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Abstract—A seizure prediction method is proposed by extracting
global features using phase correlation between adjacent epochs for
detecting relative changes and local features using fluctuation/
deviation within an epoch for determining fine changes of different
EEG signals. A classifier and a regularization technique are applied
for the reduction of false alarms and improvement of the overall
prediction accuracy. The experiments show that the proposed method
outperforms the state-of-the-art methods and provides high prediction
accuracy (i.e., 97.70%) with low false alarm using EEG signals in
different brain locations from a benchmark data set.
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I. INTRODUCTION

Aseizure is a brief episode of symptoms due to abnormal
excessive or synchronous neuronal activity in the brain
caused by structural abnormalities, encephalitis, lack of
oxygen, injury, tumor, and some dysfunctions of the brain.
Epilepsy is a brain disorder composed of spontaneously and
recurrently occurring seizures. A world population greater
than 65 million suffers from epilepsy (i.e., 1% individuals of
the world) [1] and nearly 325 million people worldwide
experience a seizure in their life time [2]. Epilepsy also major
causes of many injuries [3] such as accidents, submersion,
fractures, burns, and even death. This unwanted occasion can
be avoided by correctly and timely predict epileptic seizures
before clinical onset. Distress from epilepsy can be minimize
through  medication in 70% of  cases [4].
Electroencephalogram (EEG) is a widely used device for
epileptic seizure prediction that can measure the voltage
fluctuations of the brain [5]-[7]. A segment of an EEG signal
can be classified into different types such as ictal, preictal,
interictal, and non-seizure signals based on the medical stages
of seizure. Ictal represents the period of seizure, preictal
represents the period prior to seizure onset, interictal
represents the intermediate time period between two seizures;
while non-seizure represents the period without seizure
symptoms.

Seizure prediction methods are developed by extracting
features from preictal/ictal and interictal EEG signals in real
time with better accuracy using the Freiburg data set. Much
research over the years has been devoted to the prediction of
epileptic seizure. The techniques used usually involved the
extraction of various features by analysing preictal/ictal and
interictal EEG signals and predicted epileptic seizure in
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advanced using the features. Existing research involved the
extraction of various features using techniques such as
eigenspectra of space delay correlation and covariance
matrices [8], autoregressive modelling and least-squares
parameter estimator [9], bivariate features [10], spectral power
from raw and bipolar time-differential signals [11], spike rate
[12], and univariate features [13].

Existing seizure prediction methods did not provide high
accuracy and low false alarm for all patients from the Epilepsy
Centre of the University Hospital of Freiburg data set [15]. It
is a challenging task to develop a seizure prediction technique
which is accurate and consistence with low false alarm for all
patients due to the non-abruptness phenomena and
inconsistency of the EEG signals in different brain locations
for different patients. Parvez et al. [16] proposed a seizure
prediction technique by using phase correlation extracted
features between two adjacent epochs to capture relative
changes in a signal. This provides high prediction accuracy
and low false alarm compared to the state-of-the-art methods
as the phase correlation feature is a good estimation on the
transition between different types of EEG signals (e.g.,
interictal and preictal/ictal). However, sometimes it might fail
to identify the transition if the transition is not aligned with the
epoch. Our hypothesis is that if we consider local features
extracted from the signal fluctuation/deviation from the
frequent oscillation within an epoch and combine them with
the global feature, we will get better accuracy and reduce false
alarm significantly. Thus, we extract global and local features
for correctly and timely predict seizures.

The order of the paper description is as follows: the data set,
the detailed proposed technique for feature extraction,
classification, and post-processing are described in Section II;
the detailed experimental results and discussions is explained
in Section III while Section IV concludes the paper.

II. PROPOSED METHOD

The goal of the paper is to exploit an automated way to
predict epileptic seizure with high accuracy. Pre-processing,
features extraction, classification, and regularization of EEG
signals are general procedures for predicting seizure from
EEG signals. Artifacts are removed from original EEG signals
by filtering technique normally require pre-processing step.
However, a curtain range of artifacts is tolerated in the
proposed method avoiding filtering techniques. At first,
various approaches are made to extract various features. Then
different sorts of periods of EEG signals are classified using
these features and regularization is applied on these classified
signals to make final decision. Phase correlation and
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fluctuation/deviation are applied as a feature extraction
procedure, least square support vector machine (LS-SVM) as
a classifier, and windowing regularization as a post-processing
step in the proposed method. This method contributes to the
customization of existing cost function of fluctuation and
deviation techniques applicable in the EEG signal analysis for
the feature extraction of EEG signals. The final decision
making on the type of interictal and preictal/ictal periods is
considered by innovative regularization technique.

A. Data Set

The data set recorded from the Epilepsy Centre of the
University Hospital of Freiburg, Germany [14], [15], which is
publicly available and most cited resources in modern seizure
detection and prediction approaches containing intracranial
EEG (iEEG) recordings of 21 patients suffering from
medically intractable focal epilepsy, is employed in this paper.
Acquiring the data used Neurofile NT digital video EEG
system with 128 channels, 256 Hz sampling rate, and 16 bit
analogue-to-digital converter. Ictal, preictal, postictal, and
interictal are four periods of epileptic EEG signals described
in this data set. Persistence of ictal period may be from a few
seconds to 5 minutes. At least 50 minutes of preictal signals
contains preceding each seizure is included in the ictal-records
(which is tagged as ictal file). 87 seizures from 21 patients are
recorded in the data set which is altogether 24-25 hours of
interictal signals and 2-5 hours of ictal signals with preictal
and postictal signals. So the data set is around 509 hours. Each
seizure is considered to have 30 minutes preictal with ictal
signals and 60 minutes interictal signals in the experiments.
The point to be mentioned here is that six channels in each
patient are used to capture EEG signals. The experiments
exploited EEG signals recorded from different brain locations
and different patients using focal electrodes that are three
channels and another three extra-focal channels are
considered.

B. Features Extraction Procedure

Information provided by phase correlation [16], [17] are
relatively shifting in nature between current signals and
reference signals of two correlated signals via Fourier
Transformation. Thus, phase correlation can determine global
feature (GF). Paul et al. [17] demonstrated that detection of
reliable motion between two images or blocks is possible to
phase correlation. The relative changes between two epochs of
an EEG signal can similarly be captured by the phase
correlation. Estimation of the transition between interictal and
preictal/ictal periods can be done by this way. However, if the
transition is not aligned with the epochs, identification of the
transition may not be adequate. A local feature is also to be
extracted from the signal fluctuation and deviation from the
frequent oscillation within an epoch to avoid this situation. As
illustrated by [18], fluctuation and deviation are able to
identify defects of an image which inspired us to apply
customized fluctuation and deviation [18] that can measure the
fine changes of a specific epoch. Extracting local feature (LF)
require calculation of a cost function comprises with weighted

fluctuation and deviation in temporal direction. The cost
function of fluctuation and deviation (CFD) cannot fully
identify the phase lagging between two epochs alone because
of non-stationary EEG signals. For this reason, this paper uses
both features (i.e., GF and LF) for prediction of seizure onset
with greater prediction accuracy and low false alarms.

In this study, we consider patient-specific approach where
we rearrange an EEG signal of a patient from the data set so
that a signal comprises ictal period, preictal period, and
interictal period. To identify a particular signal type we divide
a signal into 10 seconds epoch. We estimate global relative
change using phase correlation and calculate average energy
concentration ratio (AECR) using neighboring channels for
first feature (detail procedure in [16]). We also use fluctuation
and deviation to extract another feature by measuring the local
fine change of EEG signal from an epoch. A classifier (i.e.,
LS-SVM) and regularization (see the procedure in Section II.
D) are applied to the features to predict the seizure. The
deviation is determined based on the difference between the
signals and the most frequent signal within the sliding epoch
(sliding by half second or 128 samples). The fluctuation is
calculated based on the standard deviation of the shifted
epoch. A cost function is determined based on the weighted
summation of the fluctuation and deviation. At the t-th sliding
epoch the cost function is defined as

C(t):Dz(t)/l6+F2(t) @))]
where deviation is defined as

D(t)= X(1)- Hy )
and fluctuation is defined as

F@0)=o(X(0)-4. 3)

where X(f), Ht, and o are the signals, the most dominant
signal, and standard deviation of the sliding epoch
respectively. The local feature is determined as the sum of
energy of the C(¢) for 20 sliding epochs within an epoch.

Cost function is calculated by shifting 128 samples and the
cost function is quantified 20 values of a 10 seconds epoch.
From the current epoch, the energy of cost functions of the
Sfluctuation and deviation (ECFD) is calculated as the second
feature.

C. Classification

Classification of the preictal/ictal and interictal signals uses
two features, AECR and ECFD. Being one of the best
classifies, SVM [19] is used for classifying non-stationary
signals like EEG signals. The extended version of SVM, LS-
SVM [20] can minimize higher computational burden of the
constrained optimization programming of SVM and LS-SVM
is used in the experiments. The equation of LS-SVM is
defined in as:
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where A(x,x;;) is a kernel function, a, are the Lagrange
multipliers, b is the bias term, x,, is the training input, and y,, is
the training output pairs.

RBF kernel is used in our experiments as this is one of the
most effective kernels for non-stationary EEG signals
classification and this function can be defined as:

2) Q)

A(x,xpp) = exp(fllx -Xm ||2 /20
where A controls the width of RBF kernel function.

The aim of the classifier is to consider machine-learning
approach to classify preictal/ictal and interictal EEG signals.
The automated selection of the parameters is achieved through
optimizing a cross-validation based model selection.
Therefore, tuning the parameters is done by cross-validation
and then they are tested. Finding mapping between training set
and unseen test set is challenging issue. For leaning nonlinear
mapping from the training set features {x}m=1...ny, where nr
is the number of training features into the patient’s state,
preictal/ictal (1) and interictal (0), LS-SVM classifier is used.
The whole trials are divided into M subsets to get unbiased
results where M-1 is used for training and remaining is used
for testing subset. Each seizure of each patient is passed
through this process. The test output mapping of the LS-SVM
validation is designated into two classes.

D. Regularization

Unwanted signals (i.e. artifacts) like artifacts with eye
blinking, and muscle movement are inherently attenuated into
local and global feature extraction technique. So
misclassification of preictal/ictal and interictal EEG signals
(Fig. 1 (a)) can occur and post-processing is required to get
accurate prediction of epileptic seizure on LS-SVM classified
signals. Two-phase u-of-v analysis is performed in the post-
processing to predict an impending seizure by analyzing
preictal/ictal and interictal EEG signals where preictal/ictal
represents ‘1’ and interictal represents ‘0’. The prediction
horizon is labeled as preictal/ictal if there are equal or more
than  number of ‘1’ out of v number of consecutive windows
(note that a five minutes window is used in the experiments),
otherwise it is labeled as interictal. Identification of the
prediction horizon of five minutes window in total prior to a
seizure, in two-phase post-processing, 3-of-5 (i.e., u =3 and v
= 5) and 2-of-6 analysis are performed to. The five minutes
decision is divided into two steps: the first step consists of 50
seconds i.e., five 10 seconds epochs; the second steps consist
of six 50 seconds window. In the first step, if at least three
epochs have classified value as ‘1’ then all five epochs are
considered ‘1°. In the second step, six 50 seconds window to
be considered for the final decision. If at least two 50 seconds
window have ‘1’ results then the entire five minutes window
is regulated as ‘1’ otherwise ‘0’. It is to be noted that to
prevent the impending seizure for administrating drug, the five

minutes window is sufficient. Fig. 1 (b) shows the seizure
prediction result as decision is taken in each five minutes
based on the two-step decision. In each step, different size
windows were investigated; however, the proposed two-step
method is the best regarding the prediction accuracy and false
alarms rate. Fig. 1 demonstrates the classified results from the
LS-SVM and the final decision after regularization. The figure
confirms that regularization is able to wipe out a number of
misclassification.

interictal 1 reictal'l interictal I reictal
e 1 : Qo
=
=
=
@
=
‘@
8
o
360 540 1080
classified each ten seconds
(a)
11 interictal preictal, interictal bre_ ict a_!‘
2 i i |
® | |
: ' |
S I I
g | i
1] 1 1
= [ i
1
n P AT T T T W nmwmﬂ!
1 12 18 30 36
five minutes decision
(b)

Fig. 1 Seizure prediction using LS-SVM and regularization where (a)
represents the classification output and the (b) represents the final
output after regularization using all channels of Patient 17. Note that
interictal represents as interictal stage and preictal represents as
preictal/ictal stage of EEG signals

III. RESULTS AND DISCUSSIONS

Prediction accuracy (PA) and false alarms per patient are
the popular criteria used to evaluate performance of the
techniques for prediction of epileptic seizure. Thus in the
experiments, these are also used. The PA is defined in as:

Q = (T /T ,)*100 (6)

where o is the prediction accuracy, p,is the number of
correctly predicted seizures and p, is the total number of

seizures.
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TABLEI
PATIENTS DETAILS AND PREDICTED SEIZURE USING THE PHASE CORRELATION AND PROPOSED METHOD

Only using GF, Proposed Method i.e.,

P";\?:nt S/A  Seizure Type Electrodes  Brain Location S;(Z)Lile:s ) 110] [16] GF+LF

. PA(%) FA PA(%) FA PA(%) FA PA (%) FA
1 F/15 SP,CP g8 Frontal 4 100 0 100 1 75.0 6 100 5
2 M/38 SP,CP,GTC d Temporal 3 - - - - 67.0 12 100 17
3 M/14 SP,CP 2,8 Frontal 5 100 3 100 1 80.0 4 100 5
4 F/26 SP,CP, GTC d, g s Temporal 5 - - 100 1 100 0 100 0
5 F/16 SP,CP, GTC g8 Frontal 5 100 23 100 21 100 3 100 3
6 F/31 CP, GTC d, g s Temporal/Occipital 3 - - 100 1 100 1 100 1
7 F/42 SP,CP, GTC d Temporal 3 - - 100 1 100 0 100 0
8 F/32 SP,CP 2,8 Frontal 2 - - - - 0.00 0 50.0 0
9 M/44 CP, GTC 2,8 Temporal /Occipital 5 100 3 100 4 100 3 100 3
10 M/47 SP,CP, GTC d Temporal 5 - - 100 3 100 10 100 12
11 F/10 SP,CP, GTC g8 Parietal 4 100 9 75 2 75.0 5 100 4
12 F/42 SP,CP, GTC d, g s Temporal 4 - - 100 1 100 1 100 1
13 F/22 SP,CP, GTC d,s Temporal/Occipital 2 - - - - 50.0 3 50.0 3
14 F4l  CP,GTC d,s Tiﬁgfrlg ' 4 - - 75 12 100 4 100 3
15 M/31 SP,CP, GTC d, s Temporal 4 - - 100 4 50.0 11 100 5
16 F/50 SP,CP, GTC d,s Temporal 5 - - 90 11 100 17 100 9
17 M/28 SP,CP, GTC s Temporal 5 100 10 100 1 100 5 100 0
18 F/25 SP,CP s Frontal 5 100 17 100 1 40.0 7 100 7
19 F/28 SP,CP, GTC S Frontal 4 100 25 75 24 75.0 20 100 5
20 M/33  SP,CP,GTC  d,gs Temporal 5 100 0 80 16 100 11 100 13

/Parietal

21 M/13 SP,CP 2,8 Temporal 5 - - 100 4 80.0 10 100 10

S/A=sex/age, SP=simple partial, CP=complex partial, GTC=generalized tonic-conic, d=depth electrode, g=grid electrode, s=strip electrode, PA= prediction
accuracy, FA= false alarm, - indicated that experiment is not available for this patient.

We calculate PA and false alarms (FA) per patients to
justify the performance of the proposed method against the
existing state-of-the-art methods where PA is determined as
the ratio in percentage between the numbers of correctly
predicted seizures among total seizure. Comparisons of the
performance of the proposed method with a number of
relevant and recent methods [8]-[12], [16] are made. Patients’
detailed information from the benchmark data set [14] and the
comparison of prediction results of the proposed method with
two state-of-the-art methods [9], [10] are given in Table I.
Some entries in the table for the state-of-the-art methods are
not available as the method in [9] used only 9 patients and the
method in [10] used only 18 patients whereas the proposed
method uses all available patients of the data set. Moreover, it
is also tested using phase correlation [16] feature only and
obtained 83.9% prediction accuracy with 6.33 false alarms per
patients (Table I). The proposed method successfully provides
100% accuracy for 19 patients and the methods in [9], [10]
provide 100% accuracy for 9 and 13 patients respectively.
Moreover, the proposed method provides less false alarms per
patient than the state-of-the-art methods. As Table I shows
that the proposed method can predict 85 out of 87 seizures
correctly with 106 false alarms. Thus, 97.7% average PA with
5.04 false alarms per patient is obtained by the proposed
method.

Table II shows that the performance of the proposed
method in terms of PA and false alarms per patient is
comparatively better regarding the six existing relevant
methods, by combining PA (i.e., 97.7%) and false alarms per

patient (i.e., 5.04). A proper functioning (high sensitivity and
low false alarms) of seizure prediction procedure is important
to clinically prevent the seizure. Experiments prove the fact
that the proposed method achieves low false alarms with high
sensitivity.

TABLEII
COMPARISON RESULTS WITH PROPOSED METHOD AND EXISTING
METHODS
Methods Afcrs:i;cctym(lﬂl/o) 52':51 P:t(;glts
[8] 85.0 0.80 19
[9] 100 10.00 9
[10] 71.0 0.00 15
[11] 94.4 6.44 18
[12] 75.8 2.20 21
[16] 83.9 6.33 21
Proposed Method 97.7 5.09 21

IV. CONCLUSION

This paper proposes an effective prediction method based
on signal transitions phenomena for epileptic seizure
prediction that exploits global and local features along with a
regularization technique. The global feature between two
consecutive epochs of an EEG signal is extracted by the phase
correlation and local feature within an epoch is extracted by a
weighted cost function comprising fluctuation and deviation.
Interictal, preictal, and ictal EEG signals are classified using
the popular classifier, LS-SVM. A two-step post-processing
regularization technique is then applied to purify the classified
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output to get ultimate output. The high prediction accuracy
(97.7%) and low false alarms per patient (i.e., 5.04)
considering all patients from a challenging benchmark data set
without any explicit artifacts removal technique provided by
the experimental results make it obvious that the proposed
prediction method outperforms six existing relevant state-of-
the-art methods.
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