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 Abstract—In this paper, we propose an algorithm to compute 
initial cluster centers for K-means clustering. Data in a cell is 
partitioned using a cutting plane that divides cell in two smaller cells. 
The plane is perpendicular to the data axis with the highest variance 
and is designed to reduce the sum squared errors of the two cells as 
much as possible, while at the same time keep the two cells far apart 
as possible. Cells are partitioned one at a time until the number of 
cells equals to the predefined number of clusters, K. The centers of 
the K cells become the initial cluster centers for K-means. The 
experimental results suggest that the proposed algorithm is effective, 
converge to better clustering results than those of the random 
initialization method. The research also indicated the proposed 
algorithm would greatly improve the likelihood of every cluster 
containing some data in it.  
 

Keywords—Clustering algorithm, K-means algorithm, Data 
partitioning, Initial cluster centers. 

I. INTRODUCTION 
LUSTERING is an important tool for a variety of 
applications in data mining, statistical data analysis, data 

compression, and vector quantization. The goal of clustering 
is to group data into clusters such that the similarities among 
data members within the same cluster are maximal while 
similarities among data members from different clusters are 
minimal. 

K-means is a well known prototype-based, partitioning 
clustering technique that attempts to find a user-specified 
number of clusters (K), which are represented by their 
centroids. The K-means algorithm is as follows: 
1. Select initial centers of the K clusters. Repeat steps 2 

through 3 until the cluster membership stabilizes. 
2. Generate a new partition by assigning each data to its 

closest cluster centers. 
3. Compute new cluster centers as the centroids of the 

clusters. 
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Although K-means is simple and can be used for a wide 
variety of data types, it is quite sensitive to initial positions of 
cluster centers. The final cluster centroids may not be optimal 
ones as the algorithm can converge to local optimal solutions. 
An empty cluster can be obtained if no points are allocated to 
the cluster during the assignment step. Therefore, it is quite 
important for K-means to have good initial cluster centers. 

The algorithms for initializing the cluster centers for K-
means have been proposed in the past.  In this paper, some of 
the more recent proposals are reviewed [2, 3, and 7].  

Bradley and Fayyad (1998) proposed the refinement 
algorithm that builds a set of small random sub-samples of the 
data, then clusters data in each sub-samples by K-means. All 
centroids of all sub-samples are then clustered together by K-
means using the K centroids of each sub-sample as initial 
centers. The centers of the final clusters that give minimum 
clustering error are to be used as the initial centers for 
clustering the original set of data using K-means algorithm. 

Likas et al. (2003) proposed the global k-means clustering 
algorithm that constructs initial centers by recursively 
partitioning data space into disjointes subspaces using a k-d 
trees method. The cutting hyperplane used in the method is 
defined as the plane that is perpendicular to the highest 
variance axis derived by principal component analysis. The 
partitioning is performed until each of the leaf node (bucket) 
contains less than a predefined number of data instances 
(bucket size) or the predefined number of buckets have been 
created.  The centroids of data in the final buckets are then 
used as initial centers for K-means 

S.S. Khan and A. Ahmad (2004) proposed cluster center 
initialization algorithm (CCIA) based on considering values 
for each attribute of the given data set. This can provide some 
information leading to a good initial cluster center. The 
algorithm can be described as follows.  
1. Compute mean ( jμ ) and standard deviation ( jσ ) for every 

jth attribute values.  
2. Compute percentile Z1, Z2,…, Zk corresponding to area 

under the normal curve from – ∞ to (2s-1)/2k, s=1, 2, … ,k 
(clusters).  

3. Compute attribute values s s j jx z σ μ= ∗ +  corresponding to 
these percentiles using mean and standard deviation of the 
attribute. 

4. Perform K-means to cluster data based on jth attribute values 
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using sx  as initial centers and assign cluster labels to every 
data.  

5. Repeat the steps of 3-4 for all attributes (l).  
6. For every data item t create the string of the class labels     

Pt = (P1, P2,…, Pl) where Pj is the class label of t when 
using the jth attribute values for step 4 clustering.  

7. Merge data item which have the same pattern string Pt 
yielding K ′  clusters. The centroids of the K ′  clusters are 
computed. If K ′  > K, apply Merge- DBMSDC (Density-
based Multi Scale Data Condensation) algorithm [6] to 
merge these K ′  clusters into K clusters.  

8. Find the centroids of the K clusters and use the centroid as 
initial centers for clustering the original dataset using K-
Means. 
Although the mentioned initialization algorithms can help 

finding good initial centers for some extent, they are quite 
complex and some use the K-Means algorithm as part of their 
algorithms, which still need to use the random  method for 
cluster center initialization. 

II. PROPOSED ALGORITHM 
This story focus on the initialization of cluster centers for 

K-means. The proposed algorithm follows a novel approach 
that performs data partitioning along the data axis with the 
highest variance. The approach has been used successfully for 
color quantization [8]. The data partitioning tries to divide 
data space into small cells or clusters where intercluster 
distances are large as possible and intracluster distances are 
small as possible.  

 

 
Fig. 1 Diagram of ten data points in 2D, sorted by its X value, with 

an ordering number for each data point 
 
For instance, consider Fig. 1. Suppose ten data points in 2D 

data space are given.  
The goal is to partition the ten data points in Fig. 1 into two 

disjoint cells where the sum of total clustering errors of the 
two cells is minimal, see Fig. 2. Suppose a cutting plane 
perpendicular to X-axis will be used to partition the data. Let 
C1 and C2 be the first cell and the second cell respectively and 

1c  and 2c  be the cell centroids of the first cell and the 
second cell, respectively. The total clustering error of the first 
cell is thus computed by: 

1

1( , )
i

i
c C

d c c
∈
∑                         (1) 

and the total clustering error of the second cell is thus 
computed by: 

2

2( , )
i

i
c C

d c c
∈
∑                     (2) 

where ci is the ith data in a cell. As a result, the sum of total 
clustering errors of both cells are minimal (as shown in Fig. 
2.) 
 

1c

2c

 
Fig. 2 Diagram of partitioning a cell of ten data points into two 

smaller cells, a solid line represents the intercluster distance and dash 
lines represent the intracluster distance 

 

1c

2c

 
Fig. 3 Illustration of partitioning the ten data points into two smaller 

cells using m as a partitioning point. A solid line in the square 
represents the distance between the cell centroid and a data in cell, a 
dash line represents the distance between m and data in each cell and 

a solid dash line represents the distance between m and the data 
centroid in each cell 

 
The partition could be done using a cutting plane that 

passes through m. Thus  
             1 1( , ) ( , ) ( , )i i m md c c d c c d c c≤ +  and  

      2 2( , ) ( , ) ( , )i i m md c c d c c d c c≤ +                          (3)     
(as shown in Fig. 3). Thus 
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1 1

1 1( , ) ( , ) ( , )
i i

i i m m
c c c c

d c c d c c d c c C
∈ ∈

≤ + ⋅∑ ∑  and 

2

2 2

2 2( , ) ( , ) ( , )
i i

i i m m
c c c c

d c c d c c d c c C
∈ ∈

≤ + ⋅∑ ∑                 (4) 

 
We will call m as the partitioning data point where |C1| and 

|C2| are the numbers of data points in cluster C1 and C2 
respectively. The total clustering error of the first cell can be 
minimized by reducing the total discrepancies between all data 
in first cell to m, which is computed by: 

1

( , )
i

i m
c C

d c c
∈
∑                         (5) 

The same argument is also true for the second cell. The 
total clustering error of the second cell can be minimized by 
reducing the total discrepancies between all data in second cell 
to m, which is computed by: 

2

( , )
i

i m
c C

d c c
∈
∑                                 (6) 

 

where ( , )i md c c is the distance between m and each data in 
each cell. Therefore the problem to minimize the sum of total 
clustering errors of both cells can be transformed into the 
problem to minimize the sum of total clustering error of all 
data in the two cells to m. 

The relationship between the total clustering error and the 
clustering point may is illustrated in Fig. 4, where the 
horizontal-axis represents the partitioning point that runs from 
1 to n where n is the total number of data points and the 
vertical-axis represents the total clustering error. When m=0, 
the total clustering error of the second cell equals to the total 
clustering error of all data points while the total clustering 
error of the first cell is zero. On the other hand, when m=n, 
the total clustering error of the first cell equals to the total 
clustering error of all data points, while the total clustering 
error of the second cell is zero. 

 

 
Fig. 4 Graphs depict the total clustering error, lines 1 and 2 represent 
the total clustering error of the first cell and second cell, respectively, 

Line 3 represents a summation of the total clustering errors of the 
first and the second cells 

 
A parabola curve shown in Fig. 4 represents a summation 

of the total clustering error of the first cell and the second cell, 
represented by the dash line 2. Note that the lowest point of 
the parabola curve is the optimal clustering point (m). At this 

point, the summation of the total clustering error of the first 
cell and the second cell are minimum. 

Since time complexity of finding the optimal point m is 
O(n2), we then use the distances between adjacent data along 
the X-axis to find the approximated point of n but with time of 
O(n). 

Let 2
1( , )j j jD d c c +=  be the squared Euclidean distance of 

adjacent data points along the X-axis.  

If i is in the first cell then ( , )
m

m i j
j i

d c c D
=

≤ ∑ . On the one 

hand, if i is in the second cell then ( , )
i

m i j
j m

d c c D
=

≤ ∑  (as 

shown in Fig. 5). 
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Fig. 5 Illustration of ten data points, a solid line represents the 

distance between adjacent data along the X-axis and a dash line 
represents the distance between m and any data point 

 
The task of approximating the optimal point (m) in 2D is 

thus replaced by finding m in one-dimensional line as shown 
in Fig. 6. 

 
Fig. 6 Illustration of the ten data points on a one-dimensional line 

and the relevant Dj 
 
The point (m) is therefore a centroid on the one-

dimensional line (as shown in Fig. 6), which yields   
1

1
( , ) ( , )

m n

m i m i
i i m

d c c d c c
−

= =

≈∑ ∑  

Let 
1

i

i j
j

dsum D
=

= ∑  and a centroidDist can be computed 

by:  

 1

n

i
i

dsum
centroidDist

n
==
∑

                        (7) 

Therefore, the total clustering errors of the two smaller cells 
partitioned by the plane passing through the data point nearest 
to centroidDist are similar. 
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It is possible to choose either the X-axis or Y-axis as the 
principal axis for data partitioning. However, data axis with 
the highest variance will be chosen as the principal axis for 
data partitioning. The reason is to make the inter distance 
between the centers of the two cells as large as possible while 
the sum of total clustering errors of the two cells are reduced 
from that of the original cell. To partition the given data into k 
cells, we start with a cell containing all given data and 
partition the cell into two cells. Later on we select the next cell 
to be partitioned that yields the largest reduction of total 
clustering errors (or Delta clustering error). This can be 
defined as Total clustering error of the original cell – the sum 
of Total clustering errors of the two sub cells of the original 
cell. This is done so that every time we perform a partition on 
a cell, the partition will help reduce the sum of total clustering 
errors for all cells, as much as possible. 

We can now use the partitioning algorithm to partition a 
given set of data into k cells. The centers of the cells can then 
be used as good initial cluster centers for the K-means 
algorithm. Following are the steps of the proposed algorithm. 
1. Let cell c contain the entire data set.  
2. Sort all data in the cell c in ascending order on each 

attribute value and links data by a linked list for each 
attribute. 

3. Compute variance of each attribute of cell c. Choose an 
attribute axis with the highest variance as the principal axis 
for partitioning.  

4. Compute squared Euclidean distances between adjacent 
data along the data axis with the highest variance 

2
1( , )j j jD d c c +=  and compute the 

1

i

i j
j

dsum D
=

= ∑   

5. Compute centroid distance of cell c: 

1

n

i
i

dsum
centroidDist

n
==
∑

 

  Where dsumi is the summation of distances between the 
adjacent data.  

6. Divide cell c into two smaller cells. The partition boundary 
is the plane perpendicular to the principal axis and passes 
through a point m whose dsumi approximately equals to 
centroidDist. The sorted linked lists of cell c are scanned 
and divided into two for the two smaller cells accordingly 

7. Compute Delta clustering error for c as the total clustering 
error before partition minus total clustering error of its two 
sub cells and insert the cell into an empty Max heap with 
Delta clustering error as a key. 

8. Delete a max cell from Max heap and assign it as a current 
cell. 

9. For each of the two sub cells of c, which is not empty, 
perform step 3 - 7 on the sub cell. 

10. Repeat steps 8 - 9. Until the number of cells (Size of heap) 
reaches K.  

11. Use centroids of cells in max heap as the initial cluster 
centers for K-means clustering 

III. EXPERIMENTS AND RESULTS  
We evaluated the proposed algorithm on 10 data sets from 

UCI Machine Learning Repository [4]. We compared 
clustering results achieved by the K-Means algorithm using 
random initial centers and initial centers derived by the 
proposed algorithm. The clustering results of K-means using 
random initial centers are the average results over 10 runs 
since each run gives different results. 

The measurements we used to compare the clustering 
results were 

 1) The sum of the squared error distances between the data 
and the centroid of their clusters (SSE). The SSE results on 10 
UCI data sets are shown in Fig. 7 and 8.  

2) Entropy to measure impurity of each cluster 

1

log
c

j j
j

E P P
=

= −∑                                 (8) 

where c is number of classes of data, Pj is the proportion of 
data of class j in a given cluster. The averaged Entropy for all 
clusters are then used for comparison. The averaged Entropy 
on 10 UCI data sets are shown in Fig. 9 and 10. 

From the two measurements we can see that the proposed 
algorithm outperform the random initialization algorithm in 
most cases. The proposed algorithm also performs much better 
than the random initialization algorithm as the required 
number of clusters increases. The execution times of K-Means 
when using proposed algorithm were also much less than the 
average execution times of K-Means when using random 
initialization algorithm, especially for large data sets e.g. 
Letter, Pendigits and Optdigits. This may be due to the initial 
cluster centers generated by the proposed algorithm are quite 
close to the optimal solutions. The execution time 
comparisons for the three UCI data sets are shown in Fig.11. 
We also compare the clustering results from proposed 
algorithm with the results from the Clustering Center 
Initialization Algorithm (CCIA). Fig. 12 shows the clustering 
results in terms of classification error (%) when a class of data 
in a cluster is predicted to be the majority class of data in the 
cluster.  

It can be seen that proposed algorithm performances are 
comparable to the CCIA. However, the proposed algorithm is 
much simpler to implement than CCIA. 
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Fig. 7 SSE results on UCI data sets: Wine, Iris, Letter, Segmentation 

and Pendigits 
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Fig. 8 SSE results on UCI data sets: Optdigits, Pima, Glass, 

Ionosphere and Vehicle 
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Fig. 9 Entropy results on UCI data sets: Wine, Iris, Letter, 

Segmentation and Pendigits 
 
 

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

10 20 40 80 2 4 8 16 6 12 24 48 2 4 8 16 4 8 16 32

Optdigits Pima Glass Ionosphere Vehicle
Number of clusters

Random Proposed method

 
Fig. 10 Entropy results on UCI data sets: Optdigits, Pima, Glass, 

Ionosphere and Vehicle 
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Fig. 11 Execution time results on three large UCI data sets: Letter, 

Pendigits and Optdigits 
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Fig. 12 Classification error comparisons among the three methods, 

Cluster Center Initialization Algorithm (CCIA), Random 
Initialization Algorithm and Proposed Algorithm 

 

IV. CONCLUSION 
A novel initialization algorithm of cluster centers for K-

means algorithm has been proposed. The algorithm was based 
on the data partitioning algorithm used for color quantization. 
A given data set was partitioned into k clusters in such a way 
that the sum of the total clustering errors for all clusters was 
reduced as much as possible while inter distances between 
clusters are maintained to be as large as possible.  

The proposed algorithm is very effective, converges to 
better clustering results and almost all cluster have some data 
in its. The experimental results show that the proposed 
algorithm performs better than random initialization in most of 
the experimental cases and can reduce running time of K-
Means significantly for large data sets. The performances of 
proposed algorithm are also comparable to the CCIA however 
the proposed algorithm is much simpler and easier to 
implement. 
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