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 
Abstract—Equal channel angular pressing (ECAP) of 

commercial Al-Mg-Si alloy was conducted using two strain rates. 
The ECAP processing was conducted at room temperature and at 
250°C. Route A was adopted up to a total number of four passes in 
the present work. Structural evolution of the aluminum alloy discs 
was investigated before and after ECAP processing using optical 
microscopy (OM). Following ECAP, simple compression tests and 
Vicker’s hardness were performed. OM micrographs showed that, the 
average grain size of the as-received Al-Mg-Si disc tends to be larger 
than the size of the ECAP processed discs. Moreover, significant 
difference in the grain morphologies of the as-received and processed 
discs was observed. Intensity of deformation was observed via the 
alignment of the Al-Mg-Si consolidated particles (grains) in the 
direction of shear, which increased with increasing the number of 
passes via ECAP. Increasing the number of passes up to 4 resulted in 
increasing the grains aspect ratio up to ~5. It was found that the 
pressing temperature has a significant influence on the 
microstructure, Hv-values, and compressive strength of the processed 
discs. Hardness measurements demonstrated that 1-pass resulted in 
increase of Hv-value by 42% compared to that of the as-received 
alloy. 4-passes of ECAP processing resulted in additional increase in 
the Hv-value. A similar trend was observed for the yield and 
compressive strength. Experimental data of the Hv-values 
demonstrated that there is a lack of any significant dependence on the 
processing strain rate. 
 

Keywords—Al-Mg-Si alloy, Equal channel angular pressing, 
Grain refinement, Severe plastic deformation.  

I. INTRODUCTION 

RAIN size can be seen as a key microstructural factor 
affecting nearly all aspects of the physical and 

mechanical behavior of polycrystalline metals [1]. Bulk 
ultrafine-grained (UFG, < 1µm) and nanocrystalline (NC, < 
100 nm) materials have attracted considerable attention thanks 
to the potential achieving unusual mechanical properties as 
well as improving strength-to-weight ratio [2]. Among the 
various techniques used for producing UFG and NC-structured 
materials, severe plastic deformation (SPD) techniques have 
been successfully applied to a large number of metallic alloys 
to achieve ultrafine-grained structures with unique properties 
[3], [4].  

High strength and superplastic properties are commonly 
achieved in light alloys, as a result of the refinement of coarse-
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grained structures down to the nanoscale. Among light alloys, 
the AA6XXX alloys based on the Al-Mg-Si system are widely 
used because they show a good combination of formability, 
plasticity, corrosion resistance, capacity for crucial shape 
forming along with their ease for joining, high strength-to-
weight ratio, extrude-ability, and an excellent response to 
surface finishing operations [5], [6]. These properties have 
become increasingly focused for versatile applications of Al-
Mg-Si alloys such as design of armor structures, rocket, 
missile casing, light-weight defense vehicle, cars, car body 
outer panels, and marine structures [7]-[9]. To further improve 
their mechanical properties, several studies tried to reduce the 
grain size by SPD using equal channel angular pressing 
(ECAP) [10]-[12]. The fact that the material cross section is 
unchanged during pressing is significantly a main advantage 
achieved in ECAP, which tells that the material could be 
pressed repeatedly to reach a high total strain. Furthermore, 
ECAP has a major industrial significance because bulk 
materials could be processed using this technique [13].  

Different studies described the fundamental process of 
metal flow during ECAP [14]. The principle of process 
description is illustrated schematically in Fig. 1, where a die is 
designed to contain a channel that is bent through an 
immediate angle of 90◦. A sample is machined to fit in into the 
channel, which is then pressed through the die using a plunger 
[15]. 

 

 

Fig. 1 Schematic illustrations of the ECAP die [17] 
 
The strain imposed on the sample in each passage through 

the die is dependent primarily upon the angle between the two 
parts of the channel, Φ (90◦ as shown in Fig. 1), and also to a 
minor extent the angle of curvature, Ψ, representing the outer 
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arc of curvature where the two channels intersect. Generally, 
ECAP is conducted using a die having a channel angle of 
Φ=90◦ to achieve optimum results [15]. A well acknowledged 
method to estimate the magnitude of total strain [16]. The 
accumulated strain eq by passage through ECAP die is given 
by: 
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where N is the nature of separate passages through the die. 

UFG and NC-structured materials have a number of unusual 
properties still requiring deeper investigations to be fully 
understood. As a result, the present study aims to examine 
some activities within this area that are currently in progress 
among research. Results on Al alloys deformed by ECAP will 
be presented giving particular emphasis on the properties 
achieved by refining the materials to the ultrafine grain scale.  

II. EXPERIMENTAL PROCEDURES 

Hot rolled rods of commercial Al-Mg-Si alloy are used in 
this study. The chemical composition of the as-material is 
given in Table I. The rods are machined to billets with 
dimensions of 14 mm in diameter and 70 mm in length.  

TABLE I 
 CHEMICAL COMPOSITION OF AL-MG-SI ALLOY 

ELEMENT SI FE CU MG SN SB ZN AL 

WT.% 0.366 0.129 < 0.024 ≈ 0.377 < 0.024 > 0.331 < 0.323 BAL.

 
The ECAP die and plunger were designed taking into 

consideration the high pressure inside the deformation zone. 
They were manufactured from three assembled high strength 
steel parts (W320 heat treated to HRC of about 55). The die 
angles were set at: Ψ = 6° and φ =90◦. In the present work, 
Route A (the sample is pressed without rotation) was adopted 
up to a total number of four passes (corresponding to an 
equivalent strain of eq ~ 4.24 according to (1)). The billets 
were lubricated using graphite-based lubricant and pressed 
into the ECAP die at a cross head speed of 6 and 60 mm/min 
using 500 KN universal testing machines. The ECAP process 
was conducted first at room temperature then at 250°C. 

The experimental results explored the effects of ECAP 
processing temperature, processing cross head speed, and 
number of passes through the ECAP die on the mechanical 
properties. Fig. 2 shows the billets images before and after 
ECAP processing. The shape and dimensions of billet was 
changed after ECAP procession, where mechanical properties, 
microstructures, and further investigation are done on the 
obtained billet.  

In order to provide clear description of the ECAP condition, 
this investigation used three digits designation. The first digit 
indicates the ECAP processing temperature (R for room 
temperature and H for 250°C), the second digit indicates the 
cross head speed (1 and 2 for cross-head speed of 0.1 and 1 
mm/sec, respectively), and the third digit indicates the number 
of ECAP passes. 

Following ECAP, simple compression tests were performed 
using a material testing system (MTS-810) with a constant 
speed of 5 mm/min. Compression specimens having 14 mm in 
gauge length were cut parallel to the longitudinal axis of the 
ECA-pressed billets. The deformed specimen showed very 
little barreling (less than 2%). For optical microscopy 
imaging, the samples obtained after ECAP were then sliced 
perpendicularly to the longitudinal axis with a thickness of ~ 5 
mm. The samples were polished to a mirror-like finish. 
Microstructural evolution of the disks before and after ECAP 
was characterized by a Leica Eclipse MA 100 optical 
microscopy. Hardness measurements were also conducted on 
the polished surfaces using digital metallic Vicker's hardness 
tester (TH 721) before and after ECAP. Testing was carried 
out on the surfaces under applied load of 10 N and a dwell 
time of 15 sec for each separate measurement and a reported 
value of the average of 5 readings is recorded. 

 

 

(a) 

 

(b) 

Fig. 2 Snap shots for sample (a) before and (b) after ECAP 
processing  

III. RESULTS AND DISCUSSION 

A. Microstructure Observations 

The microstructure of the as-received samples of Al-Mg-Si 
alloy is shown in Fig. 3. It revealed the formation of almost 
equiaxed grains with average grain size of 65μm with well-
defined grain boundaries in the vicinity of the sample center. 
Figs. 4 and 5 show the typical micrographs taken from the 
central portion of the disc post ECAP processing via 1-up to-4 
passes of route A at a processing temperature of 250 °C, and 1 
pass at room temperature at a strain rate of 1.4 x10-3 and 1.4x 
10-2 s-1, respectively. Influence of the deformation amount on 
the shape and size of the grains developed during deformation 
is clearly depicted in the images displayed. It is clear that 
increasing the amount of induced strain from 1-to-4 pass 
resulted in severe elongation of the structure in the shear 
direction of the ECAP processes as shown in Figs. 4 and 5 (a)-
(e)) compared to Fig. 3.  

Inspection of these microstructures revealed important 
observations which were consistent for all processing 
conditions. Grain was revealed via optical microscopy (OM) 
as shown in Figs. 4 and 5. In order to explain the influence of 
ECAP processing on the mechanical properties of the 
processed alloy, the following structural features will be 
discussed.  

The average grain size of the as-received Al-Mg-Si disc 
tends to be larger than the size of the ECAP processed discs 
(achieved in the first three passes) due to the fact that original 
grains breakup into bands of sub grains. These sub boundaries 
subsequently evolve with further pressings into high angle 
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grain boundaries [16]. The average size of the equiaxed grains, 
which dominated the microstructure before ECAP processing, 
is determined in the first pass through the die by the width of 
the subgrain arrays measured perpendicular to their longer 
axes [15]. Moreover, significant differences in the grain 
morphologies of the as-received and processed discs were 
observed. The angle of orientation of the sheared grains of 
each condition should reflect the amount of straining that the 
structure went through, which represented the losses in energy 
in terms of rigid body rotation and densification of the 
structure. Intensity of deformation was observed via alignment 
of the Al-Mg-Si consolidated particles (grains) in the direction 
of shear, which increased with increasing the number of 
passes via ECAP as shown in Figs. 4 (c), (d) and 5 (c), (d) 
compared to Figs. 4 (a), and 5 (a) for the ECAP samples, 
processed at strain rate of 1.4 x10-3 and 1.4x 10-2 s-1, 
respectively. 

 

 
Fig. 3 OM micrographs of as-received Al-Mg-Si alloy  

 
During the ECAP process, SPD was realized by 

accumulated plastic deformation, which increased obviously 
with the increase of extrusion pass [18]. This finding can be 
seen in Figs. 4 and 5, where the elongated grains are inclined 
to the horizontal X-direction over a range of angles from 20° 
to 60° as the number of ECAP passes increased from 1-up to-4 
passes for the tow condition of strain rates (Fig. 4). A similar 
trend was observed for the discs processed at a strain rate of 
1.4x 10-2 s-1 (Fig. 5). It showed that total introduced 
deformation of εeq ~ 4.24 (which corresponds to processing 
through 4 passes) wasn’t enough for the formation of a 
uniform equiaxed UFG structure (Figs. 4 and 5). 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Fig. 4 OM micrographs of Al-Mg-Si alloy after ECAP processing at 
strain rate of 1.4x10-3 s-1 at (a)-(d) 250 °C and (e) room temperature 

through (a), (e) 1, (b) 2, (c) 3, (d) 4 passes  
 

Due to the SPD induced with increasing the number of 
passes, the as-received equiaxed grains were heavily elongated 
in different directions following the orientation of slip planes 
as shown in Figs. 4 (c), (d) and 5 (c), (d). Even within the 
same grain, several orientations of the subgrains revealed 
deformation on more than one slip plane of the aluminum 
alloy indicative of multiple slip, which was manifested in Figs. 
4 (d) and 5 (d) which agrees with the theoretical shearing 
pattern that developed when processing a polycrystalline 
materials via ECAP [15]. This could provide an indication of 
the evolution of substructure of medium-to-high angle 
boundaries which matches with [19]. Further investigation 
with SEM and TEM is necessary to validate this observation. 

Increasing the number of passes up to 4 resulted in a slight 
increase in the grains aspect ratio (L/W) from ~4.5 (Fig. 4 (a)) 
up to ~5 (Fig. 4 (d)) which is in accordance with [20]. A 
similar trend was observed for the discs processed at the 
higher strain rate (Figs. 5 (a)-(d)).  

Increasing the strain rate induced higher degree of strain 
hardening on the structure, which was manifested by slight 
excess elongation (higher aspect ratio) of the sheared grains 
compared to the ECAP processed disc at the lower strain rate 
deformed at the same processing conditions as shown in Figs. 
5 (a)-(e) compared to Figs. 4 (a)-(e). These results 
demonstrated that the strain rate has no significant influence 
on the equilibrium structure formed by ECAP; however, since 
recovery occurs more easily when pressing at the slower 
speeds, these lower strain rates produced more equilibrated 
microstructures [14]. Moreover, increasing the strain rate 
resulted in increasing the intensity of shear lines as shown in 
Fig. 5 (d) (at strain rate of 1.4x 10-2 s-1) compared to the 
ECAP disc processed at the same number of passes at lower 
strain rate (1.4x 10-3 s-1) as shown in Fig. 5 (d). 

50 µm 

50 µm 

50 µm 

50 µm 

50 µm 
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were independent of the strain rate; moreover, the processing 
number of route has an insignificant influence on the 
mechanical properties. 

ECAP processing at lower strain rate via 1-pass at room 
temperature revealed an increase of 14.6 and 7.3% increase in 
the YS and US, respectively, of Al-Mg-Si discs accompanied 
with 30.7% decrease in the elongation-to-failure compared to 
the counterparts processed at 250°C. A similar behavior was 
recorded for the disc processed at the higher strain rate, where 
1-pass at room temperature revealed an increase of 11.6 and 
7.2% increase in the YS and US, respectively, of Al-Mg-Si 
discs accompanied with 30% decrease in the elongation-to-
failure compared to the counterparts processed at 250°C. All 
of these results demonstrated that, although it is generally 
easier to press specimens experimentally at high temperatures, 
optimum ultrafine-grained microstructures will be attained 
when the pressing is performed at the lowest possible 
temperature, where the pressing operation can be reasonably 
conducted without the introduction of any significant cracking 
in the billets. By maintaining a low pressing temperature, this 
ensures the potential for achieving both the smallest possible 
equilibrium grain size and the highest fraction of high-angle 
boundaries [14]. 

The mechanical properties measurements revealed that the 
Hv-values and the strength of deformed Al-Mg-Si discs were 
significantly higher than the 1st received ones. 
Simultaneously, the mechanical properties for the ECAP 
processed discs at room temperature increased significantly 
compared to the hot processed discs. The strengthening 
mechanisms associated with SPD may include solid solution 
strengthening, strain hardening, and grain refinement 
strengthening [22]-[24]. 

The substitution solute atoms of the alloying elements in 
Al-Mg-Si distort the crystal lattice, hinder dislocation 
mobility, and hence strengthen the alloy. The amount of strain 
induced via ECAP resulted in the generation of high density of 
dislocations [25].  

As discussed elsewhere [24]-[26], dislocation strengthening 
(strain hardening) contributed significantly to the strength and 
hardness enhancement. ECAP processed discs were subjected 
to high amount of strain (especially in case of processing at 
room temperature). The multiplication of dislocations 
occurred at a faster rate than those annihilated by dynamic 
recovery (strain softening). The excess dislocations within 
grains and near grain or subgrain boundaries made dislocation 
glide more difficult. The dislocation density in the deformed 
discs increased with ECAP deformation, due to dislocation 
multiplication or the formation of new dislocations. The net 
result was that the motion of a dislocation is hindered by the 
presence of other dislocations, which was consistent with the 
significant increase of hardness after ECAP processing. As the 
dislocation density increased, the resistance to dislocation 
motion by other dislocations became more pronounced. Thus, 
the imposed stress necessary to deform a metal increased with 
increasing cold work. 

A significant increase of the material hardness and strength 
post ECAP can be mainly attributed to the formation of the 

homogeneous UFG microstructure that provided a significant 
strengthening according to the Hall-Petch law [18]. 

CONCLUSION 

In the current work, ECAP processing of commercial Al-
Mg-Si alloy was conducted using two strain rates of 1.4 x10-3 
and 1.4x 10-2 s-1 at room temperature and at 250°C. Route A 
was adopted up to a total number of four passes. The 
following conclusions can be drawn: 
1) A significant difference in the grain morphologies of the as-

received and processed discs was observed. 
2) Increasing the number of passes up to 4 resulted in 

increasing the grains aspect ratio up to ~ 5. 
3) 1-pass resulted in increase of Hv-value by 42% compared 

to that of the as-received alloy, whereas 4-passes of ECAP 
processing resulted in additional increase in the Hv-value. 

4) Increasing the number of passes up to 4 at lower strain rate 
revealed 50 and 31% increase in the YS and US 
respectively of Al-Mg-Si alloy discs, accompanied with a 
decrease in fracture strain of 56.5% compared to the un-
deformed discs. 

5) The mechanical properties showed an insignificant 
dependence on the processing strain rate. 

6) The ECAP processing temperature has a significant 
influence on the microstructure, Hv-values, and 
compressive strength of the processed discs. 

7) It was proved that total introduced deformation εeq ~ 4.24 
(which correspond to processing through 4 passes) wasn’t 
enough for formation of uniform equiaxed UFG structure. 
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