
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

417

Abstract—Transaction management is one of the most crucial

requirements for enterprise application development which often
require concurrent access to distributed data shared amongst multiple
application / nodes. Transactions guarantee the consistency of data
records when multiple users or processes perform concurrent
operations. Existing Fault Tolerance Infrastructure for Mobile Agents
(FTIMA) provides a fault tolerant behavior in distributed transactions
and uses multi-agent system for distributed transaction and
processing. In the existing FTIMA architecture, data flows through
the network and contains personal, private or confidential
information. In banking transactions a minor change in the
transaction can cause a great loss to the user. In this paper we have
modified FTIMA architecture to ensure that the user request reaches
the destination server securely and without any change. We have
used triple DES for encryption/ decryption and MD5 algorithm for
validity of message.

Keywords—Distributed Transaction, Security, Mobile Agents,
FTIMA Architecture.

I. INTRODUCTION
RANSACTIONmanagement is one of the most crucial
requirements for enterprise application development.

Most of the large enterprise applications in areas of finance,
banking and electronic commerce rely on transaction
processing for delivering their business functionality. Given
the complexity of today’s business requirements, transaction
processing occupies one of the most complex segments of
enterprise “level” distributed application to build, deploy and
maintain. Enterprise applications often require concurrent
access to distributed data shared amongst multiple
components. Such applications should maintain integrity of
data under the following circumstances.

 Distributed access to a single resource of data

Manuscript received March 13, 2006.
Umar Manzoor is with the Department of Computer Science, National

University of Computer & Emerging Sciences, (FAST-NU), Islamabad,
Pakistan. (phone: +92-111-128-128 e-mail: umarmanzoor@gmail.com).

Kiran Ijaz is with the Department of Computer Science, National
University of Computer & Emerging Sciences, (FAST-NU), Islamabad,
Pakistan (e-mail: kiranijaz@gmail.com).

Wajiha Shamim is presently working as Software Engineer at a software
development company “Trivor Software” Islamabad, Pakistan (e-mail:
wajiha84@gmail.com).
Dr Arshad Ali Shahid is Head of the Department of Computer Science,
National University of Computer & Emerging Sciences, (FAST-NU),
Islamabad, Pakistan. (e-mail: arshad.ali@nu.edu.com).

 Access to distributed resources from a single
application component.

The use of transactions is a very popular concept for the
management of larger data collections. Transactions guarantee
the consistency of data records when multiple users or
processes perform concurrent operations. The access of
distributed resources (databases on different computers)
within a transaction is called a distributed transaction. The
architecture under consideration has been built by Summiya et
al under the title of “A Fault Tolerance Infrastructure for
Mobile Agents”. The main goal of this architecture is to
provide a fault tolerant behavior in distributed transactions
and in order to achieve this, a multi-agent system has been
devised which well suits distributed transactions and their
processing.

A. FTIMA Architecture
In the existing FTIMA architecture there are few vulnerable

points which greatly require security as shown in Fig 1.
Whenever a user provides his/her login information (to the
Client Application), this data needs to be protected as it may
contain login ids, passwords, credit card numbers, money
transaction requests in case of an ATM or banking scenario
which is confidential information and can we misused if
accessed by the intruder. This data flows through the network
until it reaches the Transaction Manager which forwards the
request to a suitable path available at that time.

The data after traveling through the appropriate path
reaches the destination server which manipulates this
information after interpretation. It can be seen clearly that
such information which flows through the network might
contain personal, private or confidential information.
Moreover in financial transactions for example in banking
transactions a minor change in the transaction request can
cause a great loss to the user. Therefore the main concern of
this paper is to ensure that the user request reaches the
destination server securely and without any change in
distributed transactions.

This paper is organized as follows. The first section
discusses the related work done in securing distributed
transactions. This section is followed by the discussion of the
modified FTIMA architecture which ensures security at least
to the minimum required level. Section 4 contains

Ensuring Data Security & Consistency in
FTIMA - A Fault Tolerant Infrastructure for

Mobile Agents
Umar Manzoor, Kiran Ijaz, Wajiha Shamim, and Arshad Ali Shahid

T

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

418

Fig. 1 A Fault Tolerance Infrastructure for Mobile Agents (FTIMA) Architecture

experimental evaluation on test cases which have been
provided to understand the solution and its importance in
banking transactions. Finally conclusion is presented in
section 5.

II. RELATED WORK
A few studies have been done on how to secure distributed

transactions. [1] Practical techniques for securing distributed
computing systems have been discussed. It reviews critical
risk areas in distributed systems, including networks,
operating systems, applications, middleware, and the Internet.
It presents detailed information about technologies that can
help users respond, including: Cryptography, The Kerberos
authentication model and DCE security. Another architecture
has been presented for a mobile agent system in [2] which
offers fault tolerance for the whole agent system at a high
level.

This architecture additionally guarantees security for the
host as well as security for the agent. To handle these issues
for mobile agents they have used various encryption
mechanisms and other methods. More work has been done in
[3] in which the authors consider techniques for designing and
analyzing distributed security transactions. They have
presented a layered approach, with a high-level security
transaction layer running on top of a lower-level secure
transport protocol. Moreover [4] presents a high-level view of
existing security challenges related to clusters and proposes a
structured approach for handling security in clustered servers
which is worth mentioning in this context.

III. MODIFIED ARCHITECTURE
If Keeping the architecture (FTIMA) discussed in

introduction in mind we can see that the client’s critical data
flow needs to be protected from anyone who could possibly
be cracking passwords or trying to get private information
with the intent to misuse the information etc. The information
flowing from the Client Application to the Transaction
Manager which ultimately reaches the destination server is

private and confidential which needs to be encrypted to ensure
this confidentiality as shown in Fig. 2.

Moreover we want to ensure that nobody tries to modify
the request or information in the middle. For example
changing a request “withdraw $5000” to “withdraw $50000”
or someone could also try to change the source / destination
account number in case of a money transaction from one
account to another. To ensure that the information reaches the
other end without any modification which is called integrity
we have used hash codes. We have chosen MD5 (hash code
function) for this purpose. The data will be encrypted and the
hash code of the original message will be attached by the
client application. The data decryption and hash code
comparison will then take place once the message (request)
reaches the destination server. Moreover to avoid the
problems that could occur from stolen keys, a new key would
be generated and passed to the destination server after every
100th transaction.

Therefore the basic threats that we were able to identify and
decided to handle immediately are confidentiality and
integrity.

A. Use of Triple DES for Encryption
Organizations' growing security concerns and the

increasing adoption of the Internet for business-to-business
(B2B) transactions are increasing the need and importance of
encryption and confidentiality. The Data Encryption Standard
(DES) was developed by an IBM team around 1974 and
adopted as a national standard in 1977. Triple DES is a minor
variation of this standard. It is three times slower than DES
but can be much more secure if used properly. Triple DES
enjoys much wider use than DES because DES is so easy to
break with today's rapidly advancing technology. This is
major reason we decided to use Triple DES instead of DES.
Here is a brief over view of how Triple DES works; Triple
DES is simply another mode of DES operation.

It takes three 64-bit keys, for an overall key length of 192
bits. In Private Encryptor, you simply type in the entire 192-
bit (24 character) key rather than entering each of the three
keys individually [10].

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

419

Fig. 2 A Fault Tolerance Infrastructure for Mobile Agents (FTIMA) Modified Architecture to provide Security

The Triple DES DLL then breaks the user provided key

into three sub keys, padding the keys if necessary so they are
each 64 bits long. The procedure for encryption is exactly the
same as regular DES, but it is repeated three times hence
named Triple DES. The data is encrypted with the first key,
decrypted with the second key, and finally encrypted again
with the third key as shown in Fig. 3.

Fig. 3 Triple DES Encryption

B. Use of MD5 for Hash Code
MD5 is a message-digest algorithm developed by Rivest. It

is used where a large message has to be "compressed" in a
secure manner before being signed with the private key. It
takes a message of arbitrary length and produce a 128-bit
message digest. It is used to ensure that the information being
sent has not been tampered with and thus helps to ensure
integrity.

MD5 processes a variable length message into a fixed-
length output of 128 bits. The input message is broken up into
chunks of 512-bit blocks; the message is padded so that its

length is divisible by 512.
The padding works as follows: first a single bit, 1, is

appended to the end of the message. This is followed by as
many zeros as are required to bring the length of the message
up to 64 bits fewer than a multiple of 512. The remaining bits
are filled up with a 64-bit integer representing the length of
the original message.

The main MD5 algorithm operates on a 128-bit state,
divided into four 32-bit words, say A, B, C and D. These are
initialized to certain fixed constants. The main algorithm then
operates on each 512-bit message block in turn, each block
modifying the state. The processing of a message block
consists of four similar stages, termed rounds; each round is
composed of 16 similar operations based on a non-linear
function F, modular addition, and left rotation.

Therefore in short the MD5 (Message Digest number 5)
checksum for a file is a unique 128-bit 'fingerprint'. It can be
used to verify that the file has not been tampered with.
Security conscious users for example in the case of financial
transactions who are concerned that their request may have
been tampered with should use this checksum to validate
integrity and hence we chose to use this message digest.

IV. TEST CASES
In order to check the reliability and security of the

architecture discussed in section 3, we conducted a few test
cases. Two separate test cases were designed to ensure
integrity and confidentiality. The test cases have been made
taking scenarios from the real life banking ATM machine

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

420

Fig. 4 Threat to Integrity of Data

Fig. 5 Ensuring Integrity of Data

transactions. Each test case first discusses the threat identified
for each case and then shows with the help of a diagram how
that threat is removed to satisfy the user as well as the
management of bank.

A. Test Case 1
In an ATM banking scenario let’s suppose that a transaction

request to transfer $5000 of a client from one account (A)

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

421

Fig. 6 Threat to Confidentiality

Fig. 7 Ensuring Confidently

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

422

to another account (B) is on its way as shown in Fig. 4.

If the data is not encrypted an intruder could easily read this
data and modify it to transfer $5000000 instead of $5000
without the knowledge of the client. Therefore the client
would be at loss and would not even be able to find out until
he checks his account again at a later stage.

These kinds of losses are not affordable in critical
transactions such as financial transaction requests and
definitely require security. In order to avoid this threat, if the
data is encrypted as shown in Fig. 5, the man in the middle
(intruder) firstly would not be able to read the data and
moreover if he makes any change randomly, this would be
detected with the help of the hash code attached.

The destination server after decrypting the message would
calculate its hash code and when it compares this hash code
with the hash code attached, it would be found out that the
data has been tempered and is not in its original form.

B. Test Case 2
In this case an intruder could easily sniff request packets

and keep track of the amount being deposited, withdrawn or
transferred from/to account number 123 which is clearly a
violation of confidentiality of information as shown in Fig. 6.

Nobody deserves to be tracked about what amount goes
into his account and what amount is deposited neither should
his account number be known by anyone just like that. This is
no doubt confidential information and requires privacy.

In order to avoid this kind of situation sending encrypted
messages would be useful as shown in Fig. 7. The intruder
would not simply be able to read any request messages and
therefore can not track what amount is being a deposited,
withdrawn or transferred at all time.

Moreover, the clients account number being personal data
would also be saved from any leakage. Therefore we see how
encryption serves the purpose of securing private information
which is the right of every user especially in the case of
financial transactions as mentioned in the scenarios discussed.

V. CONCLUSION
In this paper we have modified FTIMA architecture to

ensure that the user request reaches the destination server
securely and without any change. We have used triple DES
for encryption/decryption and MD5 algorithm for validity of
message. Existing Fault Tolerance Infrastructure for Mobile
Agents (FTIMA) provides a fault tolerant behavior in
distributed transactions and uses multi-agent system for
distributed transaction and processing but data flows through
the network with out encryption and contains personal, private
or confidential information. In banking transactions a minor
change in the transaction can cause a great loss to the user.
We have evaluated the modified architecture on larger number
of test cases and conclude that using proposed modification
we can protect the transactions as well as personal
information.

REFERENCES
[1] Summiya, Kiran Ijaz, Umar Manzoor, Arshad Ali “A Fault Tolerance

Infrastructure for Mobile Agents” IEEE Intelligent Agents,Web
Technologies and Internet Commerce (IAWTIC 06) Sydney, Australia,
29 Nov – 01 Dec, 2006.

[2] Hartmut Vogler, Thomas Kunkelmann, Marie-Louise Moschgath,
"Distributed Transaction Processing as a Reliability Concept for Mobile
Agents," ftdcs, 6th IEEE Workshop on Future Trends of Distributed
Computing Systems (FTDCS '97), 1997.

[3] Philippa Broadfoot, Gavin Lowe, "On Distributed Security Transactions
that Use Secure Transport Protocols" csfw, 16th IEEE Computer
Security Foundations Workshop (CSFW'03), 2003.

[4] Makan Pourzandi, David Gordon, William Yurcik, Gregory A. Koenig, ,
“]Clusters and Security: Distributed Security for Distributed Systems”,
Open Systems Laboratory, Ericsson Research,(NCSA).

[5] Gerhard Weiss, “A Modern Approach to Distributed Artificial
Intelligence”,Chapters: 1-4, the MIT Press Cambridge, Massachusetts
London, England, 1999.

[6] Chris Mayers, “ANSAwise - Transactions in Distributed Systems”, a
variant of APM.1461, produced for CNET, 1st April 1996.

[7] Michael R. Lyu, Xinyu Chen, and Tsz Yeung Wong, Research Paper,
“Design and Evaluation of a Fault Tolerant Mobile Agent System”,
Chinese University of Honk Kong.

[8] Andrew S. Tanenbaum, Maarten van Steen, Book, “Distributed Systems,
Principles and Paradigms” Chapters 1, 5 and 7.

[9] Mark Greaves, Victoria Stavridou-Colemen, Robert Laddaga,
“Dependable Agent Systems”, 2004.

[10] http://www.tropsoft.com/strongenc/des3.htm
[11] http://en.wikipedia.org/wiki/MD5
[12] William Stallings, Book, “Cryptography and Network Security,

Principles and Practices”, Third Edition.
[13] http://www.informit.com/bookstore/product.asp?isbn=0131829084&rl=

1

