robot scenarios the robots can improve their po-
sition estimates by observing other robots. The localization
can be based on other robots serving as static landmarks,
while other robots move [6]. A simplified approach is to have
two robots moving in turns. Only one robot needs to have
necessary sensors for detecting the target mounted on the
other robot [7]. A robot group can also move in a formation,
while the robots observe each other continuously [8], [9].
Both approaches have the restriction, that the robots have
to stay together in order to observe each other. This can be
inconvenient in many scenarios. Cooperation between robots
navigating independently has also been studied. For example,
the SLAM method can be extended to handle multi-robot
cooperation [10], [11], [12], [13], [14].

If the pose estimate of a robot is based only on the mea-
surements of relative change in the pose, the uncertainty of the
estimate increases over time. In SLAM the robot also observes
its environment in order to have measurements from external
objects. This is often done with a laser scanner and has been
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shown to work well in some environments. However, problems
arise, when the environment does not provide features, that
can be identified or if a large error is introduced into the pose
estimate of the robot. With an external localization network,
a robot can always localize itself within a bounded error.
If landmarks with unique identification codes are used, the
robot detecting a landmark has no correspondence problem.
The measurements to landmarks together with the position
estimates of the landmarks can be used to compute a position
estimate for the robot. The accuracy of the position estimate
is independent of time. The problem is that the deployment
and maintenance of the localization network is often costly.

The approach introduced in this paper uses a group of
simple robots with basic sensors for estimation of landmark
positions. Hence, no costly deployment with accurate initial
localization of landmarks is needed. Each robot only needs
wheel encoders and one sensor, that can identify a landmark
and measure a bearing angle to the landmark. With these
sensors, the robots are able to estimate simultaneously their
own pose and the locations of the landmarks in the localization
network. The landmarks can be deployed sparsely because
only one landmark needs to be visible for the localization
algorithm to work. If no landmark is visible, the robot relies
entirely on the odometry.

Human operated platforms with odometry sensors could
also be used for the localization of the landmarks instead
of the robots. The platforms could be pushed or teleop-
erated according to the operating environment. The human
participation may be feasible in an environment, where the
autonomous navigation of a robot without complex sensor
system is difficult or where human entities are needed for
specific tasks.

A case example introduced in this paper shows, that main-
tenance free, passive RFID tags can be used as landmarks
for a SLAM application. The use of passive RFID technology
for localization has been studied earlier in several separate
research projects. In [15], [16] the RFID tags are used to
identify sub maps, but the actual localization is done with other
sensors. In [17], [18] an excessive amount of tags is used to
cover the floor and the localization is based on detection of
a tag directly below the robot. In [19] passive RFID tags are
used as landmarks. A robot with two static antennas detect the
tags on the walls of an office space and create a map of them
using a probabilistic algorithm. The pose estimate of the robot
localizing the landmarks is based on separate system. Thus,
the method presented is not an application of SLAM.
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Fig. 1. Landmark localization with two bearing angle measurements.

II. BEARING-ONLY SLAM

If the robot can measure at least two bearing angles to
a landmark, an estimate can be calculated for the relative
displacement between the landmark and the robot, provided
that the robot has basic odometry sensors. An estimate for
the relative position of the landmark can be found at the
intersection of the two bearing angle measurements.

Figure 1 shows a robot making two bearing angle measure-
ments at locations Ry and Rjy.1. The distance d, between
the two locations is measured with wheel encoders. The two
bearing angle measurements A; and A, are measured with a
suitable sensor. The displacement relative to the position of
the robot can be calculated in polar coordinates as follows:

o = 0+X )]
_dy-sin(A)
dm o Sln()\g — )\1) (2)

Extended Kalman Filter (EKF) can be used to estimate the
pose of the robot and the position of a landmark based on
a measured bearing angle and existing estimates of the robot
pose and landmark position. An example state vector with a
robot pose and a landmark position estimates and a control
vector defining the robot movement are as follows:

i d
i Y
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At the prediction step the change in the pose of the robot
is estimated according to the information received from the
odometry system (Figure 2). The information related to the
pose change is considered as external control uy. The predicted
pose of the robot is computed according to the function
f(zg_1,ug,0) containing the Equations 3-5. The position of a
landmark is static and thus its estimate does not change during
the prediction step.
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Fig. 2. Change in the robot pose as measured by the odometry system

The error covariance matrix P is updated at the prediction
step according to the Equation 6, where A is a Jacobian matrix
of partial derivatives % and B is a Jacobian matrix %. Uy is
the noise covariance matrix for the external control and Q) is
a covariance matrix containing the process noise.

Py = AyPo1 AL + BRURB{ + Qg 6)

The measured bearing angle is used to correct the predicted
values of the state vector. The measurement equation h(&, ,0)
is described in Equation 7. The correction for the state vector
is calculated using the Kalman gain parameter, which for
EKF has to be computed for each step as it depends on the
linearization at the current state. The Kalman gain is computed
according to the Equation 8, where H is a Jacobian matrix %
and Ry, is the measurement noise covariance matrix. A residual
of the measured bearing angle z; and the predicted bearing
angle, computed with measurement equation h, is calculated.
The Kalman gain is used to weight the residual to each variable
in the state vector (Equation 9). The error covariance matrix is
updated using the Kalman gain and the Jacobian matrix Hy.
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III. COOPERATION

When a single robot estimates the position of a landmark the
estimate is biased by the errors in the robot’s own position and
heading angle estimate. Filtering the different measurements
of a single robot helps to decrease the effect of measurement
errors, but not the effect of the error in the robot’s original
pose estimate. However, if different robots are estimating the
position of a landmark, the position estimate is based on
several more or less independent groups of measurements. The
poses of different robots get correlated, when they use same
landmarks for localization. This helps to keep the pose error of
a robot on lower level in the early stages of the network node
localization, as the other robots can offer it more accurate
position estimates of the landmarks the robot has already
localized (Figure 3). On the other hand, as the variables of
the state vector get strongly correlated over time less and
less new information is available and the location estimates
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Fig. 3. Robot D passing the landmark and informing the robot C of the new
position estimate of the landmark, that C has already passed. Both C and D
correct their position.

of the landmarks will become static. At the mature state of
the localization network the cooperation between robots is no
more needed for localization. The landmarks will provide a
common frame of reference for all the robots operating on the
area of the coverage.

A straightforward way of maintaining all the correlations is
to use a centralized Kalman filter. Then the state vector will
include pose estimates of all robots and position estimates of
all landmarks. A system with M robots and N landmarks has
3*M+2N elements in the state vector. In large scale systems
the dimensions of the centralized Kalman filter may grow too
big for efficient computation of the updates. Then a distributed
or sparse filter structure may be used. In these experiments
the dimensions stayed below a hundred and the computational
burden was still manageable with a centralized filter. The use
of centralized Kalman filter also requires, that each robot can
communicate with the central computer running the filter.
Depending on the environment this may be achieved with
access points or with an ad-hoc network. If sufficient level
of communication can not be obtained, a distributed filter
structure has to be used. If the landmarks have accessible
memory, they can be used for the information exchange
between the robots. However, the cooperation between robots
is less efficient, when all the information is not available to
all robots.

IV. CASE EXAMPLE: PASSIVE RFID TAGS AS LANDMARKS

Simulations and laboratory experiments were used to test
the feasibility of the introduced concept. The laboratory ex-
periments were conducted in an office environment. The test
environment consisted of a main corridor, side corridor and
rooms (Figure 4). The dimensions of the used environment
were approximately 30m x 15m. The floor material is smooth
vinyl with good friction. Ten passive RFID (Radio Frequency
Identification) tags were placed on the walls of the two
corridors to act as landmarks with unique IDs.

Four small differential drive robots were used to gather mea-
surement data. The robots were equipped with wheel encoders.
A motor controller estimated the pose of a robot based on the
encoder pulses. The odometry was found relatively accurate in
the office environment. However, the wheelbase of the robots

Fig. 4. The locations of the 10 landmarks and the approximate path followed
by robots during the test runs

/RFID TAG

Fig. 5. Four MarsuBot robots used in the laboratory experiments. Directional
RFID antenna on top of each robot. An RFID tag serving as a landmark can
be seen on the background.

was only 17cm, which makes the heading angle estimate of
the robot prone to error.

Each robot was also equipped with an RFID reader and a
directional antenna mounted on a hobby servo (Figure 5). The
RFID reader operates on the UHF frequency range (approxi-
mately 867MHz in Europe). The bearing angle measurement to
a passive RFID tag serving as a landmark was done by turning
the reader antenna on small steps. The electric field of the
directional antenna swept over the surroundings of the robot
and powered the tag only, when it was pointing approximately
to the direction of the tag. The start and stop angles of the
sector, where the tag responded were recorded. The bearing
angle to the landmark was then computed according to the
measured sector and the correction parameters related to the
antenna and the servo.

The odometry system and the bearing angle measurement
system were calibrated before the tests in order to minimize
systematic error. The calibration of the bearing angle measure-
ment system indicated, that the expected standard deviation
in the bearing angle measurements is 5° — 10° depending
on the antenna clearance to the metal parts of the robot and
the chosen transmitting power of the RFID reader. During the
laboratory experiments it was observed, that depending on the
environment the standard deviation can be considerably higher.
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Convergence of the landmark position estimate
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Fig. 6. Accuracy of the final position estimates of the landmarks 2, 4, 6, 8
and 10 as a function of the number of localization runs. The number of runs
reflects the number of robots in the group localizing the landmarks, when a
true multi-robot system is used. Here, only four robots were available and
hence each robot made multiple runs in the scenarios with total number of
runs higher than four.

V. RESULTS

Laboratory experiments with four different robots were
conducted. The number of robots is not adequate to prove a
true multi-robot performance, but the results of the laboratory
measurements were used to tune a simulator to match the real
application as closely as possible. In the simulator any number
of test runs with any number of robots can be conducted.

A. Laboratory experiments

Each robot made eight measurement runs. While passing
a landmark, the robots made bearing angle measurements
on a 20cm interval. The average amount of measurements
to a landmark during one pass was approximately six. The
odometry and bearing angle measurement information was
stored for each measurement run. The localization algorithm
could then be run offline with different amount of robots
cooperating.

The convergence of five landmark position estimates as a
function of the size of the robot group is shown in Figure 6. For
each group size, 1000 localization runs were made, where the
participating measurement runs were picked from the database
of 32 recorded runs. As there were only four robots making
the measurement runs, multiple runs per one robot was picked
for tests with more than four robots.

The position estimates of all the landmarks converge, as
the number of robots and thus, the number of measurement
runs increases. The position error of the landmark 10 seems
to stay higher than the position error of the other landmarks.
This is due to the badly chosen position of the landmark 9,
which is too far from the intersection. When a robot turns, the
uncertainty of its heading angle estimate increases. A landmark
positioned close to the intersection (e.g. landmark 6) offers
the robot a reference point for correcting its pose estimate.
When turning towards landmark 9, the robot do not have any
reference points visible and hence, can not correct its heading.
The uncertain heading angle results into accumulated position

Robot position estimate with different sensors
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Fig. 7. Robot position estimate with different sensors. Odometry (dash-dot
line) shows the estimate based on wheel encoders. Laser scan matching (solid
line) serves as reference for ground truth. RFID landmark based estimate
(dashed line) shows the performance of the bearing-only localization. True
landmark positions are marked with circles and current estimates with crosses.
The arrows indicate the robot trajectory direction.

error, which is then inherited by the following landmarks. In
addition, the average amount of measurements to landmark
9 was very low (two per pass), due to the disturbances in
the environment. Thus, the robot traveled all the way to the
landmark 10 with practically no correction to its pose estimate.

The robot position estimate based on different sensors
is illustrated in Figure 7. The position estimate based on
odometry only shows clearly, how the accumulated error in
the robot heading angle estimate causes considerable error in
the robot position estimate. The use of RFID tags as landmarks
helps to keep the robot position estimate reasonably accurate.
The problem with the landmark 9, as mentioned above, is
clearly visible. There is no correction on the robot heading
angle after the robot turns towards the landmark 10, as there
was no successful measurements to the landmark 9 during
this particular run. For reference localization, the robot was
also equipped with a laser scanner. The environment was
artificially made optimal for scan matching with cardboard
boxes on regular intervals serving as observable features.
Hence, the trajectory of the robot based on the laser scanner
measurements gives a good estimate of the true path of the
robot.

The stability of the robot position estimate was observed
with an experiment, where a robot made six consecutive
measurement runs. The robot position estimate with three
different methods is illustrated in Figure 8. Once again it
is clear, how the position estimate based on odometry gets
inaccurate over time. If the robot uses landmarks with no a
priori information (plotted as One robot SLAM), the robot
position estimate has considerable error, but the accuracy does
not decrease over time. With landmarks localized in advance,
the robot position estimate stays accurate during the whole
experiment.
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Position estimate of a robot driving six loops
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Fig. 8. A robot driving six rounds in the office environment and estimating
its position with odometry only (red, dotted line), with bearing-only SLAM
(green, dash-dot line) and with already localized landmarks (blue, dashed
line).

B. Simulations

A simulation environment similar to the environment of
the laboratory experiments was used. The dimensions of the
corridors and the error parameters were approximately the
same with the real world system. Ten identical landmarks were
positioned evenly over the simulation environment.

The landmark detection depends mainly on the distance
between the landmark and the robot. The average number
of successful measurements to a landmark during one pass
was found to be 5.6, when the measurements where done on
20cm interval. This was modeled in the simulations with the
probability function shown in Equation 11, where d is the real
distance between the landmark and the robot.

0.8 ,d<0.8m
P(A) = { 0.5 ,08m<d<1.5m

The error distributions for bearing angle measurement and
odometry systems were set according to the observed errors
during the test runs in the office environment. The values for
measurement noises were based on the values used with the
real measurement data. The simulations were run in order to
observe, how the number of robots affects the localization
system performance.

All the robots followed the same path, but the driving
direction was different for every other robot. The path was
approximately the same that was used in the laboratory exper-
iments (Figure 4).

The landmark position estimate was found to converge to-
wards the correct location as the number of robots contributing
increased (Figure 9). The convergence rate depends on the
distance from the starting point of the robots (Table I). As
the distance increases the error in the heading angle of the
robot causes the position error of the robot to increase. This
error is inherited by the landmarks, when a robot localizes
them. With larger number of robots the average heading angle
error approaches zero and thus the position estimates of the
landmarks further away from the starting point of the robots
become more accurate.

(11
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Fig. 9. Landmark position estimate convergence as a function of the number
of robots

TABLE I
LANDMARK DISTANCE FROM THE STARTING POINT OF THE ROBOTS IN
THE SIMULATION ENVIRONMENT AND THE AVERAGE POSITION ERROR OF
THE LANDMARK AFTER TEN ROBOTS.

Landmark number 2 5 8 10
Distance from start / m 8 20 32 28
Error after 10 robots / m | 0.11 | 0.18 | 0.24 | 0.21

In another simulation, ten runs were made with a single
robot and the results were compared to a team of ten robots
each making one run. In the single robot case the robot was
repositioned after each run, so the odometry error only accu-
mulated over one run and then got set back to the initial values.
The robots of the team started from the same position with
short intervals and thus there was multiple robots operating
simultaneously. The average error in the landmark positions,
the average error of a robot after each test run and the average
error of a robot when near landmark 8 and landmark 10 ( 32m
and 28m from starting point) were recorded. The results are
presented in Table II.

The landmark positions can be estimated more accurately
using the multi-robot approach. Also, the robot position esti-
mates have smaller average error and smaller standard devia-
tion if multiple cooperating robots are used. The cooperation
helps to keep the error in the robot’s pose estimate within
smaller margins than what a single robot can do. The increase
in the pose error has negative effect on the performance of
the Extended Kalman Filter as it uses linearization at the
estimated state for the update calculations. The use of multiple
robots reduces the effect of systematic errors in the odometry
and bearing angle measurement systems of the robots. For
reference, a simulation with same error parameters were run on
robots with odometry sensors only. The average error in final
position was found to be 0.90m, which is clearly higher than
the average position error of the robots using the landmarks
for localization.
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TABLE II
LANDMARK AND ROBOT POSITION ERROR WITH SINGLE- AND
MULTI-ROBOT LOCALIZATION

Single-robot Multi-robot
Error | Std dev | Error | Std dev
Landmark final position | 0.15m 0.04m 0.14m 0.04m
Robot final position 0.25m 0.30m 0.22m 0.14m
Robot after landmark 10 | 0.37m 0.24m 0.31m 0.19m
Robot after landmark 8 0.41m 0.26m 0.33m 0.18m

VI. CONCLUSION

The external localization network clearly supports the local-
ization of the robots, even if the landmark position estimates
are not as accurate as with landmarks, that have been manually
installed and localized. The estimation error of the robot
position is shown to be bounded on a constrained working
area, even if there is no a priori information on the positions
of the landmarks on that area.

The landmark localization can be done with one or multiple
robots. Multiple robots can localize the landmarks with smaller
position error and variance. The robots of a cooperating
robot group also maintain more accurate estimates of their
own position and the variance between robots is considerably
smaller. Also the multi-robot approach is significantly faster
as all the robots can operate simultaneously.

If the use of robots is not feasible, human operated platforms
can be used for the landmark localization instead. The plat-
forms need the same sensors for odometry and bearing angle
measurements as the robots. The platforms can be pushed by
humans operating at the area or they can be teleoperated, when
remote operation is required.

The dimensions of the localization network affect the av-
erage convergence of the landmark position estimates. In
order to get all landmarks localized with certain accuracy, the
amount of robots or independent measurement runs has to be
scaled according to the dimensions of the working area as the
landmarks further away from the staring point of the robots
converge slower.

VII. FUTURE WORK

The bearing angle measurement system was found to be
slow and the accuracy was found mediocre. Alternative or
improved methods have to be considered for measuring the
bearing angle to a passive RFID tag. The direction of the
antenna radiation pattern could be controlled electronically,
if an antenna array is used. Also, a different sensor, such
as a panoramic camera could be used for the bearing angle
measurement.

The distribution of the localization algorithm on the indi-
vidual robots and the running of the algorithm online is yet
to be done. The testing of the communication over an ad-
hoc network or through the landmarks could also provide
information on the feasibility of this kind of approach. The
actual multi-robot experiment with a group of robots operating
simultaneously also requires the implementation of suitable
systems for collision avoidance and path planning.
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