International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:7, No:4, 2013

Enhancing the Error-Correcting Performance of LDPC
Codes through an Efficient Use of Decoding Iterations

Insah Bhurtah, P. Clarel Catherine, and K. M. Sunjiv Soyjaudah

Abstract—The decoding of Low-Density Parity-Check (LDPC)
codes is operated over a redundant structure known as the bipartite
graph, meaning that the full set of bit nodes is not absolutely
necessary for decoder convergence. In 2008, Soyjaudah and
Catherine designed a recovery algorithm for LDPC codes based on
this assumption and showed that the error-correcting performance of
their codes outperformed conventional LDPC Codes. In this work,
the use of the recovery algorithm is further explored to test the
performance of LDPC codes while the number of iterations is
progressively increased. For experiments conducted with small
blocklengths of up to 800 bits and number of iterations of up to 2000,
the results interestingly demonstrate that contrary to conventional
wisdom, the error-correcting performance keeps increasing with
increasing number of iterations.
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I. INTRODUCTION

LOW-DENSITY parity-check (LDPC) codes form a class
of error-correcting codes originally developed by Gallager
in 1962 [1]. In 1999, MacKay and Neal effectively
rediscovered the codes and demonstrated their ability to
perform at rates close to the Shannon’s theoretical limit [2].
LDPC codes are usually identified by a parity-check matrix
H containing mostly ‘0’s and very few ‘1’s [1]. Decoding is
achieved using the belief propagation algorithm also known as
the message passing algorithm or the sum-product algorithm
(SPA). For large blocklengths, the performance of LDPC
codes is known to operate very close to the Shannon limit [3].
However, when it comes to short blocklengths, sub-graph
structures of the bipartite graph such as cycles and trapping
sets decrease the performance of these codes [4]. As a means
of dealing with the effects of these structures, a recovery
technique for LDPC codes was introduced by Soyjaudah and
Catherine in 2008 [5], resulting in an important coding gain
over the conventional algorithm. For the present work, the
recovery algorithm is further explored with different H sizes
for an increasing number of iterations. The aim of the research
is to demonstrate that the recovery algorithm exhibits very
good performance with increasing iterations for the decoding
of LDPC codes. Indeed, whereas using additional iterations
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does not usually help for conventional algorithm (with the
decoder stuck in bad configurations from which it cannot
escape), the same iteration resources are used more effectively
in the recovery algorithm thereby bringing the dividends of an
increased error-correcting capability.

The paper is organized as follows: in section II, an
introduction to the recovery algorithm is provided. Section III
explains the motivation of the present work and section IV
highlights the further work done on the recovery algorithm.
Results and the conclusion are presented in section V and VI
respectively.

II. THE RECOVERY ALGORITHM

Under the conventional decoding regime of LDPC codes,
the decoder will usually move in a certain direction during the
first few iterations [6] and keep that direction until it will
either converge to the correct state or reach a wrong state.
Alternately, it can also oscillate between two states without
any definite convergence. As such, the first iterations of the
decoding algorithm are usually critical and provide the general
direction the decoder will take. Subsequent iterations thus
cause a waste of valuable computing resource. To combat this
problem, the redundant set-up of the bipartite graph as
described in [5] is established.

The redundancy of the graph allows the use of a subset of
nodes during decoding while the other nodes wait for the
decoding metrics to be communicated to them to start their
processing. Hence, a percentage of the nodes are erased. The
deletion of the bit nodes enables the decoder to withdraw itself
from a certain decoding path and to choose another one. This
approach allows the decoder to regard other paths not present
in the conventional SPA. Instead of running the algorithm for
only one subset of the bipartite graph, multiple subsets are
used. This allows the algorithm to get different outlooks of the
graph. They may agree or disagree with each other, but they
allow the decoder to calculate the reliability of each node.
Another reason for the employment of multiple subsets is to
account for the fact that good nodes might also be erased. A
more detailed analysis of the recovery algorithm can be found
in [5].

III. MOTIVATION

In a conventional decoder, when the decoder has started in a
certain wrong direction, it is difficult for it to retract from its
path. Hence, the number of iterations used becomes
meaningless. The erasure of nodes allows the decoder to
withdraw from a direction and choose another. This allows the
destruction of cycles and trapping sets which contribute to bad
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structures of the bipartite graph. In [5], the recovery algorithm
outperforms the conventional one and consumes fewer
iterations. Therefore, the recovery algorithm is further tested
with different H matrices and parameters to show its
efficiency. The parameters are chosen at random to
demonstrate the capability of the recovery algorithm, though
their specific selection remains an open problem. The
investigation whether iterations used by the recovery
algorithm are being used more efficiently, is undertaken.
Consequently, it can be known whether computing power is
being used more efficiently.
Another aspect which has been looked into is the entropy
variation of the decoded vector for each iteration of the
recovery algorithm where the conventional one has failed.
When one or more nodes of the bipartite graph are in error,
they will convey the same wrong information to the other
nodes to which they are connected. These receiving nodes will
increase their false confidence, and they will in turn provide
other nodes with wrong messages eventually leading to
decoding failure. In addition to this, the use of many iterations
does not serve any purpose, as the decoder goes into an
oscillatory condition [6]. Conventional LDPC decoders had
trouble from escaping the bad bipartite graph configurations
due to the low entropy (high confidence) of its bit nodes.
When decoding is proceeding in the wrong direction, high
confidence of the bit nodes will ultimately lead to disaster.
Indeed increasing the number of iterations usually does not
help much since the decoder has already reached a state of
low-entropy from which it is very difficult to back off.
However, when the recovery algorithm is used, the entropy of
the different sets used is initially raised (since entropy of all
erased bits is 0.5) [7]. On that account, the decoders are again
given a chance for correct decoding. It appears therefore that
entropy plays a central role in the decoding of LDPC codes.
Assuming that n is the number of bits in the decoded vector
(X), the equation for the calculation of its entropy in terms of
each bit x;, H(X) is [8]:

H(X)==2_ p(x)log, p(x) (1)

where p is the a-posteriori probability of each bit X;.

To obtain the variation of the entropy for a sample of
unsuccessful conventional decoding and for each of the
subsets ng for every iteration, the following notations for the
parameters were used:

e ns: number of sets used.

e | number of iterations with all bit nodes used with I, =
100 iterations.

e |, number of iterations for each set of the recovery
algorithm with I, = 20 iterations.

e | number of iterations for a conventional SPA run such
that Ic = Ir.ns + I [7].

The procedure is found below for a particular block number
where the conventional decoding fails and the recovery
algorithm comes into play:

1) For the conventional SPA algorithm with . iterations, the
number of bits of the codeword equals to the number of
columns n of the H matrix. For each iteration, the entropy
of the decoded vector is obtained according to (1). During
decoding, the a-posteriori probability p of each bit of the
decoded vector is initially generated and updated after
every iteration. In this work, Ic =200, 500 and 2000 have
been used.

2) For each subset of the recovery algorithm (1 to ng), the
entropy of the decoded vector is obtained according to (1)
for each iteration with I, set to 20.

Fig. 1 illustrates the variation of the conventional and for
each of the ng = 5 subsets for a 50x100 H matrix with Ic =200
and (Ex/N,) = 1 dB for a particular transmitted block. For
conventional decoding, the entropy oscillates, that is the
decoder does not which way to go. A similar result was
obtained in [6]. Regarding the recovery algorithm, the entropy
of the set number 3 decreases smoothly and withdraws the
right codeword. In table I, sets number 62, 67 and 78 have
retrieved the right codeword in 95 subsets for a 200x400 H
matrix with Ic = 2000 and (E,/N,) = 3 dB for a particular
transmitted block. These sets have consumed fewer iterations
than the conventional algorithm (I = 100 iterations) leading to
an efficient use of computing power for decoding. In addition,
the final entropy of the conventional algorithm is 16.2 as
compared to sets number 62, 67 and 78 having entropy of
1.62, 4.23 and 13.99 respectively. It was mentioned earlier
that in the case of decoding failure, the low-entropy state (high
confidence of bit nodes) prevents the decoder to back off. Fig.
2 illustrates this type of behaviour from the failed
conventional algorithm whose entropy falls to a low value that
is the decoder has a high degree of belief in a bad state.
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Fig. 1 Graph of Entropy of Decoded Vector against Number of
Iterations For 50x100 H Matrix I = 200, ng= 5 with (E,/N,) =1 dB

IV. SIMULATION WORK

Depending on the number of subsets used, the same number
of bipartite graphs were created. Some nodes were erased
while others participated in the decoding process. & denotes
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TABLE I
ENTROPY VARIATION FOR SUBSETS GIVING A VALID CODEWORD FOR A
200x400 H MATRIX WITH I = 2000, ns =95, I, = 20 AND (Ep/No) =3 dB

Iteration # Set#62 Set#67 Set#78
1 55.96 57.18 54
2 50.98 51.43 49.67
3 52.83 52.33 53.61
4 49.7 52.13 52.13
5 45.46 48.66 51.25
6 45.12 45.97 50.61
7 46.47 38.02 49.53
8 45.32 30.83 45.74
9 40.87 26.85 40.59
10 34.23 23.78 35.6
11 29.58 22.96 31.6
12 23.11 20.19 28.41
13 18.6 15.94 22.13
14 17.33 9.9 13.99
15 14.73 4.23
16 12.46
17 11.14
18 9.88
19 5.09
20 1.62
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Fig. 2 Graph of Entropy of Decoded Vector against Number of
Iterations for 200x400 H matrix I¢c = 500, ng= 20 with (E,/N,) =2 dB

the ratio of participating bit nodes. & was set to 0.95 meaning
95% of the nodes participated while 5% were erased.

At first, I = 100 iterations were run by the conventional
SPA where no node was erased. If a valid codeword was
obtained, the process was stopped and success was declared.
However, in case of conventional decoding failure, it was run
for the different ng bipartite graphs with specific erased nodes
for each, for a small number of iterations, |, = 20 iterations.
Any valid codeword retrieved from the sets was stored. The
codeword closest to the received vector is chosen as the
recovered one and success is declared. If no valid codewords
were obtained, the process was stopped denoting failure.

In a conventional SPA, the number of iterations set do not
usually serve any purpose especially if the decoder has chosen
a wrong path. The aim of this work was to show that a
performance gain could be obtained with increasing iterations
by the use of the recovery algorithm which partitions the
iterations into Ny bipartite graphs having 6 erased nodes. Very
good performance is obtained when Ic is increased and with

very few iterations I, of the subsets, as will be demonstrated in
section V.

V.RESULTS

Results for the Block Error Rate (BER) against (Ey/N,) are
shown with H matrices of different sizes such as m =200 n =
400 and m =400 n = 800 where m denotes the number of rows
(size of source bits) and n, the number of columns (size of
codeword). For codewords of length n = 400 in Fig. 3, a
coding gain of around 0.7 dB was reported for a BER of
1.33x107° with I = 2000 iterations. For codewords of length n
= 800 with a BER of 4.94x10°, a coding gain of 0.6 dB was
obtained with Ic = 2000 iterations as shown in Fig. 4. For
200x400 and 400x800 matrices, it can be clearly observed that
the conventional codes show the presence of an error floor
whereas the recovery ones tend to converge. Hence, the BER
performance increases with iterations for the recovery
algorithm as opposed to the conventional one. The use of more
subsets enables better BER performance. Fig. 5 further
confirms the capability of the recovery algorithm to provide
better error-correction with an increase in iterations. One
eventual application of the recovery algorithm could be in
space and interplanetary communications, most essentially in
Delay-Tolerant Networks (DTNs) where nodes usually have to
wait a long time for a communication link to be available for
the transfer of messages (bundles) to their destination [9]. For
that reason, the recovery algorithm is best suited to act on a
node by making an efficient use of iterations and providing
better error-correction capability thus solving problems
associated with high error rates. A further work could be an
appropriate design of the DTN architecture to incorporate the
recovery algorithm.
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Fig. 3 Graph of Block Error Rate against (Ey/N,) for H matrix m =
200 n =400
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Fig. 5 Graph of Block Error Rate against Number of Iterations, I¢ for
200x400 H Matrix (Ex/N,) = 4 dB and 400x800 H Matrix (Ey/N,) =
3.5dB

VI. CONCLUSION

The advantage of the recovery algorithm is that better
performance is obtained with increasing iterations (computing
resources used more efficiently) compared to the conventional
algorithm where the number of iterations do not help in
successful decoding. Analysis of the entropy of the codeword
has also shown that conventional schemes are inefficient in
terms of iteration use. Subsets giving the correct codeword
also tend to use fewer iterations. Future work may involve the
design and testing of a DTN architecture incorporating the
recovery algorithm for error-correction in intermittent
connectivities.
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