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Abstract—The approach of subset selection in polynomial 

regression model building assumes that the chosen fixed full set of 
predefined basis functions contains a subset that is sufficient to 
describe the target relation sufficiently well. However, in most cases 
the necessary set of basis functions is not known and needs to be 
guessed – a potentially non-trivial (and long) trial and error process. 
In our research we consider a potentially more efficient approach – 
Adaptive Basis Function Construction (ABFC). It lets the model 
building method itself construct the basis functions necessary for 
creating a model of arbitrary complexity with adequate predictive 
performance. However, there are two issues that to some extent 
plague the methods of both the subset selection and the ABFC, 
especially when working with relatively small data samples: the 
selection bias and the selection instability. We try to correct these 
issues by model post-evaluation using Cross-Validation and model 
ensembling. To evaluate the proposed method, we empirically 
compare it to ABFC methods without ensembling, to a widely used 
method of subset selection, as well as to some other well-known 
regression modeling methods, using publicly available data sets.  
 

Keywords—Basis function construction, heuristic search, model 
ensembles, polynomial regression.  

I. INTRODUCTION 
ARIOUS applications in engineering, statistics, computer 
science, health sciences, and social sciences are 

concerned with estimating “good” predictive models from 
available data. In such problems the goal is to estimate 
unknown dependency (or model) from training data, in order 
to use this model for predicting future samples. A model 
describes the relation between a multidimensional input, x, 
and an output, y. If the y is a continuous variable, the task is 
called a regression task and the model is called a regression 
model.  

In regression commonly polynomial models are used. 
Polynomials are very flexible and often used when there is no 
theoretical model available. However, the regression model to 
use should be neither too simple (too low number of basis 
functions in polynomial), causing underfitting, nor too 
complex (too high number of basis functions), causing 
overfitting. Otherwise model’s ability to generalize to new 
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data will be relatively poor.  
To obtain a polynomial regression model, that describes the 

relations in data sufficiently well, typically the subset 
selection (also called variable selection) approach [1] is used 
where the goal is from a fixed full set of predefined basis 
functions to find the best subset that gives the best predictive 
performance of the regression model. Usually, the full set of 
basis functions is equal to the set of basis functions in a 
predefined “full” model of a maximal allowed complexity 
(which is usually chosen as a full polynomial of some order).  

To find the best subset some kind of search must be 
performed. Searching through all possible subsets needs 
exponential runtime and thus is impractical in most cases. 
Hence heuristic search methods are used. They efficiently 
traverse the space of subsets, by adding and deleting basis 
functions and use an evaluation measure that directs the 
search into areas of increased performance. The typical 
examples of the search methods are the Forward Selection 
(also known as Sequential Forward Selection, SFS) and the 
Backward Elimination (also known as Sequential Backward 
Selection, SBS) [1], [2].  

The approach of subset selection assumes that the chosen 
fixed full set of predefined basis functions contains a subset 
that is sufficient to describe the target relation sufficiently 
well. However, in most cases the necessary full set is not 
known and needs to be guessed (e.g., by specifying the order 
of the “full” model) since it will differ from one data set to 
another. In many cases that means either a non-trivial (and 
long) trial and error process or acceptance of a possibly 
inadequate model.  

We consider a different approach than the subset selection – 
letting the regression model building method itself construct 
the basis functions necessary for creating the model without 
restricting oneself to the basis functions of a predefined full 
model. This is achieved by replacing the standard refinement 
operators of subset selection, namely the addition and deletion 
of the basis functions, with other operators that not only allow 
adding or deleting but also allow changing the basis functions 
themselves. In this manner all the needed basis functions are 
adaptively constructed during the heuristic search process, 
efficiently trading-off the simplicity and predictive 
performance of the models. Hence we call this approach 
Adaptive Basis Function Construction (ABFC). The approach 
allows generating polynomials of arbitrary complexity, does 
not require the user to predefine any basis functions for model 
creation, and, in addition, allows using most of the same 
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heuristic search algorithms and evaluation measures which are 
used in subset selection methods. Note that the ABFC 
approach is partially a generalization of the ideas from a rather 
recently published work [3] where the authors introduce to a 
polynomial equation induction method called Constrained 
Induction of Polynomial Equations for Regression (CIPER) 
which was developed in the context of differential equation 
discovery, inductive databases, and constraint-based data 
mining. The CIPER can also be viewed as an instance of the 
ABFC approach. However, as we already demonstrated in our 
previous work (e.g., [4]), it has some drawbacks regarding too 
high sensitivity to local minima and the nesting effect [5]. In 
[4] we introduced another instance of the ABFC approach – a 
regression model building method called Floating ABFC (F-
ABFC).  

However, there are two issues that to some extent plague 
the methods of both the subset selection as well as the ABFC, 
especially when working with relatively small data samples: 
These are the selection bias and the selection instability (see 
Section III for details).  

Both these issues are usually ignored frequently resulting in 
models of lower predictive performance (and rising criticism 
to subset selection, e.g., [1], [6]). In our research we try to 
correct these issues for the F-ABFC by using a collaboration 
of two techniques: 1) v-fold Cross-Validation (CV; e.g., [7]) 
over the entire search process strictly for selection of one best 
model from the best models of each iteration (the validation 
set is not used for model evaluation during the search, instead 
it is used for post-evaluation after the search process has 
ended); 2) the v models from the v CV loops are combined 
using a simple ensemble technique – model averaging [8].  

To evaluate the proposed method “Ensemble of Floating 
ABFC” (EF-ABFC), we empirically compared its predictive 
performance to the original F-ABFC, to CIPER, to a widely 
used instance of subset selection, SFS, to full polynomials, as 
well as to some other well known regression modeling 
methods using four different publicly available regression data 
sets.  

In the following section we shortly review the ABFC 
approach (mainly from the viewpoint of heuristic search) and 
describe F-ABFC. The EF-ABFC is proposed in the third 
section. The fourth section deals with the empirical 
comparisons of the regression modeling methods.  

II. ADAPTIVE BASIS FUNCTION CONSTRUCTION 
A polynomial regression model may be defined by a linear 

summation of basis functions:  
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where ai are model’s parameters; k is the number of basis 
functions (equal to the number of model’s parameters); fi(x) 
are the basis functions that generally may be defined as a 
product of original input variables each raised to some order:  
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where d is the number of the original input variables; rij is the 
order of the j-th variable in the i-th basis function (a non-
negative integer). Note that when all rj’s of a basis function 
are equal to 0, we have the intercept term. The estimation of 
parameters ai of the polynomial regression models is made 
based on a finite number, n, of training data cases, (x(1), y(1)), 
(x(2), y(2)), …, (x(n), y(n)), typically using the ordinary least-
squares method, OLS.  

Summarizing [9]-[11], in order to characterize a heuristic 
search problem one must define the following: 1) initial state 
of the search; 2) available state-transition operators; 3) search 
strategy; 4) evaluation measure; 5) termination condition. 
Note that in the rest of this paper instead of the term “state-
transition operator” we will use the term “(model) refinement 
operator” (as in [3], [4]), which is somewhat more convenient 
in the context of regression model building.  

In the polynomial regression subset selection approach, 
typically the initial states are models that correspond to the 
empty subset, the subset with only the intercept term in it, full 
subset of all the defined basis functions, or a randomly chosen 
subset; the typical refinement operators are addition and 
deletion of any one basis function; the typical search strategy 
is the hill climbing [11] which in combination with the empty 
subset initial state and the addition operator becomes SFS but 
in combination with the full subset initial state and the 
deletion operator becomes SBS; the classical evaluation 
measures are the statistical significance tests [1], however, 
currently two other strategies predominate: employment of 
complexity penalization criteria (e.g., the Akaike’s 
Information Criterion, AIC [1], [6], [12], [13]) and the 
resampling techniques (e.g., Hold-Out, CV, and Bootstrap [1], 
[7]); the termination condition typically corresponds to 
finding of state in that none of the refinement operators can 
lead to a better state.  

The main difference between the subset selection approach 
and the ABFC approach is in the refinement operators used. 
As already said, in the ABFC approach, the standard 
refinement operators of subset selection are replaced with 
other operators that not only allow adding or deleting the basis 
functions but also allow changing the basis functions 
themselves (i.e., increasing or decreasing orders of variables).  

In Fig. 1, there is shown relation between subset selection 
and ABFC approaches. Subset selection operates with a string 
of bits of constant length (column named “Included”) where 
each bit indicates whether a predefined basis function 
(columns “Function” and “Form”) is present (“1”) or absent 
(“0”). ABFC approach on the other hand operates directly 
with the orders of each input variable in each function as well 
as creates new functions as necessary (column “Matrix of 
orders, r”). Thus, in ABFC the search operates directly with 
the dynamically-sized matrix r in (2). This results in an 
infinite space of candidate regression models and we can 
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generate polynomials of arbitrary complexity without 
predefining any basis functions.  

 

 
Fig. 1 Relation between subset selection and ABFC 

 
In ABFC, as the state space has become infinite, a natural 

initial state of the search is now the state where the subset of 
basis functions is empty or, for example, the subset with one 
function that corresponds to the intercept term already 
included. In F-ABFC the second variation is used (moreover, 
the function stays in the model at all times and is not allowed 
to be modified or deleted).  

Using efficient refinement operators is vital for the search 
process to be successful. Here are the five considered 
refinement operators. Operator1: Addition of a new basis 
function with one of the orders set to one (and all the others 
set to zero). Operator2: Increasing of one of the orders in one 
of the existing basis functions by one. Operator3: Addition of 
an exact copy of an already existing basis function with one of 
the orders increased by one. Operator4: Decreasing of one of 
the orders in one of the existing basis functions by one. 
Operator5: Deleting of one of the existing basis functions.  

Additionally for each refinement operator, except 
Operator5, special care is taken to prevent basis function 
duplicates in the resulting model. Also, to maintain generality, 
the function corresponding to the intercept term is not allowed 
to be used for construction of other functions (by Operator3) 
[4].  

We categorize the listed refinement operators as 
complication operators (the first three) and simplification 
operators (the last two). If the search is started from an empty 
or some small set of functions, the complication operators do 
the main job – they “grow” the model. The simplification 
operators on the other hand work as purifiers – they decrease 
the unnecessarily high orders and delete the unnecessary basis 
functions.  

The initial state and the refinement operators together form 
state space [11]. In Fig. 2, there is shown a small example of 
the state space for F-ABFC. Each state represents a set of 
basis functions which are included in the regression model – 
the matrix r. However, note that connections created by the 
Operator3 here are not shown – they would simply be cross-
layer connections between the states.  

 

 
Fig. 2 A small example of state space in F-ABFC when the number 

of input variables is three. For simplicity the function with all 0’s and 
connections of Operator3 are omitted 

 
In relation to search strategies most of the algorithms that 

are applicable to subset selection can also be used in ABFC. 
This is achieved by treating the complication and 
simplification operators as the addition and deletion operators 
(correspondingly) of the subset selection approach [4]. 
However, there are two exceptions. Firstly we can not use the 
search algorithms that start their search from the full subset 
(e.g., SBS) as in ABFC there exists no full subset. And 
secondly, we can not use the strategies that require the state-
representing data structures to be of constant length and are 
not generally biased towards simpler models (e.g., the 
chromosomes in most Genetic Algorithms). However, with 
appropriate modifications they might become applicable. 

In our research so far we considered only the directly 
applicable search strategies the simplest of which is the SFS. 
However, SFS moves only forward, in direction of more 
complex models, so it would use only the complication 
operators. Hence the Steepest Descent Hill Climbing [11], 
Plus-a Take Away-b [14], and Sequential Floating Forward 
Selection (SFFS) [5] strategies may be considered, all of 
which allow also the backward moves. F-ABFC’s search 
strategy is based on SFFS (that already showed its advantages 
in [4], [5]) – hence the name of the method.  

As evaluation measures the same predominating ones of 
subset selection can be efficiently used also in ABFC: 
complexity penalization criteria and resampling techniques. 
The former in contrast to the latter usually does not require 
high computational resources, allows one to use all the 
available data for training, as well as is less noisy (creating 
less local minima in the state space). The most widely known 
and used complexity penalization criterion is AIC. In F-ABFC 
we use its small sample corrected version (AICC) [6], [13] as 
for problems with small n it is suited better than AIC but 
converges to AIC as n becomes large [6], [13]. AICC criterion 
is defined as follows:  
 

)1/())1(2(2)log( −−+++= knkkkMSEnAICC  (3) 
 
where MSE is Mean Squared Error in training data. Note that 
the best fitting model is that whose AICC value is the lowest. 
For more details on using AICC in F-ABFC consult [4].  
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The typical termination condition, that is met when the 
search locates a state in that none of the refinement operators 
can lead to a better state, is of course a natural choice also in 
the ABFC.  

A more detailed description of the approach, its instance, F-
ABFC, as well as a more detailed theoretical comparison to 
subset selection approach is given in our previous study [4].  

III. ENSEMBLE OF MODELS BUILT BY F-ABFC 
As already said, there are two issues that plague the 

methods of both the subset selection as well as the ABFC – 
the selection bias and the selection instability.  

Selection bias occurs when in the search procedure one uses 
the same data to compute values of models’ parameters and 
also to evaluate the models for selection purposes [15]-[17]. 
This also includes usage of resampling techniques (e.g., CV) 
that evaluate a model using validation data set and then put the 
validation data back into the training set, e.g., like the well-
known Prediction Sum of Squares (PRESS) resampling-based 
criterion [1], [18] does. In addition, it occurs even when 
performing model evaluation using completely independent 
validation set – because the search procedure is evaluating so 
many subsets, it is likely that some of them lead to models that 
have high accuracy for the validation set but low accuracy for 
the test set [19]. In any case, the more intensive the search 
procedure, the larger the selection bias will be.  

The other issue, selection instability (also called selection 
variance), is related to the fact that small perturbations of the 
data can lead to vastly different subsets of the basis functions, 
e.g., because of getting stuck in different local minima or 
because of noisy model evaluation methods [20]-[22].  

In EF-ABFC, to deal with the selection bias, v-fold CV 
over the entire search process is used. Note that as an 
evaluation measure for the search algorithm still the AICC is 
applied. The validation set, however, is used for a post-
evaluation (using MSE in validation data) of the best models 
of each iteration of the search and for selection of the one final 
best model. This post-evaluation can detect whether the search 
process at some iteration might have started to generate 
overfitted models and select a model of some earlier iteration 
that is hopefully not (or at least less) overfitted (see Fig. 3). 
The whole process (including the search from the initial state) 
is repeated v times, each time with different CV fold served as 
the validation set and all the other folds served as the training 
set, producing v different models.  

To deal with the selection instability, the v models from the 
v CV loops are combined using a simple ensemble technique – 
unweighted model averaging [8]. Note that, prior to 
combining, all the models are re-fitted to the whole training 
set (without the CV partitioning). This is done to compensate 
for the smaller training set used during the individual model 
building.  

 

 
Fig. 3 An example of how less overfitted model is selected using 
post-evaluation in validation set. Note that here starting from the 

35th iteration also the AICC values start to increase, however, this 
might be too late due to selection bias 

 
The used ensemble building method is similar to Bagging 

(bootsrap aggregating; [21]) where the training set is 
bootstrapped (usually to build varied decision trees), and the 
unweighted average of their estimates is taken.  

Model combining by unweighted model averaging consists 
in taking the average of estimates of all the models:  

 

∑ =
=

v

i icomb yvy
1

ˆ)/1(ˆ  (4) 

 
where iŷ  is i-th individual model and combŷ  is the combined 
model. For polynomial regression models this simply means 
summation of all the polynomials and then division of all the 
parameters of combŷ  (which is also a polynomial) by v.  

Combining models in this way can have the effect of 
smoothing out erratic models that overfit the data and gain 
more stability in the modeling process [8], [15], [21].  

See Fig. 4 for an outline of the EF-ABFC modeling process 
when the number of CV folds v is three. However, note that in 
our experiments we use v = 10. This is because too small 
number of models in ensemble will yield too little diversity 
hindering the models to correct each others errors, but, on the 
other hand, using too many models will yield no further 
improvement [8], [21], [22]. Additionally, too high number of 
CV folds can yield unreliable validation MSE estimates for 
the selection of the individual final best models, as the 
validation sets will be too small.  

In recent literature there is ever growing confidence that 
model ensembles often perform better than individual models 
and consistently reduce generalisation error [6], [8], [15], 
[21]-[23]. However, note also that model ensembles are not 
always the best solutions [22]: if there is too little data, the 
gains achieved via an ensemble may not compensate for the 
decrease in accuracy of individual models, each of which now 
sees an even smaller training set. On the other end, if the data 
set is sufficiently large, even a single flexible model can be 
quite adequate. Using large data sets also considerably 
decreases potential selection bias, so superiority of EF-ABFC 
over F-ABFC in such situations is expected to diminish.  

Another criticism of ensembles is that surely their increased 
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complexity will lead to overfit and thus, inaccuracy on new 
data. However, it is known that model ensembles often have 
effective complexity less than their components [15].  

 

 
Fig. 4 An outline of the EF-ABFC modeling process when v = 3. 
(a) search for the best model according to AICC using F-ABFC; 
(b) select the one final best model according to validation MSE; 
(c) ret-fit the model (recalculate its parameters) using the whole 

training data; (d) combine the models. 

IV. EMPIRICAL EXPERIMENTS 
The main goal of the performed experiments was to 

compare the EF-ABFC to the original F-ABFC, to CIPER, to 
a widely used instance of subset selection, SFS, as well as to 
full polynomials (FP) and to some other well known 
regression modeling methods – Radial Basis Function Neural 
Networks (RBFNN), Multi-Layer Perceptrons (MLP) and 
M5’ model trees (MT) [23]. We compared the methods in 
terms of both, predictive performance of the induced 
regression models as well as necessary computational 
resources. The performance of the methods is evaluated on 
four different regression data sets from the Torgo repository 
(http://www.liaad.up.pt/~ltorgo/ Regression/DataSets.html).  

All the experiments were performed on Pentium 4 2.4GHz 
computer with Hyper Threading turned on. Note that the time 
consumption presented in the tables is only a rough 
measurement as the methods are implemented in different 
software and with different levels of optimization of 
calculations. In the experiments we used our in-house 
software with implementations of EF-ABFC, F-ABFC, 
CIPER, and SFS (all with the AICC criterion), as well as the 
full polynomials (of order p). Usage of AICC allows us to 
compare the use of refinement operators and search strategies 
without any hindrance because of the different criteria. As an 
implementation of the original CIPER (with a modification of 
the Minimum Description Length (MDL) [24] criterion 
instead of AICC) we used the original software that is publicly 

available at http://ai.ijs.si/pljubic/ciper/ciper.html, kindly 
provided by the authors of the original method. In both 
versions of CIPER we used the default beam width, which is 
16. As implementations of RBFNN, MLP, and MT we used 
the WEKA software [23]. For RBFNN the number of clusters 
is selected from range [1,40] using 10-fold CV. For MLP and 
MT we used the default parameters.  

In the experiments we estimated predictive performance of 
the built models on unseen data samples using 10-fold CV and 
averaged the results. Note that with all the methods, including 
EF-ABFC, the CV was done as an outer loop over the entire 
model building process and, in each CV iteration, the set aside 
test set was not used until the final evaluation of the built 
model. Here it is important to distinguish between the CV 
inside the EF-ABFC or RBFNN and the CV used for 
evaluation of model building methods.  

The predictive performance of a model in test data set is 
measured in terms of Relative Root Mean Squared Error:  
 

( ) ( )∑∑ −−=
i ii ii yyyyRRMSE 2

)(
2
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where )(ˆ iy  is the corresponding predicted value for the 

observed value )(iy ; y  is the mean of the observed values. 

The lower the value of RRMSE, the more accurate the model.  
The four data sets from the repository are the following: 

“housing”, “housingNOX” (both 506 cases, 13 input 
variables), “autoPrice” (159 cases, 15 input variables), and 
“machine-cpu” (209 cases, 6 input variables). They are chosen 
because of the relatively low number of data cases, which is 
also common in real practical situations, as well as because of 
mostly continuous input variables. Note that prior to dividing 
the data sets into CV folds, the order of the cases was 
randomized.  

Table 1 presents the results of the performed experiments. 
The results confirm the superiority of EF-ABFC over F-
ABFC. With “housing” data set F-ABFC is the second best, 
with “housingNOX” it is outperformed by CIPER, MT and 
FP, with “autoPrice” it is outperformed by MT, and with 
“machine-cpu” it considerably overfits the data outperforming 
only the FP with p = 3. EF-ABFC, on the other hand, gives 
overall the best results – it has the overall lowest RRMSE and 
one of the lowest standard deviations. There is only one 
exception: with “autoPrice” the MT is slightly better.  

The decrease of RRMSE and its standard deviation of EF-
ABFC over F-ABFC indicates the success of both post-
evaluation using validation set as well as ensembling. This is 
most pronounced with the “machine-cpu” data set.  

In relation to computational performance the EF-ABFC is 
of course about v times slower than F-ABFC, however, here it 
is still faster than SFS with p = 4 and CIPER+AICC. The 
former is outperformed because of the very rapidly growing 
number of basis functions in respect to p [4]. The latter is 
outperformed because of its large number of model 
evaluations which in turn is because of its beam search 
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algorithm (e.g., [11]). Note that the original CIPER is much 
faster as its model evaluation criterion has a larger complexity 
penalty than that of AICC and therefore stops the search much 
earlier. However such criterion can cause also considerable 
underfitting as we already showed in [4].  

V. CONCLUSION 
In this paper, we proposed an ensembling extension EF-

ABFC to the F-ABFC regression model building method. The 
advantage of the EF-ABFC, compared to F-ABFC, is that 
most of the time it considerably reduces the effects of both 
selection bias and selection instability. The disadvantage is the 
reduced computational efficiency. However, the fact that the v 
models before combining are built completely separately 
allows for an easy parallelization of the process dividing the 
execution time by v. Additionally the results of the empirical 
comparisons to the other well-known regression modeling 
methods for both, F-ABFC and EF-ABFC, seem promising.  
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