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Abstract—We study the spatial design of experiment and we want 
to select a most informative subset, having prespecified size, from a 
set of correlated random variables. The problem arises in many 
applied domains, such as meteorology, environmental statistics, and 
statistical geology. In these applications, observations can be 
collected at different locations and possibly at different times. In 
spatial design, when the design region and the set of interest are 
discrete then the covariance matrix completely describe any objective 
function and our goal is to choose a feasible design that minimizes 
the resulting uncertainty. The problem is recast as that of maximizing 
the determinant of the covariance matrix of the chosen subset. This 
problem is NP-hard. For using these designs in computer 
experiments, in many cases, the design space is very large and it's not 
possible to calculate the exact optimal solution.   

Heuristic optimization methods can discover efficient experiment 
designs in situations where traditional designs cannot be applied, 
exchange methods are ineffective and exact solution not possible. We 
developed a GA algorithm to take advantage of the exploratory 
power of this algorithm. The successful application of this method is 
demonstrated in large design space. 

We consider a real case of design of experiment. In our problem, 
design space is very large and for solving the problem, we used 
proposed GA algorithm. 

Keywords— Spatial design of Experiments, Maximum Entropy 
Sampling, Computer experiments, Genetic Algorithm. 

I. INTRODUCTION 

A. Design of Experiments 
XPERIMENT design is an activity that seeks to select 
experiments that are optimal in some sense. Scientist and 
engineers perform experiments to increase their 

understanding of a particular phenomenon. Design of 
experiments (DOE) has been of both great theoretical and 
practical interest. Generally, design generation methods can be 
divided in two families (1) model related designs and (2) 
model free designs. Obvious example for model related 
designs is construction of approximate model of a system. 
Construction of an approximate model (Meta-modeling) and 
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calibration of deterministic computer model are examples of 
model free designs. In this article we focus on model free 
design methods for design generation. Because of considering 
computer models instead of physical phenomena, we use the 
term "computer experiment" for model free designs.

B. Spatial design of experiments 
Sampling theory and optimum experimental design theory

are two large branches in theoretical statistics that have 
developed separately, though with considerable theoretical 
overlap, both of them providing methods for efficient site 
positioning. Whereas sampling theory is a basically model-
free methodology essentially oriented towards restoring 
unobserved data, in optimum design theory the aim is to 
estimate the structure of the data generating process, e.g. the 
parameters of an assumed (regression) model or functions of
these parameters (Müller [1]). In this paper emphasis is on the 
first branch.

Spatial statistics is the collection of statistical methods in 
which spatial locations play an explicit role in the analysis of 
data. One of the characteristic features of geostatistical 
problems is: data consist of responses iY associated with 
locations xi which may be non-stochastic, specified by the 
sampling design, or stochastic but selected independently of 
the process )(xY in principle,Y  could be determined from 
any location x  within a continuous or discrete spatial 
region A . Spatial data occur in many fields such as 
agriculture, geology, environmental sciences, and economics. 
They have been recorded and analyzed probably as early as 
men started to make maps, however the origins of their 
statistical analysis as we understand it today must probably be 
attributed to the work of Matheron [2]. Spatial data has the 
distinctive characteristic that, attached to every observation, 
we have a set of coordinates that identifies the (geographical) 
position of a respective data collection site. The set of 
locations of those data collection sites influences decisively 
the quality of the results of the statistical analysis. Usually in 
choosing the design the aim is to ensure continuous 
monitoring of a data generating process or to allow for point 
prediction of present or future states of nature. Cox et al. [3] 
have listed current and future issues in this research area. 
Spatial sampling is equivalent to take observations in a 
predefined area. Observations may be obtained by means of 
measurements in the field, or on samples taken to laboratories. 
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Spatial studies focusing on environmental, ecological and 
agricultural phenomena require a proper and carefully 
designed strategy for collecting data. Data can be difficult or 
expensive to collect, and both the sampling design and the 
quality of the data may affect the final qualities of an analysis 
(Cochran [4]; Müller [1]). 

The main reason to use statistical sampling schemes is that 
such sampling guarantees scientific objectivity; if the same 
area is resampled, perhaps in the future, the results will be 
comparable in a well-defined sense (Stuart [5]). 

The basis of statistical sampling is the interpretation of 
differences and similarities between two or more 
measurements (Wollum [6]; Wendroth et al. [7]). Drawing 
inference from a single measurement is highly risky. There is 
little reason to assume that another observation in the same 
area will resemble in any way the first observation. Drawing 
inference from two observations in the same area will exhibit 
some of the variation to be expected; the range of the two 
collected observations falls within the range of all possible 
observations. Taking a third, a fourth observation, etc., gives 
increasingly more information of the area under study, like an 
expression for the mean , the standard deviation and the 
standard error of the mean e. It is decided by means of the 
objective of the study and the amount of prior information 
how many observations one should take. Stein and Ettema [8] 
focused on how to determine in advance the number of 
observations to be taken, as well as their observation locations. 
Generally, both depend on the actual purpose with which the 
sampling is carried out in their spatial context. 

Several considerations can be made to choose the optimal 
design. In practice, this usually depends upon the amount of 
prior information, like available data, boundaries on the area 
and priority setting by the researcher. 

The focus of this paper is primarily on the statistical aspects 
associated with selecting an appropriate spatial sample. 
As with most large-scale sample design problems, the central 
challenge is how to allocate sampling resources across space 
(and time) to maximize the information available, which can 
then be used to make reliable and credible inferences or 
predictions about the response(s) of interest. Of course, as 
with any large-scale monitoring program, it is essential that 
the sampling or statistical design and the response (or 
operational) design are considered simultaneously to meet 
stringent resource constraints. 

In this paper our emphasis is on the sampling or statistical 
design, and in particular on the spatial aspects of that design, 
which we call the spatial design. 

There are four popular schools of thought for choosing the 
spatial design that three of them are statistically-based 
philosophies [9]: 
1. Geometric approaches are typically based on heuristic 
arguments and include regular lattices, triangular networks, or 
space-filling designs. These approaches are typically used for 
exploratory purposes e.g. Muller [10]. 
2. Probability-based approaches select sites via a probability 
sample and use survey sample methods to make inferences 
about the population of interest or some characteristic of it. 
3. Optimum experimental design or Model-based approaches 
base the inference about the target population on an explicit 
specification of the relationship between the selected sites and 

the population in terms of a statistical model (aims at 
parameter estimation, based upon information matrix). Model-
based design can also include implicit model selection 
methods such as targeted sampling, representative sites and 
convenience sampling, and will not be discussed further in this 
paper. 
And another one is based upon probabilistic structure: 
4. Information theoretic approach (usually an entropy 
criterion). 

There is considerable discussion of the contrasts between 
model-based and design-based inference in the literature (e.g. 
[11]; [12]). Brus & De Gruitjer [13, 14] and De Gruitjer & Ter 
Braak [15] focus on the differences in spatial inference. 

As a compromise between these two broad strategies, 
Cressie et al [16] discuss design for data collection in 
ecological studies from a statistical modeling perspective. 
They show how probability-based sampling designs can be 
incorporated into statistical models, resulting in what is termed 
model-assisted design based inferences. The design necessary 
for making reliable spatial predictions in a region may be quite 
different to the design required to report on a distributional 
quantity such as the mean for a region. It is essential that there 
is clarity of purpose if we want to make informed decisions 
about the spatial design. 

Geometric approaches consider how well a set of design 
points covers the domain. There is no dependence on the 
spatial covariance or the stochastic model. The design 
criterion is based on geometry and the distance between both 
current and potential sample locations. Royle & Nychka [17] 
and Nychka & Salzman [18] describe space-filling designs. 

Probability-based designs assume a fixed underlying 
process and use probability sampling to select the monitoring 
sites. This contrasts with model-based designs, where the 
stochastic element is embedded in the model process. The use 
of probability sampling is critical to design-based inference. A 
probability sampling design for an explicitly-defined resource 
population is a means to certify that the data collected are free 
from any selection bias, conscious or not. A probability 
sampling design has three distinguishing features [9]: 
• The population being sampled is explicitly described; 
• Every element in the population has the opportunity to be 
sampled with known probability; and 
• The selection is carried out by a process that includes an 
explicit random element. 

These features provide mathematical foundations for 
statistical inference. Randomization is particularly important 
as it avoids bias and ensures the sample is representative. 

Consider a problem of finding optimal sampling designs for 
dependent spatial data. Random selection of units can be 
extremely inefficient, since it doesn’t take into consideration 
spatial nature of the locations which can be strongly 
correlated. Systematic selection is inflexible to irregular 
features of the space, such as stratification, inhomogeneous 
variances and anisotropy. In principle, we would like to model 
the process by a spatial random field, incorporate prior 
knowledge and select the best subset of points of desired 
cardinality to best represent the field in question. The 
motivation is a need to interpolate the observed behavior of a 
process at unobserved locations, as well as to design a network 
of optimal observation locations which allows accurate 
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representation of the process, Such goals are especially 
important in geophysics, meteorology and environmental 
sciences, since it is usually costly, unfeasible or impossible to 
sample the entire area. 

Selecting the best subset translates to optimizing the 
criterion function, the cost of selecting that subset. The choice 
of cost function largely depends on the objectives. One of the 
common choices is maximum entropy sampling. 

Selecting the best subset can be computationally intensive, 
since there is  possible candidates, where N is the number of 
all possible sampling locations and S is the cardinality of the 
desired subset. Alternative strategies search for the solution 
close to the optimal. One of the most common strategies is 
sequential or forward selection, where we look for the next 
best point to be included until we get the set of the desired 
cardinality [2]. Configurations are nested, which is generally a 
false assumption, so the solution is only approximate. Local 
searches try to surpass this problem by searching for a better 
solution in the neighbourhood. The result is not necessarily 
globally optimal. 

The MES principle allows us to find optimal design 
of experiments. This result is particularly valuable when the 
experimenter is asked to design experiments based on a small 
number of observations. 

Spatial dependence is playing a crucial role for constructing 
spatial design. Of particular significance is the Gaussian case, 
for which, without considering the effect of the deterministic 
trend defined by the mean, the stochastic spatial dependence is 
determined by the covariance structure, which can be derived 
from a specific model or represented by an empirical function. 
This problem can be formulated differently depending upon 
the situation and, of course, on the purpose. The design 
problem is to find a set of sampling locations (optimum under 
some specific criterion) either observing x  or some related 
variable (random field)Y , with or without assuming any 
restrictions, and with or without considering any prior sample 
or model information. Different approaches have been 
introduced in the literature (see, for example, De Gruijter and 
Ter Braak [19]). Cressie [20] summarizes the main aspects of 
the general geostatistical approach. A more random-field 
focused formulation can be found in Christakos [21]. Using an 
information theory approach, Caselton and Hussian [22] 
propose the choice of a network which maximizes the entropy 
of the random variables at gauged sites. Along the same lines, 
Caselton and Zidek [23] consider the problem in a Bayesian 
framework, formulating it as a decision problem. Their 
optimal choice maximizes the information in the random 
variables at gauged sites on the random variables at ungauged 
sites. Caselton et al. [24] assume that the random vector 
depends on a parameter with a prior distribution and their 
purpose is also to reduce uncertainty about this parameter. 
Thus, they select stations to be observed that minimize the 
residual uncertainty. In the Gaussian case, Ko et al. [25] 
provide an upper bound for the entropy and develop an exact 
algorithm based on this bound for solving the design problem. 

C. Computer Experiments 
Computer modeling is having a profound effect on 

scientific research. Many processes are so complex that 
physical experimentation is too time consuming or too 
expensive; or, as in the case of weather modeling, physical 
experiments may simply be impossible. As a result, 
experimenters have increasingly turned to mathematical 
models to simulate these complex systems. Advances in 
computational power have allowed both greater complexity 
and more extensive use of such models. Virtually every area 
of science and technology is affected. Computer models (or 
codes) often have high dimensional inputs, which can be 
scalars or functions. The output may also be multivariate. In 
particular, it is common for the output to be a time-dependent 
function from which a number of summary responses are 
extracted. In the design of complex systems, computer 
experiments are frequently the only practical approach to 
obtaining a solution. Typically, a simulation model of system 
performance is constructed based on knowledge of how the 
system operates. If a performance measure is not 
straightforward to calculate, such as one that involves an 
integral, then sampling via computer experiments may be 
employed to estimate the measure. If the simulation model is 
computationally expensive, then the optimization may instead 
rely on a metamodel, i.e., a mathematical model surrogate of 
system performance, to approximate the relationship between 
system performance and the design parameters. In 
metamodeling, there are two basic tasks that must be 
conducted: (i) select a set of sample points in the design 
parameter space (i.e., an experimental design); and (ii) fit 
statistical model(s) to the sample points.  Our focus in this 
article is on the first task. Methods for the first task may be 
used to conduct sampling in general. 

Making a number of runs at various input configurations is 
what we call a computer experiment. The design problem is 
the choice of inputs for efficient analysis of the data. The 
computer models we address in this article are deterministic; 
replicate observations from running the code with the same 
inputs will be identical. It is this lack of random error that 
makes computer experiments different from physical 
experiments, calling for distinct techniques. When the 
simulation of the system is stochastic, then we may consider 
performance measures that involve expected values (means) 
and/or variances. Repeated runs at the same settings may be 
used to mitigate the effects of random noise in experimental 
outcomes. 
Computer experimenter, like the physical experimenter, can 
have many purposes in mind. We see three primary objectives: 

Predict the response at untried inputs. 
Optimize a functional of the response. 
Tune the computer code to physical data. 

These objectives prompt basic statistical questions: 
The design problem: At which input "sites" S =
{ 1S ... NS } should data y ( 1S )... y ( NS ) be 
collected? 
The analysis problem: How should the data is used to 
meet the objective? 

In each of computer simulation, the user must specify the 
values of some governing variables. The deterministic 
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computer experiments differ substantially from the physical 
experiments performed by agricultural and biological 
scientists of the early 20th century. Their experiments had 
substantial random error due to variability in the experimental 
units. Relatively simple models were often successful. 

Apparently, McKay, Conover and Beckman [33] were the 
first to explicitly consider experimental design for 
deterministic computer codes. They introduced Latin 
hypercube sampling, an extension of stratified sampling which 
ensures that each of the input variables has all portions of its 
range represented. Latin hypercube are computationally cheap 
to generate and can cope with many input variables. Iman and 
Helton [34] compared Latin hypercube sampling with Monte 
Carlo sampling of a response surface replacement for the 
computer model. Despite some similarities to physical 
experiments, then, the lack of random (or replication) error 
leads to important distinctions. Lest the reader wonder 
whether statistics has any role here, we assert that:  

The selection of inputs at which to run a computer 
code is still an experimental design problem. 
Statistical principles and attitudes to data analysis are 
helpful however the data are generated. 
There is uncertainty associated with predictions from 
fitted models, and the quantification of uncertainty is 
a statistical problem. 
Modeling a computer code as if it were a realization 
of a stochastic process, the approach taken below, 
gives a basis for the quantification of uncertainty and 
a statistical framework for design and analysis. 

Selecting an experimental design is a key issue in building 
an efficient and informative model. The design of 
deterministic computer experiments has been partly addressed 
in the literature. For example, Sacks and Ylvisaker [26, 27], 
Welch [28] and references mentioned therein have considered 
nonparametric systematic departures from regression models. 
For the most part, however, the designs used for fitting 
predictors have been those developed for physical 
experiments. Such designs typically have appealing features of 
symmetry and are often optimal in one or more senses in 
settings f which include random noise. 

II. DEFINITION

A. Problem Definition 
We consider experimental situations in which we wish to 

make statistical inferences regarding a set of random variables 
from observations of a subset of these variables. In practice, 
the variables may be dispersed over space and/or time. For 
example, the random variables may correspond to potential 
observations of meteorological or environmental monitoring 
stations. Other examples occur in statistical geology where the 
observations may be collected at different points in space. 
Maintaining and operating all possible observation points or 
stations is costly, and one may want to select only a subset of 
them. In such circumstances, it may also be required, for a 
variety of other scientific, historical, or political reasons, that 
certain specified points be included in the resulting subset. We 
study the problem of selecting a "best" such subset with 

specified size. Formally, we are given a set N of n points, 
called the design space, and a design size s, such that s  n. 
Our goal is to choose a set S of s points satisfying NS ,
called a feasible design, such that observations taken at these 
points will be as valuable as possible, and our goal is to 
choose a feasible design that minimizes the resulting 
uncertainty. To measure this uncertainty, we associate with the 
design space N a symmetric positive definite n x n matrix A, 
for example, a covariance matrix. Then the entropy associated 
with any s-element subset S of N is the logarithm of the 
determinant of the s × s principal sub matrix A[S] with row 
and column indices in S. A Ds-optimal design is a feasible 
design that has maximum entropy. As the logarithm is an 
increasing function, it is an equivalent problem to maximize 
det (A[S]) among the set of feasible designs. 

Among the numerous applications of Ds-optimal designs 
(see, e.g., Mitchell [29], the papers collected in Dodge, 
Fedorov and Wynn [30], and the references therein), the 
optimal design of spatial sampling networks has received 
considerable recent attention (e.g., Shewry and Wynn [31], 
Fedorov and Hackl [46], the references therein, and those 
below). 

(Ko, C.-W et al. [25]) show that our problem is NP-hard, 
implying that it is unlikely that an efficient algorithm can be 
found to optimally solve all instances of our problem. The 
methods used by statisticians for finding Ds-optimal designs 
consist of complete enumeration and heuristics, based mostly 
on exchanges. The best known of these is probably the 
DETMAX method of Mitchell [29]; also see the above 
references for related methods. A greedy constructive 
algorithm is sometimes used to construct an initial solution 
(e.g., Guttorp et al. [32]). Ko, C.-W et al. [25] also introduce a 
robust methods for producing truly optimal solutions for 
instances of moderate size. 

Complete enumeration may be used when n and s are not 
too large. 

B. Definition and Notation 
We are given a set N of n points, Let N = (1, 2... n), where n 

is a positive integer. Throughout, A denotes a real symmetric 
positive definite matrix with rows and columns indexed by N. 

Hence   jiij AA   for all Nji, , and 0Axxt  for all 
nRx  . For an s-element subset S of N (1  S  n), Let A[S] 

denote the principal sub matrix of A having rows and columns 
indexed by Y. Similarly, we write SSA ,  to denote the sub 
matrix of A having rows indexed by 1S , and columns indexed 
by 2S . We note that A[S, S] = A[S], and the symmetry of A 

implies that the transpose of A [ 21, SS ] is A [ 12 , SS ].
Throughout, we omit the braces around the element of single-
element sets. Hence, A [i, j] denotes ijA . We write det (A[S]) 
to denote the determinant of A[S]. The properties of A imply 
that det (A[S]) is always nonnegative. Our optimization 
problem P (max, ||) is to determine v (A, s) = max det (A[S]), 

NS .
Any s-element subset S of N satisfying NS  is called a 
feasible solution. 
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III. CASE STUDY
The considered problem deals with one of oil tanks in south 

of the country and the purpose is to find some points of the oil 
tank from which have the maximum amount of output. 

There is a simulator for this tank and the response of 
running in a special point of tank shows the amount of output 
oil in that point. This simulator is deterministic. Due to long 
time of consuming the simulation, the research group wishes 
to replace simulator by a surrogate model. To construct the 
model and to achieve this goal, one of the initial steps is to 
find the points of experimental design. In other hand, we seek 
for some points at which simulator can be run and achieved 
results can be used to construct approximate model (it is noted 
that this problem is in the field of computer experiments).in 
this paper, we focus on constructing proper experimental 
design for tank problem, and cases include the way of 
constructing surrogate model and its optimization are not 
surveyed here. The specifications of tank are as big as a field 
about 45 length and 37 width in a two dimension coordinate in 
which each coordinate (x, y) indicates one point of tank and 
each point of tank includes 95 blocks. In fact, the tank can be 
considered as a cube having 45×37×95 blocks (in real 
coordinate, each block has a dimension includes 200m length, 
200m width and 1m height).By receiving the point of view of 
relevant professionals and making concise surveys,, effective 
factors on outputs oil were specified in every block of tank, 
included porosity and saturation of water. 

As it mentioned, the final aim is fitting the best model and 
optimizing it to find the points having the maximum amount 
of output oil (Qacc); therefore it is important that the fitting 
model properly fits points with high Qacc (with no regard to 
how points with low Qacc are fitted). Thus, points of 
experimental design must be nominated among those points 
which have high Qacc. For tank an indicator is defined and 
called HIP that indicates the value of Hydrocarbon in each 
block of tank. Specification of this indicator implies that if 
Qacc is high in a point of tank, value of HIP will be high too. 
By using this indicator a noticeable survey on Qacc of every 
block will be possible. 
HIP is defined as: 

)1( OWB PSVHIP                                              (1) 

In above equation, BV  is equal to the considered volume of 
every block and due to same volume of all blocks, we give 

BV =1. Also OP  is porosity and WS  is saturation of water that 
the value of them changes between (0%, 100%). 

According to former remarks, each point of tank is a 
statistical society including 95 blocks and the value of Qacc 
correlate together in different points of tank. Thus for 
construction of design of experiment, the correlation between 
points must be considered together. According to previous 
section, to do this, we need matrix of covariance between 
points of tank. By using of existing data of every block, we 
computed value of HIP for every block and then formed 
matrix of covariance for points of tank. As it mentioned, 
considered tank (Design space) includes 45×37 points. Our 
goal is to choose a set of s=25 points from the tank (the value 
of s=25 is selected according to several considerations), such 
observations taken at these points will be as valuable as 

possible, and our goal is to choose a feasible design that 
minimizes the uncertainty of results. To measure this 
uncertainty, we associate with the design space of 1665, a 
symmetric positive definite 1665 × 1665 matrix A, a matrix of 
covariance. Then the entropy associated with any n-element 
subset S of N is the logarithm of the determinant of the 

SS principal sub matrix A [S] with row and column indices 
in S. As the logarithm is an increasing function, maximizing 
entropy design is equivalent to maximizing det ( ]25[SA )
among the set of feasible designs. Thus our design of 
experiment is a spatial design and uses the Maximum Entropy 
Sampling (MES) for construction of design. 

The maximum-entropy sampling problem is NP-Hard and 
exact algorithms are applied to compute a maximum-entropy 
design by using the “branch and bound” framework with 
upper bounds calculated by a variety of methods (Ko, C.-W et 
al. [25], Anstreicher et al. [35, 36], Lee [37–39], and Hoffman 
et al. [40]). Also Lee and Williams [41] introduced a new 
upper bound as the solution of a linear integer programming. 
Their bound depends on a partition of the underlying set of 
random variables. Also Anstreicher and Lee introduced a new 
“masked spectral bound” for the problem.However our case 
contains a very big design space (N=1665) and it is impossible 
to find an optimal solution for large scale problems. Thus for 
solving the problem, we developed a genetic algorithm that it 
will be surveyed in next section. 

IV. ALGORITHMIC PROCESS

A. Description
A genetic algorithm (GA) is an evolutionary search strategy 

based on simplified rules of biological population genetics and 
theories of evolution. 

– A GA maintains a population of candidate solutions using a 
sampling procedure to select the solutions that seem to 
work well for the problem (that is, optimizing an objective 
function). 

– After this selection process, the most fit candidate solutions 
are combined or altered by “reproduction” operators to 
produce new solutions for the next generation. 

– The process continues, with each generation evolving more 
fit solutions until an acceptable solution has evolved. 
(Introduction to GAs: Michalewicz and Zbigniew [49] and 
Haupt and Haupt [50]). 

Terminology: 

• A chromosome represents a potential solution to the 
problem of interest that will be represented by a string of 
encoded genes. 

– Genes can be either binary encoded (0 or 1) or real-number 
encoded. 
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– Davis [44] found that GAs using real number representations 
outperformed GAs with binary representations in 
numerical optimization problems. This is also the opinion 
of Haupt and Haupt [43]. 

– Because real number representation (Goldberg [45], Davis 
[44], Michalewicz [42]) works effectively on mathematical 
optimization problems and allows for the use of numerical 
reproduction operators, it will be used in this research. 

• The objective function F measures a chromosome’s fitness
as a solution and is the function we wish to optimize. F
takes a chromosome as input and outputs a fitness value. 

– GAs are attractive because they are relatively easy to 
implement and, mathematically, they do not require a 
differentiable objective function thereby reducing the 
chance of reporting local optima. 

In computer experiment area, because of using softwares for 
solving questions, we can design the experiment with very 
large design space and there is an ability to consider the 
questions with a high volume.Because of high volume of 
experiment points in such questions and the inefficiency for 
solving these questions with accurate methods, the need for 
innovative methods with a tolerable speed and capability in 
giving a result to the near optimum is affirmed. We offer an 
“Adaptive Genetic algorithm” for solving such questions.In 
our problem the total number of points is N (The design space 
consists of N points) and matrix A is an n×n matrix which 
indicates the covariance between these points. The purpose is 
to find n points out of N existing points that the n×n sub 
matrix, resultant these n points, has the maximum determinant 
out of all n×n possible sub matrixes.  

B. The structure of algorithm 
The structure of our genetic algorithm is represented by Fig. 1. 

C. Initial population 
A chromosome represents an experimental design that number 
of genes for a chromosome is equal to n (number of points for 
experiment) and each gene represent a point that experiment 
can be do in that point and value of each gene can be choose 
in range of (1,N). (A gene represents a point of design space). 
Therefore each chromosome is a 1×n matrix. 
Generally, evolutionary algorithms generate the initial 
population at random. This initial population helps the 
algorithm to be representative from any area of search space. 
In this paper we generate pop_size chromosome using the 
Uniform random number. 

D. Chromosomes evaluation 
To determine the objective function for chromosomes in each 
generation, after constructing the covariance matrix for each 
chromosome, we calculate the determinant of this matrix as 
objective function. This covariance matrix is a sub matrix of 
matrix A and represents covariance between pints of each 
chromosomes (dimension of this matrix is n×n that n is length 
of chromosome or number of points of experiment). For 

determining the fitness of chromosomes in each generation, 
we used the proportional function. 

Choosing Pop size random results
as a primary population

Are the two selected
results in tabu list?

Using the crossover operator on two
selected results for creating a new
result and transfer that to the next
generation, if it is better.

Choosing the best results of the
generation and transfer them to
the next generation(copy)

Using the mutation operator on
selected results

Is the number of the
done crossed, equal to
determined number?

Choosing the random results from
the population

Using the mutation operator on
selected results and conducting that
to the next generation, if it is better.

Dose the finish criterion
met?

Reporting

Choosing 2 results of the population
using the tournament mechanism

NO

Yes

Yes

Yes

NO

NO

Fig. 1 Structure of the algorithmic process 

E. Sorting 
After being evaluated, chromosomes are sorted based on their 
fitness value, from highest fitness to lowest. 

F. Elitism
Copy_size chromosomes with highest fitness are directly 
selected and are copied to the next generation. 

G. Selection 
Selection operator determines parents for construction of 

next generation. It’s obvious that those chromosomes that 
having high fitness, have high chance for selection. In the 
proposed algorithm, selection is based on the tournament 
selection. The first step is a uniform random number less than 
one. The tournament selection chooses each parent by 
choosing n players at random and then choosing the best 
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individual out of that set to be a parent. The tournament size 
(or subgroup, n) must be at least 2. This size influences the 
selective pressure, i.e. more individuals in the subgroups 
increase the selection pressure on the better individuals. 

H. Crossover or Recombination
In the research carried out on the traveling salesman 

problem (TSP), several crossover operators have been 
proposed for a permutation representation such as partial-
mapped crossover (PMX), order crossover (OX), position 
based crossover (PBX), and order-based crossover (OBX). 
These operators can be viewed as an extension of two-point or 
multi-point crossovers of binary strings to the permutation 
representation. Generally, two-point crossovers yielded 
infeasible offspring in sense of two or more nodes may be 
duplicated. The repairing procedure is usually embedded in 
these operators in order to fix this problem. In this paper, we 
benefit from the well-known TSP crossovers with 
modifications to adapt them to our problem. 
At each generation (Cross_rate × pop_size)/2 pairs parents are 
selected according to the selection operator. 

For each parent two cross-points are selected randomly and 
the section between them is exchanged between the two 
parents. After this stage, if a chromosome contain duplicated 
number, as described, for the reason that we use a 
deterministic simulator and duplicate experiment in one point 
have same result, we use mutation operator in order to fix this 
problem. For do this one of the genes that contains duplicated 
number is selected and mutated. Fig 2 and Fig 3 depicts this. 

Fig. 2  Crossover when duplicated number not produced. 

Fig. 3 Crossover when duplicated number produced. 

. Mutation 
After crossover, (Mutation_rate × pop_size) parents are 

mutated whit uniform mutation operator. One of the most 
popular operators for mutation is uniform mutation 
(Mühlenbein et al [020]). This mutating function operate in 
two stages: at first the algorithm determine position of 

mutation and then replace value of this position whit another 
value at random manner.  
Keep in mind that the mutated chromosome should not have 
duplicate number. 

J. Reporting 
Finally, if the termination condition is satisfied, which is to 

repeat the algorithm for max_generation number of times, 
chromosome with highest fitness determined, and reported as 
the solutions of the problem. 

V. EXPERIMENTS AND COMPUTATIONAL RESULTS 

This section presents experimental results. In order to test 
the performance of the proposed genetic algorithm (GA), we 
have solved some problems in small design space with the 
exact method and then solved the same questions with the 
suggested algorithm. Then we consider some problem whit 
large design space that we can't solve them in exact manner. 

A. Genetic algorithm implementation 
The proposed genetic algorithm is programmed in the 

Matlab 7.0.4 and executed on a Pentium 4 2.8 MHz pc. We 
test the performance of our proposed algorithm with 
producing various values for N and n. In all test problems, the 
matrix that we used as covariance between points is a sub 
matrix of A (the described matrix in previous section that 
contains covariance between all of the points of design space). 

B. Computational results 
The proposed algorithm is implemented by the Matlab. The 

associated results are obtained by running the codes on test 
problems. Table 1 reports the results obtained by the proposed 
MA and the exact method (complete enumeration) on the set 
of instances. For each problem, we give the problem number, 
design space (N), number of desired pints for experimental 
design (n). For each test problem, Table 1 presents the 
following output: 
1. The solution value that obtained from exact manner and GA 
method. 
2. The computation time that spends by GA method and 
expressed in seconds. 
Figures 4, 5 are GA progress and exact solution in various 
Examples. 

In all of our experiments, the time spent by the algorithm is 
negligible and our algorithm is quite effective on the data sets 
that we applied it to. As it is also obvious from the 
convergence graph, the algorithm convergence is very fast and 
it results to the optimum solution in the primary steps. It is 
possible to show the accuracy of the suggested algorithm by 
comparison between the suggested algorithm and the optimum 
solution (which is possible to be calculated for the questions 
with small size). So this algorithm could be used for solving 
the important questions in which it is impossible to calculate 
the optimum solution, and expect that the suggested algorithm 
would be able give very good results. 

Thus we can use this algorithm for solving our problem. 
Whit using the proposed GA algorithm, we construct design of 
experiment for tank problem and reach to pest possible design. 
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TABLEI GA RESULTS FOR EIGHT PROBLEMS

P N n Exact solution GA Time(seconds)

1 16 8 2.1544e+024 2.1544e+024 2.4042
2 21 10 9.0661e+029 9.0661e+029 4.9539
3 26 6 2.2671e+019 2.2671e+019 2.2988
4 36 5 3.3362e+016 3.3362e+016 8.1747
5 100 25 -- 4.8188e+074 45.1676
6 200 25 -- 1.9060e+077 63.2114
7 500 25 -- 1.8613e+079 107.6746
8 1000 25 -- 8.4404e+080 138.7 
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Fig. 4 GA progress and exact solution in various Examples 
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Fig. 5 GATS progress in various Examples 

VI. CONCLUSION

Heuristic optimization methods are useful for solving 
experiment design problems in cases where other methods 
cannot be applied, or are ineffective. The GA algorithm was 
demonstrated to be effective in this type of design of 
experiments. Also we demonstrate usefulness of spatial design 
in a real case. 

With daily spread of the optimum design of experiment 
usage in various areas and the need for efficient methods in 
construction of optimum design, the necessity of paying 
attention to the optimum design of experiments is justifiable. 
[54]. 

One of the criterions which had been attended by scientists 
is the entropy criterion. And there is a vast research area for it. 
Among them we can point following:      

Using entropy for creating optimum design of 
operational examples in different field of science. 
Because for middle volume problems it is possible to 
reach the optimum solution by branch and bound 
method, another research area is research on finding 
efficient upper bands for branch and bound questions.
Using entropy criterion for creating optimal designs 
of experiment in multi response experiment is 
another open area for research.  

Hitherto there is not any conducted research in this area.  
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