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Error Propagation in the RK5GL3 Method
J.S.C. Prentice

Abstract—The RK5GL3 method is a numerical method for solving
initial value problems in ordinary differential equations, and is based
on a combination of a fifth-order Runge-Kutta method and 3-point
Gauss-Legendre quadrature. In this paper we describe the propagation
of local errors in this method, and show that the global order of
RK5GL3 is expected to be six, one better than the underlying Runge-
Kutta method.
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I. INTRODUCTION

One-step methods, such as Runge-Kutta (RK) methods, are

popular methods for solving initial value problems in ordinary

differential equations numerically. Of interest in such methods

is the propagation of approximation error, and the cumulative

effect of this propagation. In an RK method, the accumulation

of O
(
hr+1

)
local errors results in a global error of O (hr) ,

where h is the stepsize. In other words, the global order of an

RK method is one less than its local order. We have developed

a method [1], designated RKrGLm, which is a combination of

an RK method of global order r, and m-point Gauss-Legendre

(GL) quadrature, that has the interesting property that if the

underlying RK method is O
(
hr+1

)
in its local error, then the

associated RKrGLm method is O
(
hr+1

)
in its global error,

i.e. the global error in RKrGLm has the same order as the

local RK error. In this paper we describe error propagation

specifically in the RK5GL3 method, and show the mechanism

by which the global error of RK5GL3 achieves sixth order.

For the benefit of the reader, a brief description of RKrGLm
is given in the next section.

II. TERMINOLOGY AND RELEVANT CONCEPTS

A. One-step methods

We denote an explicit RK method for solving

y′ = f (x, y) y (x0) = y0 a � x � b (1)

by

wi+1 = wi + hiF (xi, wi) (2)

where hi � xi+1− xi is a stepsize, wi denotes the numerical

approximation to y (xi) and F (x, y) is a function associated

with the particular RK method.

For example, the tableau
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k2 :
1
4

1
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8

3
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32

k4 :
12
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2197 −7200

2197
7296
2197

k5 : 1 439
216 −8 3680

513 − 845
4104

k6 :
1
2 − 8

27 2 −3544
2565

1859
4104 −11

40

16
135 0 6656

12825
28561
56430 − 9

50
2
55

has

F (x, y) =
16

135
k1+

6656

12825
k3+

28561

56430
k4−

9

50
k5+

2

55
k6 (3)

and corresponds to the fifth-order explicit Runge-Kutta

method derived by Fehlberg [2], and is the RK method used in

RK5GL3. Note that an explicit Runge-Kutta method of order

r has global error O (hr) and local error O
(
hr+1

)
[3]. We

use h here as a generic symbol for the stepsize. We denote

the Fehlberg method described here by RK5.

B. Local and global errors

We define the global error in a numerical solution at xi by

∆i � wi − yi, (4)

and the local error at xi by

εi+1 � [yi + hiF (xi, yi)]− yi+1 (5)

In the above, yi denotes the true solution y (xi) . Note the use

of the exact value yi in the bracketed term in (5).

C. Error propagation in a one-step method

We describe a known result that is useful in our later

discussion. We have

w1 = y0 + h0F (x0, y0) (6)

⇒ ∆1 = y0 + h0F (x0, y0)− y1 (7)

= ε1, (8)
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and

w2 = w1 + h1F (x1, w1) (9)

⇒ y2 +∆2 = [y1 +∆1] + h1F (x1, y1 +∆1) (10)

= [y1 +∆1] + h1F (x1, y1)

+h1∆1Fy (x1, ξ1) (11)

⇒ ∆2 = [y1 + h1F (x1, y1)− y2]

+∆1 [1 + h1Fy (x1, ξ1)] (12)

= ε2 + α1ε1. (13)

Furthermore,

∆3 = ε3 + α2ε2 + α2α1ε1 (14)

and

∆4 = ε4 + α3ε3 + α3α2ε2 + α3α2α1ε1 (15)

where

αk = 1 + hkFy (xk, ξk) (16)

ξk ∈ (yk, yk +∆k) . (17)

In general

∆n =
n∑

j=1



(
1

αn

)


n∏

k=j

αk




 εj . (18)

If |hkFy (xk, ξk)| is small then αk ≈ 1, and so

∆n ≈
n∑

j=1

εj (19)

but this is generally not expected to be the case, particularly

if Fy (xk, ξk) is large. Furthermore, if the α’s have magnitude

larger than one, then the term in ε1 could make the most

significant contribution to the global error.

Since εj = O
(
hr+1

)
, the global error ∆n is the accumu-

lation of local errors, as in

∆n =
n∑

j=1

βjh
r+1 =


1
n

n∑

j=1

βj


 (nh)hr = β (b− a)hr

(20)

where βj and β have been implicitly defined, and we have

used nh = b− a (so that, in this expression, h is the average

separation of the nodes xj). Note that ∆n is O (hr) .

D. Gauss-Legendre quadrature

Gauss-Legendre (GL) quadrature on [u, v] with m nodes is

given by [4]

v∫

u

f (x, y) dx = h
m∑

i=1

Cif (xi, yi) +O
(
h2m+1

)
(21)

where the nodes xi are the roots of themth degree Legendre

polynomial on [u, v]. Here, h is the average separation of the

nodes on [u, v], a notation we will adopt from now on, and

a=x0 x1 xm xp

RK GL

. . .

RK GL

xp+1 x2pxp+m. . .

H1 H2

b.   .   .

Fig. 1. RKGL algorithm for the first two subintervals H1 and H2 on
[a, b].

the Ci are appropriate weights. For GL3, the roots of the 3rd

degree Legendre polynomial on [−1, 1] are

x̃1 = −0.77459666924148, x̃2 = 0, (22)

x̃3 = 0.77459666924148 (23)

and are mapped to corresponding nodes xi on [u, v] via

xi =
1

2
[(v − u) x̃i + u+ v] . (24)

Also, the average node separation on [−1, 1] is 1/2, and so h
on [u, v] is given by

h =
1

2

(
v − u

2

)
, (25)

while the weights

C1 =
10

9
, C2 =

16

9
, C3 =

10

9
(26)

are constants on any interval of integration.

E. The RKrGLm algorithm

We briefly describe the general RKrGLm algorithm [1] on

the interval [a, b], with reference to Figure 1.

Subdivide [a, b] into N subintervals Hi. At the RK nodes

we use RKr :

wi+1 = wi + hiF (xi, wi) (27)

At the GL nodes we use m-point GL quadrature:

w2p = wp + h
m∑

i=1

Cif (xi, wi) (28)

Note that p �m+ 1.
The GL component is motivated by

x2p∫

xp

f (x, y) dx = y2p − yp ≈ h
m∑

i=1

Cif (xi, yi) (29)

⇒ y2p ≈ yp + h
m∑

i=1

Cif (xi, yi) . (30)

Of course, in RK5GL3 we have r = 5,m = 3 and p = 4
in the above. The RKrGLm algorithm has been shown to be

consistent, convergent and zero-stable [1].
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F. Local error at the GL nodes

The local error at the GL nodes is defined in a similar way

to that for a one-step method:

x2p∫

xp

f (x, y) dx = yp+m+ 1︸ ︷︷ ︸
2p

− yp (31)

= h
m∑

i=1

Cif (xi, yi) +O
(
h2m+1

)
(32)

⇒ ε2p =


yp + h

p+m∑

i=p+1

Cif (xi, yi)




︸ ︷︷ ︸
exact values of y(x)

− y2p (33)

= O
(
h2m+1

)
. (34)

Recall that x2p = xp+m+1 in the upper limit of the integral.

In RK5GL3, the local error at the GL nodes is O
(
h7
)
.

G. Implementation of RK5GL3

There are a few points regarding the implementation of

RK5GL3 that need to be discussed:

• If we merely sample the solutions at the GL nodes,

treating the computations at the RK nodes as if they

were the stages of an ordinary RK method, then RK5GL3

would be reduced to an inefficient one-step method. This

is not the intention behind the development of RK5GL3;
rather, RK5GL3 represents an attempt to improve the

efficiency of RK5, simply by replacing the computation at

every fourth node by a quadrature formula which does not

require evaluation of any of the stages in the underlying

RK5 method.

• Of course, it is clear from the above that on H1 the

RK nodes are required to be consistent with the nodes

necessary for GL quadrature. If, however, the RK nodes

are located differently (perhaps due to a local error

control mechanism, for example) then it is a simple

matter to construct a Hermite interpolating polynomial of

degree seven (which has an eighth order error) using the

solutions at the nodes {x0, . . . , x3} . Then, assuming x0
maps to −1 and x3 maps to the Legendre polynomial root

x̃3 on [−1, 1], the position of the other nodes {x∗1, x
∗

2}
suitable for GL quadrature may be determined, and the

Hermite polynomial may be used to find approximate

solutions of order six at these nodes, thus facilitating the

GL component of RK5GL3. A similar process is carried

out on the next subinterval H2, and so on.

• If the underlying RK5 method possesses a continuos

extension it would not be necessary to construct the

Hermite polynomial described above. However, there is

no guarantee that a continuous extension of appropriate

order (at least six, the same as the local order at the RK

nodes) will be available, and it is generally true that deter-

mining a continuous extension for an RK method requires

additional stages, which would most likely compromise

the gain in efficiency offered by RK5GL3. Note that the

construction of the Hermite polynomial does not require

any additional evaluations of f (x, y) .

III. ERROR PROPAGATION IN THE RKGL METHOD

In the theory that follows, we assume that the RK nodes

are located as required for GL quadrature, and that the use of

a Hermite polynomial, as mentioned above, is unnecessary.

A. Error propagation

For RK5GL3 we have

∆1 = ε1, ∆2 = ε2 + α1ε1, (35)

∆3 = ε3 + α2ε2 + α2α1ε1 (36)

w4 = y4 +∆4 (37)

= y0 + h
3∑

i=1

Cif (xi, wi) (38)

= y0 + h
3∑

i=1

Cif (xi, yi +∆i) (39)

= y0 + h
3∑

i=1

Cif (xi, yi)

+h
3∑

i=1

Cify (xi, ζi)∆i (40)

= y0 + h
3∑

i=1

Cif (xi, yi) + h
3∑

i=1

γiεi (41)

= y0 + h
3∑

i=1

Cif (xi, yi) +A1,3h (42)

⇒ ∆4 =

[
y0 + h

3∑

i=1

Cif (xi, yi)− y4

]

+A1,3h (43)

= ε4︸︷︷︸
O(7)

+A1,3h︸ ︷︷ ︸
O(7)

(44)

where ζi ∈ (yi, yi +∆i) , and A1,3 has been implicitly

defined. Also,

∆5 = ε5 + α4∆4 (45)

∆6 = ε6 + α5ε5 + α5α4∆4 (46)

∆7 = ε7 + α6ε6 + α6α5ε5 + α6α5α4∆4 (47)
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so that

w8 = y8 +∆8 (48)

= w4 + h
7∑

i=5

Cif (xi, wi) (49)

= y4 +∆4 + h
7∑

i=5

Cif (xi, yi +∆i) (50)

= y4 +∆4

+h
7∑

i=5

[Cif (xi, yi) +Cify (xi, ζi)∆i] (51)

= y4 + h
7∑

i=5

Cif (xi, yi) +A5,7h

+B8∆4h+∆4 (52)

⇒ ∆8 =

[
y4 + h

7∑

i=5

Cif (xi, yi)− y8

]

+A5,7h+B8∆4h+ ε4 +A1,3h︸ ︷︷ ︸
∆4

(53)

= (ε8 + ε4)︸ ︷︷ ︸
O(7)

+ (A5,7h+A1,3h)︸ ︷︷ ︸
O(7)

+B8∆4h︸ ︷︷ ︸
O(8)

.(54)

where A5,7 and B8 are defined below in (58) and (62).

Furthermore,

∆12 = (ε12 + ε8 + ε4)︸ ︷︷ ︸
O(7)

+(A9,11h+A5,7h+A1,3h)︸ ︷︷ ︸
O(7)

+B12∆8h︸ ︷︷ ︸
O(8)

+B8∆4h︸ ︷︷ ︸
O(8)

. (55)

and

∆16 = (ε16 + ε12 + ε8 + ε4)︸ ︷︷ ︸
O(7)

+(A13,15h+A9,11h+A5,7h+A1,3h)︸ ︷︷ ︸
O(7)

+B16∆12h︸ ︷︷ ︸
O(8)

+B12∆8h︸ ︷︷ ︸
O(8)

+B8∆4h︸ ︷︷ ︸
O(8)

. (56)

In general,

∆4N = (ε4N + · · ·+ ε4)︸ ︷︷ ︸
O(7)

+ (A4N−3,4N−1h+ · · ·+A1,3h)︸ ︷︷ ︸
O(7)

+
(
B4N∆4(N−1)h+ · · ·+B8∆4h

)
︸ ︷︷ ︸

O(8)

(57)

In the above, A1,3, A5,7, A9,11, A4N−3,4N−1, B8, B12 and B16
are appropriate coefficients (defined below), and N is the total

number of subintervals into which [a, b] has been subdivided.

We list below some relevant terms in detail.

A4N−3,4N−1 =
4N−1∑

i=4N−3

γiεi. (58)

γ4N−3 = (1 + α4N−3 + α4N−3α4N−2)

·C4N−3fy
(
x4N−3, ζ4N−3

)
. (59)

γ4N−2 = (1 + α4N−2)

·C4N−2fy
(
x4N−2, ζ4N−2

)
. (60)

γ4N−1 = C4N−1fy
(
x4N−1, ζ4N−1

)
. (61)

B8 = C5fy (x5, ζ5)α4 +C6fy (x6, ζ6)α4α5

+C7fy (x7, ζ7)α4α5α6. (62)

B12 = C9fy (x9, ζ9)α8 +C10fy (x10, ζ10)α8α9

+C11fy (x1, ζ1)α8α9α10. (63)

B16 = C13fy (x13, ζ13)α12 +C14fy (x14, ζ14)α12α13

+C15fy (x15, ζ15)α12α13α14. (64)

In general,

B4N = C4N−3fy
(
x4N−3, ζ4N−3

)
α4N−4

+C4N−2fy
(
x4N−2, ζ4N−2

)
α4N−4α4N−3

+C4N−1fy
(
x4N−1, ζ4N−1

)

·α4N−4α4N−3α4N−2. (65)

As for writing the global error in terms of the local errors

consider, for example, ∆12. Using the above expressions, we

have, in terms of the local errors εi,

∆12 =
12∑

i=1

Giεi (66)

where

Gi = γih+ (B12γi +B8γi)h
2

+B12B8γih
3 (i = 1, 2, 3)

G4 = 1 + (B12 +B8)h+B8h
2

Gi = γih+B12γih
2 (i = 5, 6, 7)

G8 = 1 +B12h
Gi = γih (i = 9, 10, 11)
G12 = 1





(67)

The global error at the RK nodes is understood with reference

to section 2.3 and equations (35), (36), (45)−(47).

B. Error accumulation

We have

∆4N = (ε4N + · · ·+ ε4)︸ ︷︷ ︸
O(7)

+ (A4N−3,4N−1h+ · · ·+A1,3h)︸ ︷︷ ︸
O(7)

+
(
B4N∆4(N−1)h+ · · ·+B8∆4h

)
︸ ︷︷ ︸

O(8)

(68)

= NPh7 +NQh8 (69)

=

(
P

4

)
h6 [4Nh] +

(
Q

4

)
h7 [4Nh] (70)

=

[
P (b− a)

4

]
h6 +

[
Q (b− a)

4

]
h7 (71)

= O
(
h6
)

(72)



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:4, 2008

282

where P and Q are appropriate coefficients. This demonstrates

the O
(
h6
)

character of the global error in RK5GL3.

IV. COMMENTS

The mechanism for the O
(
h6
)

global error in RK5GL3

is shown in the first two terms on the rhs of (68). The first

of these is the sum of the GL local errors which, through a

suitable choice of m, is of seventh order. The second term is

a linear combination of the RK local errors, multiplied by a

factor h. Since each RK local error is of sixth order, this term

is of seventh order. The effect of the GL component, then, is

to increase the order of the accumulated RK local errors by

one. We refer to this as a “quenching” effect that occurs at

the GL nodes, and it serves to prevent the accumulation of the

RK local errors. The third term in (68) contains terms of order

eight and higher, as shown, for example, in the expansion of

∆12 via (66) and (67).

V. NUMERICAL EXAMPLE

By way of an example, we solve the test problem

y′ =
y

4

(
1−

y

20

)
(73)

on [0, 5] with y (0) = 1, using RK5GL3 and RK5. This

equation has solution

y (x) =
20

1 + 19e−x/4
(74)

and is one of the test problems used by Hull et al [5].

The global error is shown in Figure 2. In the upper plot

the RK nodes are consistent with the nodes required for GL

quadrature. In the lower plot, the RK nodes are equispaced and

the RK5GL3 employs a Hermite polynomial, as described pre-

viously.The accumulation of error in RK5 is clear, whereas the

error quenching in RK5GL3 is also apparent. The quenching

effect occurs at each of the GL nodes, where there is clearly

a sharp reduction in the magnitude of the error. In between

the GL nodes the error accumulates, as expected of the RK5

method. When the RK nodes are equispaced, the RK error

on the first subinterval H1 is less than that of RK5GL3, but

thereafter the superior order of RK5GL3 becomes apparent.

REFERENCES

[1] J.S.C. Prentice, “The RKGL method for the numerical solution of initial-
value problems”, Journal of Computational and Applied Mathematics,

213, 2 (2008) 477.

[2] E. Hairer, S.P. Norsett, and G. Wanner, Solving ordinary differential

equations I: Nonstiff problems, Berlin: Springer-Verlag, 2000, p177.

[3] J.C. Butcher, Numerical methods for ordinary differential equations,
Chichester: Wiley, 2003, pp151− 155.

[4] D. Kincaid and W. Cheney, Numerical Analysis: Mathematics of Scientific
Computing, 3rd ed., Pacific Grove: Brooks/Cole, 2002, pp492− 498.

[5] T.E. Hull, W.H. Enright, B.M Fellen, and A.E. Sedgwick, “Comparing
numerical methods for ordinary differential equations”, SIAM Journal of

Numerical Analysis, 9, 4 (1972) 603.

0

2

4

6

8

10

RK5GL3

RK5

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RK5GL3 with Hermite polynomial

RK5 (equidistant nodes)

x

g
lo

b
al

 e
rr

o
r 

 (
1

0
-9

 )
g

lo
b
al

 e
rr

o
r 

 (
1

0
-9

 )

Fig. 2. Error curves for RK5GL3 and RK5 for the test problem.
Upper plot has RK nodes consistent with GL quadrature. Lower plot
has equidistant RK nodes, and RK5GL3 uses a Hermite polynomial,
as described in the text.
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