International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:11, No:2, 2017

Enhanced Planar Pattern Tracking for an Outdoor
Augmented Reality System

L. Yu, W. K. Li, S. K. Ong, A. Y. C. Nee

Abstract—In this paper, a scalable augmented reality framework
for handheld devices is presented. The presented framework is
enabled by using a server-client data communication structure, in
which the search for tracking targets among a database of images is
performed on the server-side while pixel-wise 3D tracking is
performed on the client-side, which, in this case, is a handheld mobile
device. Image search on the server-side adopts a residual-enhanced
image descriptors representation that gives the framework a
scalability property. The tracking algorithm on the client-side is
based on a gravity-aligned feature descriptor which takes the
advantage of a sensor-equipped mobile device and an optimized
intensity-based image alignment approach that ensures the accuracy
of 3D tracking. Automatic content streaming is achieved by using a
key-frame selection algorithm, client working phase monitoring and
standardized rules for content communication between the server and
client. The recognition accuracy test performed on a standard dataset
shows that the method adopted in the presented framework
outperforms the Bag-of-Words (BoW) method that has been used in
some of the previous systems. Experimental test conducted on a set
of video sequences indicated the real-time performance of the
tracking system with a frame rate at 15-30 frames per second. The
presented framework is exposed to be functional in practical
situations with a demonstration application on a campus walk-
around.

Keywords—Augmented reality framework, server-client model,
vision-based tracking, image search.

1. INTRODUCTION

HE popularization of smartphones has brought up new

research topics in various research fields. Mobile
Augmented Reality (AR) evolves with the advent of powerful
handheld devices. AR enhances a user’s perspective by
overlaying virtual information on top of the camera view with
accurate 3D registration. Early mobile AR systems are
cumbersome, requiring a heavy backpack to carry the PC,
sensors, display unit, batteries and other equipment with cable
connections. One example is the early work of the “touring
machine” created by Feiner et al. [1]. Compared with early
wearable computing devices, the size and weight of current
smartphones have been reduced dramatically although mobile
devices still have their limitations on computational abilities.
Another limitation of most mobile AR frameworks is the
tracking scalability. Since tracking requires relatively

L. Yu (Dr) was a PhD candidate at the Mechanical Engineering
Department, National University of Singapore (e-mail: a0068412@u.nus.edu).

W. K. Li is a PhD candidate with the Integrative School for Science and
Engineering at the National University of Singapore (e-mail:
wenkail@u.nus.edu).

S. K. (Prof) Ong and A. Y. C. Nee (Prof) are with the Mechanical
Engineering Department, National University of Singapore (e-mail:
mpeongsk@nus.edu.sg, mpeneeyc@nus).

intensive computation power, the number of tracking targets to
be processed for each frame is extremely small. The
recognition system on the other hand helps to solve the
scalability issue. A framework, that has the capability to
process tracking targets from a large database and facilitates a
wide range of applications, is termed a scalable AR
framework in this paper. Some of the research works focused
on porting previous desktop-based recognition and tracking
systems to mobile devices with algorithm modification and
hardware acceleration. Wagner et al. [3] brought markerless
tracking to mobile devices with modified classic descriptors.
Guan et al. [2] proposed on-device mobile visual location
recognition using vision and sensor integrated recognition
algorithms. Their work demonstrates the feasibility of
functional on-device recognition and tracking system.
OpenGL ES provides the information displaying ability for
mobile devices. As proposed in the concept of Augmented
Reality 2.0 [4], widely deployable mobile AR experience can
be achieved by combining user generated contents,
geographical location services and various web services
through web APIs. The proposed research is a practical
implementation of the Augmented Reality 2.0 concept.

Recognition and tracking are the enabling technologies of a
scalable AR framework. Image recognition and vision-based
3D tracking are fundamentally two different procedures, each
of which attracts large amount of research effort in parallel.
Research works in these two fields influence each other. For
example, the classic vocabulary-tree based object recognition
algorithm by Nister and Stewenius [5] and the randomized
tree- based keypoint recognition algorithm for 3D tracking [6]
use similar approaches based on a tree-structure for time and
space efficiency. In a scalable AR framework, recognition of
tracking targets among a large database introduces the
scalability property to the system while on-device 3D tracking
ensures tracking accuracy and efficiency.

Server-client structure based large-scale AR tracking
systems have been discussed in some research works [7]-[9].
Gammeter et al. [7] proposed a server-client approach in
which a very large database can be plugged into a mobile AR
system. Takacs et al. [8] proposed a system for mobile phones
that matches camera-phone images against a large database of
location-tagged images using a robust image retrieval
algorithm. In their work, feature matching is still performed on
the mobile device. On the server side, the large database is
preprocessed so that it is clustered into loxel-based feature
stores, and a small cluster of the large database is
communicated constantly from the server to the client. In this
work, only image recognition is performed, and no real-time

156

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:11, No:2, 2017

tracking of the camera pose is provided. Gammeter et al. [7]
emphasized on the handling of a large database, whereas a
simple 2D tracking is deployed for on-device tracking.

Jaewon et al. [9] equipped their system with recognition and
3D tracking. However, their system requires user input to
trigger a tracking process. Both works only provide tracking
solutions without the consideration of other important factors
in a mobile AR system, such as content communication and
representation.

Although there are some research works discussing scalable
AR frameworks based on server-client data communication,
there are few works on the research of combining image
retrieval and image-based tracking. This paper demonstrates
the feasibility of combining these two tasks in a single
processing pipeline and presents an on-device 3D tracking and
rendering framework that can achieve real-time and automatic
virtual content augmentation. A scalable AR framework based
on a server-client communication architecture is proposed.
The search for tracking targets is realized by using the Vector
of Locally Aggregated Descriptors (VLAD) descriptor
generation [10] and the fast approximate nearest neighbors
search in high-dimension [11], the tracking targets are fronto-
parallel planar images based on a novel approach from the
authors’ previous works [12], [13]. Automatic streaming of
content is achieved by continuously monitoring the system
status. The recognition ability of the proposed framework is
demonstrated to be robust and efficient based on the
experiments conducted. The functionality of the framework in
practical applications is demonstrated in a campus walk-
around, with a pre-prepared database of planar surfaces
collected around the campus and assigned virtual contents.

ERESREE
E§§§E5§

Mashup Content | “wackabk™ “hap.
costent”™ |

Server-side Recognition
and Content Management

Key-Frame

Trackable
Content

The main contributions of the paper are (1) enhanced
recognition accuracy with VLAD, (2) integrating sensor
feature matching and intensity-based optimization to improve
tracking, and (3) real-time and automatic content streaming
using key-frame auto-selection, client working phase monitor
and AR content delivering.

The remaining of the paper is organized as follows. Section
IT discusses the proposed scalable AR framework. Section I1I
describes the implementation of the server-side recognition
approach, followed by the client-side tracking in Section IV.
In Section V, the methods for detecting valid key-frames and
monitoring state switching are discussed. Section VI gives a
description of content management and delivery. Experimental
results and application demonstration and evaluations are
presented in Section VII. The conclusion of the work is given
in Section VIII.

II. PROPOSED SCALABLE AR FRAMEWORK

Building on top of the image search methods and the state-
of-the-art 3D tracking algorithms, an optimized scalable
mobile AR framework with automatic virtual content
streaming is proposed in this research. Fig. 1 shows the
structure of the proposed system. To enable the mobility of the
system, the proposed framework is implemented on a
smartphone with part of the computation work in the pipeline
performed on a remote server. The communication between
the server and the client involves key-frame upload and
trackable target and content stream-in. Image search is
performed on the server taking advantage of the high
computational power of the server workstations, while
tracking is performed locally on the mobile device to ensure
real-time 3D tracking and rendering.

Tracking

Client-side Tracking
and Rendering

Fig. 1 Server-client framework for large-scale AR applications

Fig. 2 illustrates the roles of the different computer vision
algorithms in the processing pipeline. Different levels of

abstraction of visual information extracted from a single
image perform different roles in the recognition, pose

157

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:11, No:2, 2017

matching, and tracking processes. Three processing stages are
performed to register and render the virtual information to an
obtained camera frame correctly. Starting with the recognition
process, the template image for tracking is selected from a
large database. The feature points are sampled from the
images and assigned with descriptors. The descriptors are
further abstracted by using a feature quantization approach,
e.g., the Bag-of-Words (BoW) and the residual-based feature
approaches, and compared against a large database. In the
detection stage, feature points are used directly with spatial
information and matched against those in the template image.
In the tracking stage, the pixel intensities instead of feature
descriptors are used for a more accurate estimation. This can
be explained as a coarse-to-fine matching process. At the start
of the pipeline, the visual information is encoded and
compressed so that this information can be compared against a
large database efficiently. At the end of the pipeline, the pixel
intensity and the raw information of the image are used
directly for accurate 3D registration.

Processing Pipeline

Without the accessibility to a wide range and meaningful
virtual contents, the AR framework will have little
significance for practical applications. Therefore, content
delivery and rendering are important elements of an AR
framework. There are some published works on the
approaches for content management and delivery for AR
frameworks based on the server-client structure. Langlotz et
al. [14] introduced the Augmented Reality Markup Language
(ARML) and Maclntyre et al. [15] introduced the KARML,
which encloses the geographical information. Both approaches
enclose the tracking information and rendering information on
a single formatted file with pre-defined standards. In the
proposed framework, a rendering engine is included in the
system, which supports the rendering of 3D contents, text,
video and images. Content communication between the server
and client is enclosed in the JavaScript Object Notation
(JSON) format.

Visual Information Abstraction

Template Retrieval

fwnms e N

a=~-m

v

Feature Quantization
[10010001010...]

Keypoint Binary Deseritptor
[100010010011...]

Patch pixel intensities
(0-255)

Fig. 2 Levels of Visual Information Abstraction in the Processing Pipeline

III. SERVER-SIDE RECOGNITION

Feature quantization is a process that abstracts the visual
information from the input image and represents its
identifiable characteristics against a database. As a large
database is to be dealt with, the feature quantization method to
be selected is critical to the performance of the system. BoW
[5] is a widely adopted approach to solve the image retrieval
problem. The vocabulary tree structured BoW algorithm has
been demonstrated to be practical in some scalable mobile AR

systems [7], [9]. The vocabulary tree is built by using
hierarchical k-means clustering. The tree is built up level by
level up to a maximum number of L levels with K branches in
a level. To quantize an input image, a histogram is generated
in such a way that each feature descriptor extracted from the
image is propagated down the vocabulary tree by comparing
the descriptor vector to the K candidate cluster centers at each
level and following the path of the closest one. The distance

158

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:11, No:2, 2017

between their histograms quantizes the similarity between the
images.

VLAD has been reported recently [10], and it uses a
codebook generated using k-means clustering on the training
dataset to quantize the image. Instead of calculating the
histogram distribution of the feature descriptors in the
codebook, the residuals to each cluster centers are
accumulated. This approach results in a short descriptor for
image representation. Evaluation on the performance of the
algorithms has demonstrated that the VLAD approach out-
performs the BoW approach for most of the test datasets. In
this research, image descriptors are generated by using VLAD,
which is used to quantize images for fast and accurate retrieval
results. The feature descriptors used here are the Scale-
invariant Feature Transform (SIFT) descriptors [16] as their
effectiveness in visual recognition has been well tested.
Feature matching in high-dimension is solved using the tool
proposed in [10].

IV. CLIENT-SIDE TRACKING

For on-device tracking, the scheme is developed as follows.
The sensor-aided feature matching approach is performed in
the detection and re-detection steps when tracking is lost,
while the intensity-based image registration method serves its
role in continuous tracking of the translation and rotation of
the camera. Feature-based tracking has its advantages as it is
able to detect the tracking target with any initialization using a
robust estimation algorithm, such as RANSAC [17]. With an
initial estimation of the pose from keypoint detection and
matching, 3D tracking can be achieved through image
alignment algorithms. The image alignment process moves or
transforms a template image to minimize the difference
between the template and an input image. The detection-and-
matching process described is able to provide a solution for
3D tracking.

A scale and rotation aware descriptor based on the
combination of an efficient binary descriptor BRIEF [18] with
sensor measurement from the handheld device is used in the
proposed framework. The BRIEF descriptor is a bit vector
created from the binary test responses of pixel pairs around
certain feature points. Experiments in [18] have shown that an
isotropic Gaussian distribution around the patch center gives
the best match result. The BRIEF descriptor is robust to
illumination changes and some degrees of affine
transformation. However, it is not scale and rotational
invariant. A sensor-aided feature algorithm [12], which
integrates the sensor measurement with the BRIEF descriptor,
is proposed and implemented to generate gravity-aligned
descriptors in this research. The proposed feature detection
and matching algorithm is able to deal with fronto-parallel
planar surfaces which are common in the physical
environment.

Intensity-based tracking can be achieved using an iterative
optimization method. With a suitable parameterization of a
small motion about the current camera pose, an optimization
method can converge iteratively to the camera pose that gives
the minimal image error between the reference and warped

images. For tracking of planar surfaces, homography is used to
model the perspective transformations due to camera motion.
An example of a popular solver is the Gauss-Newton and
Levenberg-Marquardt techniques. Efficient Second-order
Minimization (ESM) is a more recent method that it has been
observed to have a higher convergence rate [20]. In this
research, the ESM solver is adopted and applied with a simple
illumination model [11].

A. Sensor-Aided Detection

The BRIEF descriptor is constructed from a set of binary
intensity tests on a smoothed image patch. The output of a
single test is either 1 or 0 depending on the comparison result
from the pair of test pixels. Therefore, the output is a string of
bits. This bit string is used for matching based on a nearest-
neighbor search with a metric of Hamming distance. The
binary test is formulated as (1):

frnoP) = Xicin Zi_l‘f(P: [Golzi—1, [Gel2i) (1)

To encode the orientation information in the descriptor, the
BRIEF test is steered to the orientation of the camera detected
by the inertial sensors. As shown in Fig. 3, the lines in the
pattern illustrate the test pair which two ends indicate the
positions of the two test pixels and the patches are rotated
together with the device. Let G represent the distribution of the
test pixels, Gg = RyG is considered as the rotated test. Thus,
the descriptor can be formulated as (2):

fro(®) = Ticicn 277705 [Golzi-1, [Gol2i) 2

In-plane Rotation e

dirkction of Gravity.

Pattern of Gaussion-distributed
Binary Test Pairs

Fig. 3 Gravity-aligned Test Pattern

In the implementation in this research, 256 test pairs are
selected and applied on a 31 x 31 image patch. This steered
BRIEF feature is demonstrated to be effective in feature
detection and matching based on experiments and tests in the
authors’ previous work [13]. Using a FAST [19] keypoint
detector, 300 points are detected for descriptor-matching. This

159

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:11, No:2, 2017

choice of 300 keypoints ensures the system’s efficiency
without much sacrifice of the accuracy. The selection of the
number of keypoints is discussed in Section VII (B).

B. 3D Tracking

The intensity-based method performs the optimization by
minimizing the pixel intensity errors with the assumption that
the intensity of the image remains constant in different
situations. Since the lighting condition in the environment can
strongly affect the illumination of the object being tracked, an
illumination model is proposed.

The 3D tracking problem is modeled as follows. Let I
denote the template image, and [is the frame image that needs
to be warped with a transformation to the template. The pixel
p; from the frame image can be warped to the pixels p; in the
template image by a warping function W. If the points in the
template image form a planar surface, a homography
transformation H(x) can be used to represent the warping.
The homography transformation contains eight parameters
denoted by a vector x. For a set of n pixels p* from a selected
region of the template image, a vector y(x) of the image
different from the template image and the warped frame image
can be defined as (3):

yx) = [y1(0) y(x) ... ¥ (O)]T 3)

where
yi(x) = I(W(H) e WH@)D])) — I'(p)) (4)

In this formulation, the warping transformation is defined as
an initial estimation W(H(x)) composited with an
incremental warping W{H).

Given the initial estimated homography H(x), the template
image I, the frame image I, and the set of pixels from the
selected region p*, the compositional incremental warping H
can be solved iteratively through minimizing the image
difference y(x). To address this problem, the ESM is
developed as a non-linear optimization procedure with a
convergence rate similar to the second-order methods, but
with an efficiency of the first-order methods through avoiding
the repeated computation of the Hessians.

X, is estimated and used to update the homography H
iteratively. Formulated with Lie Algebra, the homography
update is obtained using the matrix exponential function as
(5). Detailed formulation of ESM can be found in [20].

H — I:I\ezinxkflk (5)

For a more efficient implementation, the patches for
tracking are selected from the 24 grids that form the center
portion of the template image. The top N grids with the
highest intensity gradient are selected for tracking and the rest
are eliminated. N is set between 5-10 for mobile devices. In
Fig. 4, eight patches with the highest intensity gradient used
for optimization are highlighted.

Fig. 4 Patch Grids for Image Alignment, eight patches with the
highest intensity gradient are highlighted and used in the ESM
optimization

The illumination model used is formulated as follows. Let
m; and d; respectively be the mean and standard deviation of
the pixel intensities in the sub-grid j in the warped image, and

m; and dj be the corresponding values for the reference

image. The modified pixel intensity I'(p;;) is obtained by
using the illumination model as (6):

I'(pi;) = (d;/d;) (I (pij) —my) +m; (©)

This approach is feasible because the pose in the previous
frame is close to the current one during tracking. It is assumed
that the overall illumination of the sub-grid patches would not
change too much unless there is a dramatic change of the
lighting condition.

V.AUTOMATIC KEY-FRAME QUERYING AND SYSTEM STATE
MONITORING

To ensure an auto-streaming of content rendering, a method
of automatic key-frame querying is used. The simplest way to
select key-frames automatically is to schedule a frame-query
task at a fix rate, for example, every two seconds. In this case,
the current frame in the stream is captured automatically and
sent to the server for post-processing every two seconds. The
problem with this implementation is that the quality of the
frame to be selected cannot be guaranteed; therefore, some
useless frames would be sent back which is a waste of the
computational power and network bandwidth. The frames
with low quality are typically blurred images induced by fast
motion, and images with very few visual information or
ground/sky images, which often do not contribute to object
recognition or tracking as shown in Fig. 5.

Fig. 5 Examples of invalid key-frames

To address the problem of incorrect orientation, sensor
information is used. Since the target for tracking in the
application scenario in this research is fronto-parallel planar

160

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:11, No:2, 2017

surfaces, sensor information is used to determine whether the
current orientation of the device is in the desired poses. When
the angle is within a range of 45-90, the device is considered
to be in a good orientation. One observation is that blurred
images are poor querying images. The blur effect is mainly
due to the fast motion of the device. One of the solutions to
this problem is to monitor the sensor measurement and
determine the fast-motion mode by calculating the change in
the sensor outputs. However, this requires constant monitoring
of the sensor measurement over the previous and current
frames, and synchronization between the sensor measurement
and the frames captured since they are processed in different
threads with different frequencies.

In this research, a vision-based key-frame selection method
is proposed. FAST feature points are extracted from each
frame and descriptors are generated for each keypoint. The
keypoints in the current frame are matched with the ones from
the previous frame. For each matched pair of keypoints, the
descriptor disparity and position displacement are compared.
The thresholds are set such that if the descriptor similarity is
within a threshold t; = 20, and the displacement is within a
threshold t,, = 8, the keypoint is considered to be matched.
The total number of matched keypoints is a good indicator of
the pace of movement of the camera, since when the camera
moves too fast, most of the keypoints will not be matched.
Two status of the camera movement are defined, namely, “in-
focus” when the camera moves slowly tracking the target
items and “out-of-focus” when the camera moves quickly. To
handle the oscillating between the two statuses caused by
small changes of the number of matched keypoints, two
threshold values are used. When the matched feature number
is greater than the lower-threshold, the device is considered to
have entered the out-of-focus status, and when it is less than
the higher-threshold, the device is considered to have entered
the in-focus status. This approach stabilizes the monitoring
process. Combining the criteria of orientation measurement
and status monitoring, the device is considered to be ready to
acquire key-frame only when it is in a good orientation and at
the in-focus status. The automatic key-frame query scheme is
modified by scheduling a frame-query task every two seconds,
and querying the frame after checking the readiness of the
device. If it is ready, the frame is captured for further
processing, otherwise the frame is discarded.

The tracking system on the client side is monitored in three
states; namely, searching, listening and tracking. Fig. 6 depicts
the state transition. In the searching state, the system only
executes the keypoint detector and filtering algorithm to select
querying key-frames. After a key-frame has been sent for
processing, it enters the listening state without any frame
processing, and wait for a response from the server-side
recognition. The recognition result is sent back within
seconds; based on this result, the system will decide whether
to return to the searching state or enter the tracking state. If
negative matching is signaled, the system state goes back to
the searching state, otherwise it proceeds to the on-device 3D
tracking state. When tracking starts, the system first fetches
the tracking and rendering information with a URL access

provided by the searching result. Next, the 3D tracking
algorithms are executed and the virtual information is
rendered with the tracking results. It is possible for tracking to
be lost for some time; however, as long as the user’s focus is
still on the same target, tracking could be re-initialized with
feature detection and matching. Detecting out-of-focus on a
tracking target is enabled by a timer to monitor the tracking
performance. If the tracking has been lost for a significant
amount of time, it is assumed that the user has shifted his
interest and the system returns to the searching state
automatically.

VI. CONTENT MANAGEMENT AND STREAMING

The proposed framework supports various contents to be
rendered. The information communicated between the server
and client is enclosed in a JSON file. Fig. 7 shows a sample
code snippet of the JSON file. The tracking target is sent to the
client as a scaled image which matches the key-frame that has
been used for querying. The content to be rendered is specified
with its type and source used for retrieving. Image, text,
videos and 3D models are tagged with their pre-defined type
tags. Since the downloading and importing of some large 3D
models can cause a significant amount of overhead, an
indication of successful tracking is first rendered to the user
and the information is updated with the completion of model
downloading.

Server-side
Recognition

Key-frame queried
—

Recognition success

__ Recognition fail _

-

~~—_ _ Trackingout of focus _—"

Fig. 6 State transitions of the automatic tracking system

{
“trackable™: {
“scale” : 1.0,
“src” : “http://172.16.xxx.xxx/api/trackable/map.png”
b
“content”: {
“type”: “3d",
“src™: “hitp://172.16. xxx.xxx/apifcontent/teapot.obj’,
H
H

Fig. 7 Sample code snippet of the content to be delivered

VII. EXPERIMENTS
For real-time tests, the server is configured with a 3.2 GHz
quad core CPU and 16 GB of RAM in a 64 bit Linux System.
The recognition system is built using the VLFeat [21] library.
The client device is a Samsung mobile device with a quad-

161

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:11, No:2, 2017

core 1.5 GHz CPU, 1 GB RAM and built-in accelerometers
and gyroscopes. The tracking algorithms implemented in C++
and OpenCV [22] is used to assist in the basic image
manipulation and OpenGL ES for 2D/3D information
rendering.

A. Image Retrieval Performance Evaluation

The evaluation of the performance of the image retrieval
pipeline is performed on a dataset that combines a sub set
from the Stanford Mobile Visual Search (SMVS) dataset [21]
and a dataset that is built by the authors from a set of images
collected from a campus walk-around. The reasons that SMVS
is selected are first it focuses on mobile visual search with
query images taken from low- to high-end mobile phones;
secondly, it focuses on near-duplicate image search over
object recognition with identical objects contained in the
database images and the query images. SMVS contains eight
different categories of objects, from which three categories,
namely CD covers, book covers and museum paintings are
used in this experiment. The selected sets of data are
collections that include mainly planar texture surfaces which
are suitable tracking targets in the 3D tracking pipeline. An
additional category is added to the test data which are a set of
planar surfaces collected from around the campus, including
sign boards, posters, maps, bus-stop stands, building facades,
etc. For the categories of CD covers, book covers and museum
paintings, four different query images are associated to a
database image. The four different query images are from
heterogeneous low and high-end camera phones. The campus
data set also contains four query images for each reference
image in the database. The query images are taken using the
same device with changes in viewing angles and introduced
noise, such as occlusion, blur and illumination variance. The
test data set is summarized in Table I. A few samples of
database images and query images are shown in Fig. 8.

TABLEI
SUMMARY OF TEST DATASET

Reference Images Query Images

Campus 70 280
Book Cover 100 400
CD Cover 100 400
Painting 100 400

Since a post-verification step follows the retrieval step, it is
important to identify the number of top query results before a
correct match can be found. Fig. 9 plots the retrieval precision
against the number of images retrieved. Precision refers to the
fraction (y-axis) of retrieved images that are correct matches
of the ground truth. As shown in Fig. 9, the campus dataset is
the easiest test set that exhibits the highest retrieval rate. The
reason is that the images collected around the campus contain
more distinctive visual information than the other three
datasets, in which the book covers, CD covers and paintings
have some similar visual characteristics among them in the
same category. Another observation is that the successful
retrieval rate goes above 80% for the CD covers and paintings,
and above 95% for the book covers and campus dataset when

the n value is increased to 5, which is an acceptable retrieval
rate for practical applications.

W
" =
CDCover ="

=

nemLITay

Painting

—&— campus
—#— book cover
——cd cover
—— painting

Fig. 9 Curves showing percentage (y-axis) of the ground truth query
images that are in the top x percent (x-axis) of search results, plotted
for four categories of the dataset

1.2
H VLAD-256

mVIAD-128

W BoW-100K
W BoW-10K

Campus book cover CD cover

painting

Fig. 10 Comparison of retrieval rate for VLAD and BoW evaluated
on the test datasets

As illustrated in Fig. 9, the results based on top five queries
provide more than 80% correct matching for all the categories
of images. This threshold is selected in the experiment

162

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:11, No:2, 2017

comparing the VLAD and the vocabulary tree that is used in
[6], [8]. Fig. 10 shows the retrieval rate for each category of
datasets based on a comparison of the two approaches. In the
comparison experiment, VLAD with two different parameters,
at k-means clusters k = 256 and k = 128 are used. The
number of features from each image is chosen at 500. The
vocabulary-tree structured BoW approach is evaluated with
the number of leaves at 100k and 10k, and the parameters used
are depth L = 4 and k-means center k = 10, and L =5 and
k =10, respectively. As illustrated in Fig. 10, VLAD
outperforms BoW for all the test datasets. With a finer
clustering of codebook training, i.e. a larger number of k-
means cluster centers, a better retrieval rate can be obtained.

B. Experimentation on Keypoint Detection and Matching

The number of keypoints used for matching is a critical
parameter for the performance of the detection based on the
proposed sensor-aided feature descriptor, since the efficiency
of the algorithm depends strongly on the number of features
used. In the detection pipeline, three steps are involved,
namely feature detection, feature descriptor extraction and
feature matching. In this process, matching is effected most
strongly by the increase number of keypoints. The main
reason is that brute-force search for matching has 0(n?) time
complexity. Therefore, matching time exhibits quadratic
growth when the number of keypoints increases. To select an
optimal number for feature matching, experiments are
performed in a subset of sample images from a standard test
dataset [22]. It contains four sets of test images, which are
designed to capture the effects of viewpoint change or
zooming/rotating. These four sets of images shown in Fig. 11
are resized to 640 in width for processing on devices and used
to test the efficiency of the keypoint detection and matching
algorithm.

graffiti wall bark boat
Viewpoint Viewpoint Zoom+rotation Zoomrtrotation

6 images

LRF .
6 images 6 images

6 images

Fig. 11 Test image sets for keypoint detection experimentation

The average matching rate for the test dataset is plotted
against the number of keypoints used for matching and shown
in Fig. 12. The result of the pose estimation based on
RANSAC that is performed on the matched keypoint pairs
indicates as success or failure, is recorded for each test set in
Fig. 13. It is observed that with increasing number of features
used in matching, the processing time increases. Fig. 13 shows
that pose estimation has a better performance as the number of
keypoints increase. However, the increase in feature numbers
does not contribute much to the successful estimation of the
pose. Viewpoint change and zoom/rotation have stronger
effects on the pose estimation result than the number of
keypoints used. For the evaluation and demonstration in the

following sections, the number of keypoints used for matching
is selected at 300 for each scale.

/./.
/‘

w
B

w W
=W

(¥}
o

~N
~

(]
w

o
B

Average Time for Detection and
Matching (ms)

[
]

~
o

150 200 250 300 350 400 450 500 550

Number of Keypoints

Fig. 12 Average processing time for feature detection, descriptor
extraction and matching for four sets of images, plotted for the
number of keypoints used in processing

C.3D Tracking Performance Evaluation

Video sequences are provided to evaluate the performance
of the proposed 3D tracking method. Four video sequences
taken in an outdoor environment are used. The method to
evaluate the robustness of the 3D tracking method is described
next. The homography transformation is recorded for each
camera frame if tracking is performed successfully. In the
post-processing step, each frame is warped with the inverse of
the recorded homography and compared with the target image
using the normalized cross correlation (NCC). NCC is a good
indicator of the similarity of two image patches. For frames
that are not tracked, the value is set as 0. Video sequences ()
to (d) are taken during a campus walk-around. Video sequence
(a) targets a reflective noticeboard while video sequence (b)
targets a poster which contains rich visual features. Video
sequences (c¢) and (d) are building facades that involve fast
scaling and occlusion. The videos are taken by using the
abovementioned mobile device without any control of the
environment lighting; therefore, a practical application
scenario is well captured in these videos. The video sequences
are processed with the proposed intensity-based tracking
method and a feature-based tracking method that is similar to
the one in [3], where Wagner et al. proposed the Patch-
Tracker with mobile marker-less tracking. Continuous
tracking achieved using the Patch-Tracker is based on a search
for known features at predicted locations in the input camera
frames within a predefined search region and optimization on
the re-projection errors. The tracking rate is calculated as the
ratio of the successful tracked frames over the total of frames
in the test video sequence and the number of successful
tracked frames is selected when the NCC value is above a
threshold of 0.2. Fig. 14 shows sample frames from each video
sequence and the plot of the NCC that is post-calculated for
each frame comparing the proposed method and the Patch-
Tracker. Fig. 14 depicts the average NCC values for each
sequence for the two methods. Fig. 15 shows the plot that
compares the final tracking rate for the four video sequences.

From the plot of the NCC over frames in Fig. 14, the

163

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:11, No:2, 2017

smoothness of the tracking can be observed to some extent.
For video sequences (a), (c) and (d), ESM-tracking performs
better than the Patch-Tracker. This observation is supported by
the performance of the two trackers on the second half of
video sequence (a), the middle part of video sequence (c) and
last quarter of video sequence (d), in which the camera is
experiencing rotation, zooming (scaling) and fast translational
movement. ESM-tracking manages to provide continuous
tracking for most of the time while the Patch-Tracker either
experiences too much noise or loses the tracking completely
(indicated by 0 NCC value). This conclusion is also supported

200 250 300 350 400 450 500

in Fig. 15 (a), where the averaged NCC value for ESM-
tracking is lower than that for the Patch-Tracker, and in Fig.
15 (b) which shows the final tracking rate for each sequence.
The Patch-Tracker is comparable with ESM-tracking in terms
of the performance for video sequence (b). The main reason is
that the tracking target in video sequence (b) contains a
relatively large number of distinctive keypoint features
suitable for feature-based tracking. However, for the overall
tracking rate for sequence (b), ESM-tracking outperforms the
Patch-Tracker as indicated by Fig. 15 (b).

200 250 300 350 400 450 500

122« o« x N 122 4 A N
1->3 | x % x % % x % 123 | o V W N W Y i
bark 124« xox ox ox o x gaffiti 14| < x4
15 = * x x ® x Y 125 | = ® ® ® ® ® x
1->6 * ® * ® x ® ® 1->6 ® ® ® ® % ® ®
122 W o ¥ oo i I 122 | 4 I I VoW Y
123 4 A A A A L T I T e
boat 1->4 A wal 14 x|
125 A A A 125 o« x o ox o xx XX
1->6 % % % * ® £ x 1->6 ® X x % x x x

Fig. 13 Pose estimation success (\/) or fail (X) based on different numbers of keypoints used for matching, evaluated for four sets of test images

=

IV AN S

Video sequence (a)

E!EEW%WTEEMﬁ

Sy

AN SN

S

Video sequence (b)

1
A AL M—— s .MH]_

— |1

et

e
L .'-ili. AN

IIIIILW

1)
B\ AL .’\’]*

s o . S —

Video sequence (d)

Fig. 14 Sample frames and NCC value plotted over frames. NCC based on ESM-tracking is plotted in red and NCC based on Patch-Tracker is
plotted in blue for video sequences () to (d)

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:11, No:2, 2017

07

WESM

06 B Patch Tracker

05

04

0.3

0.2

0.1

Sequence (a) Sequence (b) Sequence (¢) Sequence (d)

)

—~
o0

WESM M Patch Tracker

(=]
o

F g:II
|
r

E

(=]
T

(=]
R

E

Sequence (a) Sequence (b) Sequence (¢) Sequence (d)

(b)

Fig. 15 (a) NCC averaged over frames (y-axis) comparison for ESM
tracking and Patch-Tracker based on the test video sequences; (b)
Tracking rate (y-axis) compared comparison for ESM tracking and
Patch-Tracker based on the test video sequences

=5

D.Key-frame Auto-selection Performance Evaluation

Another two video sequences are used to evaluate the
performance of the proposed key-frame auto-selection method
(Fig. 16). Video sequence (a) is taken in a laboratory setup
environment in which the focus of the camera is switched
among three objects. Video sequence (b) is taken in an
outdoor environment with random movement of the camera.
Fig. 16 shows sample frames from the clips and the feature of
matched features are plotted against time. For video sequence
(a), the intention of focus change is clear. The algorithm
predicts the intention easily as the number of matched features
is reduced to zero when the focus of the camera changes.
Video sequence (b) exhibits random movement of the camera.
It is observed for different scenarios, and the number of
matched features remains around 50. Therefore, a single set of
threshold values can be used for the system.

E. Application Demonstration and Efficiency Evaluation

To evaluate the performance of the proposed system in a
practical scenario, the test samples are collected from a
campus walk-around. 70 textured planar surfaces are used for
preparing the database on the server-side. The experiment is
performed by walking around the campus and monitoring the
real-time performance with a monitor system running in the
background.

For the real-time performance in a practical scenario, 3D
tracking is evaluated based on a set of vertical planar surfaces
collected from the campus walk-around. The frame size is
selected as 640 x 480. To enable the scale-awareness of the
feature tracking approach, a set of descriptors for the
referenced image is computed on two scales with a
downsizing factor of /2. Three hundred keypoints are used for
keypoint matching in each scale, which has been determined
empirically to be a good trade-off between the efficiency and
the recognition performance. The sub-grid ESM tracking
algorithm is based on 24 (6 in width and 4 in height) image
patches in the center of the reference image. The top five grids
with the highest intensity gradient are used for the
optimization in order to achieve real-time efficiency. The
speed for detection and tracking is summarized in Table II.
The number of keypoints to be detected and matched strongly
affects the processing time. In practice, the frame rate of the
tracking system is maintained at 15 -30 fps most of the time.

The recognition on the server-side consumes up to 200 ms,
and an average 50 ms information transfer overhead is
observed under the network condition in the authors’ campus.
In total, it requires around 250 ms for the recognition process.
However, the performance depends mainly on the on-device
tracking efficiency, since recognition is not performed in
every frame.

Fig. 17 shows a few sample frames from the application
test. The system supports the rendering of images, text, 3D
objects, and video streaming. The information is
communicated between the client and server in the format of
the pre-defined JSON content. With the key-frame auto-
selection algorithm, this system creates a single application
experience in which the only interaction required from the
user is to hold the camera and explore. The proposed system is
able to scale up to hundreds of images recognition and
tracking with support from the server-side for image retrieval.

TABLEII
EFFICIENCY EVALUATION OF THE TRACKING SYSTEM

Time in milliseconds
Mean Standard Deviation Min Max
Detection 69.07 33.82 10.35 163.67
Tracking 32.33 18.11 2.68 101.68

VIII.CONCLUSION

In this paper, a scalable mobile AR framework is proposed,;
the feasibility is demonstrated with experimental tests on
datasets collected from a practical situation. The residual-
enhanced image descriptors representation adopted on the
server-side gives the framework a scalability property. This
approach is demonstrated to outperform the BoW method used
in some other similar systems. The client-side takes the
advantage of a sensor-equipped mobile device and an
optimized intensity-based image alignment approach to ensure
the accuracy of 3D tracking. The framework handles
recognition, tracking, content delivery and rendering in an
automatic processing pipeline, allowing the users to be

165

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:11, No:2, 2017

immersed in an AR experience effortlessly. The system is
proven to be functional in practical applications.

One of the limitations of the server-client AR framework is
the 3D model information transfer. As 3D objects are quite
large in bits, the transfer of this content often causes a large
overhead on the performance of the system. 3D object
streaming is a possible way to overcome the problem. There

are a few further developments on the current framework. One
of them is an authoring tool which could be integrated with the
framework that enables wuser contribution of content.
Automatic content update could be introduced. Besides, GPS
information can also be considered to further scale up the
tracking capability of the system.

ima

B AL i At s Y N

il O e W4 o

ooT

Video sequence (b)

Fig. 16 Number of matched features plotted versus frames for video sequence (a) and (b)

Fig. 17 Sample results from campus walk-around

REFERENCES

[1] S. Feiner, B. Macintype, T. Hollerer and T. Webster “A Touring
Machine: Prototyping 3D Mobile Augmented Reality Systems for
Exploring the Urban Environment,” In Proc. International Symposium
on Wearable Computers, Cambridge, Massachusetts, 13-14 Oct 1997.

[2] T. Guan, Y. He, L. Duan, J. Gao, J. Yang and J. Yu, “Efficient Bag-of-
Features Generation and Compression for On-Device Mobile Visual
Location Recognition, ” IEEE MultiMedia, 21(2):32-41, 2013.

[3] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond and D.
Schmalstieg, “Real-time detection and tracking for augmented reality on
mobile phone,” IEEE Transaction on Visualization and Computer
Graphics 16(3):355-368, 2010.

[4] D. Schmalstieg, T. Langlotz and M. Billinghurst, “Augmented Reality
2.0. Virtual Realities,” Vienna: Springer-Verlag/Wien, pp 13-37,2011.

[5] D. Nister, H. Stewenius, “Scalable Recognition with a Vocabulary
Tree,” In Proc. of IEEE Conf. on Computer Vision and Pattern
Recognition, vol. 2, New York, USA, 17-22 June, 2006, pp. 2161-2168.

[6] V. Lepetit, P. Fua, “Keypoint recognition using randomized trees,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 28(9):1465-
1479, 2006.

[71 S. Gammeter, A. Gassmann, L. Bossard, T. Quack and L. Van Gool
“Server-side object recognition and client-side object tracking for
mobile augmented reality,” In Proc. of 2010 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshops,
San Francisco, CA, 13-18 June, 2010, pp. 1-8.

[8] G. Takacs, V. Chandrasekhar, N. Gelfand, Y. Xiong, W. Chen, T.
Bismpigiannis, R. Grzeszczuk, K. Pulli and B. Girod, “Outdoors
augmented reality on mobile phone using Loxel-based visual feature
organization,” In Proc. of 1st International ACM Conference on

166

9]

[10]

(1]

[12]

[13]

[14]

[15]

[1e]

[17]

(18]

[19]

[20]

[21]

[22]

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:11, No:2, 2017

Multimedia Information Retrieval, Vancouver, BC, Canada, 30-31
August, 2008, pp. 427-434.

H. Jaewon, C. Kyusung, F. A. Rojas and H. S. Yang, “Real-time
scalable recognition and tracking based on the server-client model for
mobile Augmented Reality,” In Proc. of 2011 IEEE International
Symposium on VR Innovation, Singapore, 19-20 March, 2011, pp. 267-
272.

H. Jegou, M. Douze, C. Schmid and P. Perez, “Aggregating local
descriptors into a compact image representation,” In Proc. of IEEE
Conference on Computer Vision and Pattern Recognition, San
Francisco, USA, 13-18 June, 2010, pp. 3304-3311.

M. Muja and D. G. Lowe, “Fast Approximate Nearest Neighbors with
Automatic Algorithm Configuration,” In Proc. of International
Conference on Computer Vision Theory and Application, Lisboa,
Portugal, 5-8 Feb, 2009, pp. 331-340.

W.T. Fong, L. Yu, S. K. Ong and A. Y. C. Nee, “Marker-less Computer
Vision Tracking for Augmented Reality,” In Proc. of 25th Annual
Conference on Computer Animation and Social Agents, Singapore, 9-11
May, 2012, pp. 46-49.

L. Yu, S. K. Ong and A. Y. C. Nee, “Inertial Sensor-aided Feature
Detection and Tracking for Outdoor Augmented Reality Applications on
Mobile Handheld Devices,” In Proc. of Computer Graphics
International, Hannover, Germany, 11-14 June, 2013, pp. 459-462.

T. Langlotz, S. Mooslechner, S. Zollmann, C. Degendorfer, G. Reitmayr
and D. Schmalstieg, “Sketching up the world: in situ authoring for
mobile augmented reality.” Personal and Ubiquitous Computing, 2012,
16(6):623-630.

B. Maclntyre, A. Hill, H. Rouzati, M. Gandy and B. Davidson, “The
Argon AR Web Browser and standards-based AR application
environment,” In Proc. of 10th IEEE International Symposium on Mixed
and Augmented Reality, Basel, Switzerland, 26-29 Oct, 2011, pp. 65-74.

D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, 2004, 60(2):91-
110.

M. A. Fischler, R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” 1981 Communication of the ACM 24(6):381-395.

M. V. Calonder, V. Lepetit, C. Strecha and P. Fua, “BRIEF: Binary
robust independent elementary features,” In Proc. of 11th European
Conference on Computer Vision, Heraklion, Greece, 5-11 Sep, 2010, pp.
778-792.

E. Rosten, T. Drummond, “Machine learning for high-speed corner
detection,” In Proc. of European Conference on Computer Vision, Graz,
Austria, 7-13 May, 2006, pp 430-443.

S. Benhimane, E. Malis, “Homography-based 2D Visual Tracking and
Servoing,” International Journal of Robotic Research, 2007, 26(7):661-
676.

V. Chandrasekhar, D. Chen, S. Tsai, N. M. Cheung, H. Chen, G. Takacs,
Y. Reznik, R. Vedantham, R. Grzezczuk, J. Bach and B. Girod, “The
Stanford mobile visual search dataset,” In Proc. of the second annual
ACM conference on Multimedia Systems, San Jose, CA, 23-25 February,
2011, pp. 117-122.

http://www.robots.ox.ac.uk/~vgg/research/affine. Accessed 9 Jan, 2015.

167

